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I found that several N-substituted benztropine (BZT) analogs (JHW 
007 and AHN 2-005) can dose-dependently decrease self-administration 
(SA) of stimulants cocaine (Coc) or d- methamphetamine (MA) despite 
their high affinity and high selectivity for the dopamine transporter 
(DAT) [1,2]. In addition, the sigma receptor (σR) antagonist rimcazole 
and its analogs (SH 3-24 and SH 3-28) dose-dependently decrease Coc 
SA [3]. The antagonist actions of the BZT and rimcazole analogs were 
quite distinct from the effects of the standard DA uptake inhibitors and 
other σR antagonists. For example, standard DA uptake inhibitors (WIN 
35,428, methylphenidate and nomifensine) dose-dependently shifted 
the dose-effect curve of Coc SA to the left, suggesting a potentiation 
of the reinforcing effects of Coc whereas standard σR antagonists 
(BD 1008, BD 1047, BD 1063, AC 927 and NE 100) were without 
effects on Coc SA [2-4]. Importantly, the BZT and rimcazole analogs 
both are more potent in decreasing Coc SA than in decreasing food-
maintained behavior [2,3], suggesting selectivity of their effects on Coc 
SA. Further, a wide range of doses of the BZT and rimcazole analogs 
failed to maintain responding above vehicle levels when substituted 
for Coc [2,3,5,6], suggesting little if any abuse liability of their own. 
The lack of the reinforcing effects of the BZT analogs was also quite 
distinct from a substantial capacity of the typical DA uptake inhibitors 
to maintain responding when substituted for Coc [2-4] indicating that 
these compounds have abuse liability of their own. Finally, studies 
with in vitro radioligand binding assays demonstrated relatively high 
affinities of the BZT and rimcazole analogs for the DAT as well as to σRs 
[3,7]. A Subsequent study demonstrated that combinations with typical 
DA uptake inhibitors and the selective σR antagonists can decrease 
Coc SA, suggesting dual inhibition at the DAT and σRs as a potential 
combined target approach for medical treatments for Coc abuse [3]. 
The published study [3] was chosen as the March 2012 Featured Article 
on the NIDA-IRP website (http://irp.drugabuse.gov/hotpaperArchive.
php), indicative of a substantial interest in this field of research. Thus 
one of my current research interest is to further explore this “dual 
inhibition” hypothesis as a target for Coc abuse medications.

The second research interest of mine is an unexpected by-product 
of the study on “dual σR/DAT inhibitions.” In the middle of a previous 
study, I found a capacity of the σR agonists (DTG and PRE-084) to 1) 
dose-dependently shift to the left a dose-effect curve for Coc SA and 
2) substitute for Coc or d-MA in rats trained to self-administer Coc
or d-MA, respectively [1,4]. The discovery of the reinforcing effects
of the σR agonists was unexpected because a number of the previous
studies generally failed to observe substantial behavioral effects of the
σR agonists [8]. Further, a subsequent study demonstrated a sensitivity
of reinforcing effects of the σR agonists to pretreatments with the σR
antagonists (BD 1008, BD 1047 and BD 1063) [4], suggesting that the
reinforcing effects of these drugs were mediated by σRs. In addition,
the reinforcing effects of the σR agonists did not occur in naïve subjects 
and were distinct from those of Coc. For example, Coc SA was dose-
dependently antagonized by the selective DA receptor antagonists
(SCH 39166 and L-741,626) as expected [9]. In contrast, neither SCH
39166 nor L-741,626 alone or in combinations affected the SA of the
σR agonists (DTG and PRE-084, [9], unpublished data). These results
suggest a unique reinforcement mechanism that is DA-independent.
The lack of the reinforcing effects of the selective σ1R agonists in naïve

subjects were reproduced with (+)-pentazocine. However, the selective 
σ1R agonists PRE-084 and (+)-pentazocine were reinforcing after 
acquisition of SA of Coc or d-MA. Finally, an additional study indicated 
the lack of a Coc-like discriminative-stimulus effects of the σR agonists 
DTG and PRE-084 in rats [10]. Thus these studies on the σR agonists 
suggest that stimulants can induce a DA-independent reinforcing 
mechanism that is mediated by DA independent pathway(s). The 
published study [4] was chosen as the July 2010 “Hot” paper on the 
NIDA-IRP website (http://irp.drugabuse.gov/hotpaperArchive.php), 
indicative of substantial interest in this research. Thus this second 
research interest is to investigate the DA-independent reinforcing 
mechanism induced by experience with Coc SA. I believe that these 
studies will shed light on understanding the mechanisms underlying 
the intractability of stimulant abuse to pharmacotherapy, and may lead 
to better medical treatments for stimulant abuse.

The third research interest of mine is to determine the role of 
specific receptors in food reinforcement mechanisms with behavioral 
economic mathematical models in genetically engineered animals. I 
have previously focused on DA receptor subtypes in collaboration with 
Drs. Katz and Soto (Johns Hopkins University). Some of these results 
were previously published [11]. Future studies will focus on cannabinoid 
systems and CB1 receptors using genetically engineered knockout and 
wildtype littermates. The cannabinoid CB1 receptors are one of the 
most abundant receptors in the brain. In addition, the cannabinoid 
CB1 receptors are implicated in a number of psychiatric diseases 
including a substance abuse. If these studies indicate a substantial role 
of CB1 receptors in the reinforcing effects of food, subsequent studies 
will confirm that role using conditional knockouts and RNA silencing 
(post-transcriptional gene silencing). On the other hand, a previous 
study that the σR antagonists generally are more potent in decreasing 
responding maintained by food presentation than in decreasing 
responding maintained by Coc injections [4]. However, effects of the 
σR ligands on operant behavior have not been well characterized. 

σ1Rs are intracellular chaperone proteins that translocate from their 
primary endoplasmic reticulum localization to different subcellular 
compartments upon agonist actions, and regulate ion channels and 
G-protein-coupled-receptor signaling [12-14]. In fact, reports have
implicated σ1Rs in various biological functions, and drugs acting at
these receptors have been studied for therapeutic effects in psychiatric
disorders including substance abuse, depression and dementia [8,15].
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Thus investigating role of the σRs should be an avenue for development 
of medications for a wide range of diseases.
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