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Abstract
In humans multiple pathways can induce TH-17 cell differentiation, whereas in mice this process is mostly 

modulated by IL-6 and TGF-β. IL-17 produced by TH-17 cells has been associated with a number of inflammatory 
autoimmune diseases including psoriasis, systemic lupus erythematosus, inflammatory bowel disease, multiple 
sclerosis, and rheumatoid arthritis. In this review, we have primarily focused on the role of TH-17 cells/IL-17 in 
the pathogenesis of rheumatoid arthritis and experimental arthritis. The potential role of TH-17 cells in rheumatoid 
arthritis progression has been demonstrated by correlating the percent TH-17 cells or levels of IL-17 with rheumatoid 
arthritis disease activity score and C-reactive protein levels. Further, previous studies suggest that IL-17 mediated 
vascularization may lay the foundation for rheumatoid arthritis joint neutrophil and monocyte recruitment as well as 
cartilage and bone destruction. The profound role of IL-17 in the pathogenesis of experimental arthritis may be due 
to its synergistic effect with TNF-α and IL-1β. Although the initial clinical trial employing anti-IL-17 antibody has been 
promising for rheumatoid arthritis, future studies in humans will shed more light on how anti-IL-17 therapy affects 
rheumatoid arthritis and other autoimmune disease pathogenesis. 
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Introduction 
TH-17 cells are a subgroup of CD4+ lymphocytes that function 

predominantly at mucosal surfaces to protect against extracellular 
pathogens and are involved in the inflammatory process through 
the recruitment of neutrophils and in autoimmune diseases [1,2]. 
Human TH-17 cell development is regulated by transcription factor, 
RAR-related orphan receptor C (RORC) and these cells express IL-
17A, IL-17F, IL-21, IL-22 and IL-26 [3]. Originally TH-17 cells were 
characterized by expression of IL-17A, commonly referred to as IL-17, 
though more recently, the lectin receptor, CD161, has been identified 
as a specific marker for human TH-17 cells [4]. 

IL-17A was the first member identified of the IL-17 cytokine 
family, which consists of 6 members IL-17A through IL-17F (Table 
1). The IL-17 family members function as either homodimers or 
heterodimers [5,6]. IL-17A and IL-17F are both produced by TH-17 
cells, however IL-17A is significantly more potent in initiating signaling 
and causing autoimmune responses. IL-17B is produced by cells of 
the gastrointestinal tract, pancreas and neurons, IL-17C is produced 
by cells of the prostate and fetal kidney, and IL-17D is secreted by 
cells of the muscles, brain, heart, lung, pancreas and adipose tissues 
[7,8]. IL-17E also known as IL-25 is produced by lymphocytes, lung 
epithelial cells, alveolar macrophages, eosinophils, basophils, NKT 
cells, TH-2 cells, and mast cells [9,10]. IL-17E is capable of initiating a 
TH-2 response which suppresses TH-17 cell differentiation. IL-17 was 
initially believed to be solely expressed by TH-17 cells, however it is 
now known that IL-17 can be produced by γδ T cells [11] , lymphoid 
tissue inducer (LTi) cells [12], mast cells [13], and neutrophils [14].

The IL-17 receptor family consists of 5 members, IL-17RA through 

IL-17RE, whose structures are not homologus to other cytokine receptor 
families [15,16]. IL-17 receptors are type I transmembrane proteins 
that have conserved structural elements including a cytoplasmic 
SEF/IL17R domain (SEFIR) and two extracellular fibronectin III-like 
domains [5]. IL-17RA can bind to either IL-17A, IL-17E, or IL-17F, 
however it binds to IL-17A with the highest affinity [17]. IL-17RB can 
bind to either IL-17B or IL-17E and is also known as IL-25 receptor 
[16]. IL-17RC can bind either IL-17A or IL-17F, while IL-17RE binds 
only to IL-17C [18,19]. IL-17RD does not have a known ligand. IL-17 
receptor family members function as receptor complexes with multiple 
members binding to ligands, possibly in a 2 step binding process where 
one IL-17 ligand must bind to a receptor before the second IL-17 ligand 
can bind a second receptor in the complex [17]. It is thought that these 
complexes can be either homomeric or heteromeric, for example, IL-
17RA can pair with IL-17RC to bind and transmit signals from ligands 
such as IL-17A and IL-17F [20]. Of the IL-17 receptor family members, 
IL-17RA is expressed ubiquitously while IL-17RC is expressed mostly 
on non-hemopoietic cells [17-21].

Differentiation of mice and human Th-17 cells 

Origin of and factors that modulate human TH-17 cells have 
been discussed intensely over the past few years. Three independent 
studies demonstrated that in mice TGF-β and IL-6 are responsible for 
polarizing naïve CD4+ T cells to TH-17 and the transcription factor 
RORγt is an essential component in this process [22-24]. However, 
the role of TGF-β in human TH-17 differentiation is less clear. It was 
shown that TGF-β can inhibit human TH-17 differentiation while 
IL-6 and IL-1β were the driving factors for this development [25]. 
Consistently, others have shown that while IL-1β or IL-23 is necessary 
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for human TH-17 differentiation from naïve human CD4+ T cells, the 
presence of TGF-β was not required [26]. Interestingly, direct contact 
of LPS or peptidoglycan activated monocytes with naïve CD4+ T cells 
was able to polarize naïve CD4+ T cells to TH-17 cells [27]. In contrast 
to these findings, others have shown that TGF-β together with other 
proinflammatory factors such as IL-23, IL-1β and IL-6, was critical for 
human TH-17 cell development [28,29] and lack of TGF-β induces a 
shift from TH-17 to a TH-1 profile [29]. It was also demonstrated that 
IL-21 and TGF-β could uniquely promote human naïve CD4+ T cells 
into TH-17 cells by activating RORC2 which is the human homologue 
of mouse RORγt [30]. It was thought that the presence of TGF-β in 
serum containing media, and therefore purity and/or naivety of cells, 
may have lead to the discrepancy in these results [31]. Further, while 
both human and mouse TH-17 cells secrete IL-17, IL-17F, IL-21, IL-
22 and CCL20 production of IL-26 is only induced by human TH-17 
cells as there is no known murine homolog for this cytokine [32-34]. 
Collectively, previous studies indicate that while in mice IL-6 and 
TGF-β can induce robust levels of TH-17 cells (40-80%) this phenomen 
on may not be as straight forward in humans where multiple factors 
can differentially modulate TH-17 cell development to modest levels 
(10%). 

Th-17 cells in human autoimmune inflammatory disease 

A number of inflammatory autoimmune diseases including 
psoriasis, SLE, MS, inflammatory bowel disease and RA have been 
associated with TH-17 cells. In psoriasis, which is a chronic skin 
disease characterized by keratinocyte hyperplasia, inflammation, T 
cell invasion, and angiogenesis, TH-17 cells are predominantly located 
in the dermis of skin lesions [35]. Further, IL-17 and other TH-17 
cytokines such as IL-22 and IL-23 are involved in the pathogenesis of 
psoriasis [36-38]. In psoriasis skin lesions, IL-17 mRNA levels increase 
with disease activity [35]. Disease resolution correlated with decreased 
IL-17 and IL-23 expression levels in psoriasis patients who responded 
to treatment with the soluble TNFα receptor fusion protein, Etanercept 
[39]. In vitro experiments with human keratinocytes showed that IL-17 
treatment resulted in increased production of ICAM-1, IL-6 and IL-8 
[36]. Also IL-17F treatment of kerotinocytes showed greater increase in 
IL-6 expression compared to IL-17 or TNFα- activated cells suggesting 
that IL-17F produced by TH-17 cells causes the inflammation in 
psoriasis partly through induction of IL-6 by keratinocytes [40]. 
Studies demonstrate that kerotinocytes treated with IL-17 and IL-22 
had increased CCL20/MIP-3α expression which may drive CCR6+ 
TH-17 cell recruitment into the skin lesions perpetuating the disease 
process [41]. These results suggest that several TH-17 associated 
cytokines such as IL-17, IL-17F and IL-22 play an important role 
in pathogenesis of psoriasis by inducing the production of similar 
downstream targets. Therefore, response to therapy can suppress these 
common inflammatory pathways. 

Another chronic autoimmune disease, SLE, also features elevated 

levels of IL-17. SLE is a systemic disease in which autoantibodies 
initiate immune complex formation resulting in chronic inflammation 
in locations including the skin and kidneys. In patients with SLE, IL-17 
is produced by both TH-17 cells and TCRαβ CD4- CD8- T cells [42,43]. 
Additionally, in these patients IL-17 levels are elevated in the sera [44] 
and in sites of inflammation such as the skin [45] and kidneys [46,47] 
. The over production of IL-17 is thought to potentiate the systemic 
inflammation observed in patients with SLE in a couple of ways. First, 
IL-17 stimulation of B cells can increase B cell activation and antibody 
production resulting in greater amounts of autoantibody production 
and immune complex formation [43-48]. Secondly, IL-17 released 
at inflammation locations such as the skin can amplify the immune 
response by increasing the influx of effector cells [49]. 

MS is an autoimmune central nervous system disease that involves 
the destruction of myelin sheets resulting in impairment of nerve 
signal transduction. IL-17 production was elevated in MS cerebral 
spinal fluid and blood [50] however, in comparison, greater IL-17 
levels were detected in the cerebral spinal fluid which correlated with 
clinical exacerbations and neutrophil infiltration [51]. More recently, 
histological studies demonstrated that IL-17 expressing cells were more 
likely found in active rather than inactive areas of MS lesions [52]. It 
is hypothesized that IL-17 and TH-17 cytokine IL-22 may be involved 
in the pathogenesis of MS by weakening the blood brain barrier. 
Endothelial cells of the blood brain barrier express receptors for IL-
17 and IL-22 and it was shown that IL-17 and IL-22 could disrupt the 
blood brain barrier possibly through the production of reactive oxygen 
species [53,54]. Hence, disruption of the blood brain barrier would 
allow autoantibodies and inflammatory mediator’s access to the myelin 
sheets allowing the pathology to occur. 

Inflammatory bowel disease includes both Crohn’s disease and 
ulcerative colitis and is a chronic autoimmune inflammatory condition 
of the gastrointestinal tract. IL-17 has been found to be elevated in the 
intestinal mucosa and within the sera of patients with inflammatory 
bowel disease compared to normal controls [55,56]. IL-17 was also 
produced from gut TH-17 cells in patients with Crohn’s disease [57]. 
Further IL-17F mRNA has been found in greater levels in inflamed 
lesions of Crohn’s disease patients compared to non-inflamed areas 
[58]. These human studies suggest a role for TH-17 cells and IL-17 
in the pathogenesis of inflammatory bowel disease. However, the 
exact function of IL-17 in inflammatory bowel disease is somewhat 
controversial as animal studies have shown both protective and 
pathogenic roles for IL-17 [59,60].

Role of Th-17 cells in RA pathogenesis 

Synovial tissue explants from RA but not osteoarthritis (OA) 
spontaneously produce biologically active IL-17 [61]. Increased levels 
of IL-17 are also detected in RA synovial fluid and in T cell rich areas 
of RA synovial tissues compared to OA synovial tissue and fluid [61-

Family member Receptor Source Pathological role

IL-17(A) IL-17RA and 
RC

TH-17 cells, CD8+ T cells, γδ T cells,
NK cells, NKT cells 

Involved in autoimmune pathology, neutrophil and monocyte 
trafficking and angiogenesis 

IL-17B IL-17RB Cells of the gastrointestinal tract, pancreas and neurons Not identified
IL-17C IL-17RE Cells of the prostate and fetal kidney Not identified

IL-17D unknown Cells of the muscles, brain, heart,
lung, pancreas and adipose tissue Not identified

IL-17E (IL-25) IL-17RA and RB lymphocytes, lung epithelial cells, alveolar macrophages, 
eosinophils, basophils, NKT cells, TH-2 cells, mast cells

Induces TH-2 cell responses and therefore suppresses TH-17 
cell polarization

IL-17F IL-17RA and 
RC

TH-17 cells, CD8+ T cells, γδ T cells,
NK cells, NKT cells Neutrophil recruitment

Table 1: The human IL-17 cytokine family members source of expression and pathological role.
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63]. We found that TH-17 cells were significantly elevated in RA 
synovial fluid compared to RA and normal peripheral blood cells [63]. 
Others have shown that expression of CCR4 and CCR6 on RA TH-
17 cells demonstrates selective migration of these cells to the site of 
inflammation [64]. This group of investigators shows that increased 
TH-17 presence in peripheral blood of early stage RA patients is 
suggestive of the contribution of TH-17 cells to disease onset. Further, 
percentage of TH-17 cells and levels of IL-17 strongly correlate 
with disease activity score (DAS 28) and C-reactive protein (CRP) 
suggesting the importance of these cells in disease progression [64]. 
The potential importance of TH-17 cells/IL-17 in RA is supported by a 
randomized, placebo-controlled and double blind phase I study where 
RA patients that received DMARD plus neutralizing monoclonal 
antibody against IL-17 achieved an ACR 20 more rapidly compared 
to those receiving DMARD alone [65]. Consistently a two year 
prospective study analyzing RA synovial tissues demonstrated that IL-
17 and TNF-αmRNA levels are synergistic prognostic factors for worse 
out come [66]. These studies clearly demonstrate that TH-17 cells play 
an important role in RA pathogenesis. 

Synergistic effect of Il-17 with other proinflammatory 
cytokines

The direct proinflammatory effects of IL-17 may be small when 
compared to those of IL-1β and TNF-α. However, IL-17 enhances many 
of the effects of IL-1β and TNF-α. IL-17 stimulates the production of 
IL-1 and TNF-α from human macrophages [67]. IL-17 also enhances 
IL-1-mediated IL-6 production by RA synovial tissue fibroblasts [68], 
as well as TNF-α induced synthesis of IL-1, IL-6 and IL-8 [69]. Many of 
the IL-17 activated genes contain CCAAT/enhancer binding proteins 
(C/EBP) in their promoter which cooperates with NF-κB in inducing 
the transcription of these proinflammatory factors [70]. In RA synovial 
tissue fibroblasts, IL-17 interacts with IL-1 and TNF- α to amplify the 
secretion of CCL20 [71]. IL-17, in combination with TNF- α, induces 
significantly higher levels of nitric oxide and osteoclastic resorption 
compared to each cytokine alone [72,73]. The mechanism by which 
IL-17 mediates synergistic effect is through enhancing mRNA stability 
of AU-rich elements in the 3’ untranslated region (UTR) of many 
cytokines and chemokines [74,75]. In short, a major role of IL-17 may 
be amplifying the effects of macrophage derived proinflammatory 
cytokines and hence be the missing link between T cells in RA joint 
and the effector phase of RA. 

Role of Th-17 in granulopoiesis and neutrophil migration 

It is shown that neutrophils are critical in the early stage of 
arthritis and are abundantly present in the RA joint and synovial 
fluid of patients with active disease [76]. In mice, overexpression of 
IL-17 can expand both neutrophil progenitors in bone marrow and 
spleen [77]. This effect is due to IL-17-induced G-CSF production 
since neutralization of G-CSF, but not deletion of IL-17RA, markedly 
attenuates this effect [77-79] suggesting that IL-17 plays an indirect 
role in granulopoiesis. Local expression of IL-17 enhances neutrophil 
migration in mouse ankle joints as well as the peritoneal cavity [80,81] . 
In the rat airway, IL-17 mediates neutrophil recruitment via induction 
of macrophage inflammatory protein protein-2 (rMIP-2) [82]. 
Like granulopoiesis, neutrophil chemotaxis caused by conditioned 
media from IL-17-stimulated gastric epithelial cells was inhibited by 
a neutralizing antibody to IL-8 but not to IL-17, suggesting that IL-
17 is unable to directly induce neutrophil chemotaxis [83]. Further, 
results from our laboratory demonstrates that neutralizing antibody to 
CXCL5, but not CXCL1, significantly suppresses neutrophil trafficking 
to IL-17-induced arthritis ankle joints indicating that IL-17 mediated 

CXCL5 plays a role in this process [84]. Therefore if these studies in 
rodents translate into human, IL-17 may contribute to RA disease 
onset by inducing IL-8 and/or CXCL5 production that is involved in 
recruitment of neutrophils to the RA joint. 

Effects of Il-17 on cartilage degradation and bone erosion 

Local inflammation is involved in cartilage degradation by 
suppressing proteoglycan and collagen synthesis as well as causing 
extracellular matrix breakdown. Earlier studies have demonstrated that 
IL-17 alone and in synergy with IL-1β inhibits cartilage proteoglycan 
synthesis in murine explants by inducing production of nitric oxide 
[85]. IL-17 treated bovine chondrocytes demonstrated increased 
expression of matrix metalloproteinases (MMP)1, 3 and 13 which are 
factors involved in degradation of extracellur matrix [86]. IL-17 can 
also promote cartilage breakdown by synergizing with TNF- α, IL-1β 
and IL-6 to increase collagen degradation and MMP release [86,87]

IL-17 induces the expression of RANKL in osteoblasts [88] and 
can further synergize with TNF- α in osteoclastic resorption [73-89]. A 
naturally occurring decoy protein osteoprotegerin (OPG) can inhibit 
the interaction of RANK and RANKL, however high dose of OPG 
could only partially inhibit IL-17/TNF- α mediated bone resorption 
[89]. In collagen induced arthritis (CIA) local expression of IL-17 
in ankle joints enhances bone erosion by mediating an imbalance in 
RANKL/OPG in favor of RANKL levels [90]. Taken together these 
observations suggest that IL-17 can directly and in combination with 
IL-1β and TNF- α result in RA bone and cartilage destruction. 

Unique characteristics of Il-17 in RA

Angiogenesis is an early and a critical event in the pathogenesis 
of RA. Hence, neovascularization is involved in leukocyte ingress into 
the synovium during the development and progression of RA [91,92]. 
Our recent data demonstrates that IL-17 can intensify inflammation 
by promoting angiogenesis and subsequently recruiting inflammatory 
cells to the RA joint [93]. We show that IL-17 is capable of endothelial 
chemotaxis at concentrations present in RA synovial fluid. Further, 
ligation to IL-17RC on endothelial cells and activation of PI3K/AKT 
pathway is responsible for IL-17-induced endothelial migration and 
tube formation [93]. Expression of IL-17 in RA synovial fluid and 
IL-17RC on endothelial cells plays an important role in RA synovial 
fluid mediated migration [93]. In vivo, IL-17 enhances vascularity 
in experimental arthritis and induces blood vessel development in 
matrigel plugs [93] (Figure 1). However, there are also data to suggest 
that IL-17 can indirectly induce angiogenesis, by promoting production 
of proangiogenic factors such as vascular endothelial growth factor 
(VEGF), basic fibroblast growth factor (bFGF) and hepatocyte growth 
factor (HGF) [94,95] from cells in the RA joint. We demonstrate that in 
addition to the direct effect of IL-17/IL-17R on angiogenesis, joint IL-
17-mediated CXCL5, but not CXCL1, plays a key role in IL-17-induced 
arthritis and vascularization [84]. Angiogenesis mediated by IL-17 
may lay the foundation for recruitment of leukocytes and therefore 
studies were performed to better understand the mechanism by which 
IL-17 may promote inflammation and monocyte trafficking in RA. It 
was shown that IL-17 induces monocyte migration at concentrations 
available in RA joint by ligation to IL-17RA and IL-17RC through 
activation of p38 MAPK pathway [96]. However, the direct effects 
of IL-17 does not account for all its chemotactic ability in vivo since 
neutralization of CCL2 significantly reduces IL-17 induced monocyte 
migration into the peritoneal cavity [81] (Figure 1). Production of CCL2 
was detected in IL-17 activated macrophages and RA synovial tissue 
fibroblasts, two cells types important for RA pathogenesis [81]. The 
potential role of IL-17 in RA angiogenesis and monocyte extravasation 
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was also documented when local expression of IL-27 in CIA ankle 
joints suppressed TH-17 differentiation as well as IL-17-mediated 
vascularization and macrophage staining [97]. These studies suggest 
that IL-17 can perpetuate inflammation by driving angiogenesis which 
can result in subsequent recruitment of neutrophils (acute phase) and 
monocytes (chronic phase) thereby amplifying chronic inflammation 
in RA through multiple pathways.  

Role of Il-17 in experimental arthritis 

It has been shown that IL-17 plays a profound role in experimental 
arthritis. CIA was markedly reduced in IL-17-/- mice [98]. Early 
neutralization of IL-17 using an IL-17R IgG Fc fusion protein in CIA 
suppresses the onset of the disease [99]. Consistently, treatment of CIA 
after disease onset using anti-IL-17 antibody decreases the severity of 
inflammation and bone destruction in CIA [100]. Blocking of IL-17 in 
antigen induced arthritis suppresses both IL-1β and TNF-α indicating 
that IL-17 is an important upstream inflammatory mediator [101]. 
Local overexpression of IL-17 using an adenoviral vector results in 
joint inflammation and cartilage proteoglycan depletion in the knees of 
naive mice [81,84,102]. Further, IL-17-induced joint inflammation and 
cartilage erosion was markedly reduced in TNF-α-/- mice but not in 
IL-1 deficient mice [102]. These data suggest a requirement for TNF-α 
and not IL-1 for the induction of IL-17-induced arthritis. However, 
IL-17 may also act independently of TNF-α after disease onset [102]. 
Interestingly a very recent paper shows that neutralizing both IL-17 
and TNF-α ameliorates CIA joint damage to a greater extent compared 
to each factor alone implicating the synergistic inflammatory effect 
of IL-17 and TNF-α [87]. IL-23-/- mice were resistant to CIA and 
this correlated with an absence of IL-17-producing CD4+ T cells, 
despite normal IFN-γ production by TH1 cells [103]. In contrast to 
the significant role of TH-17 cells in CIA pathogenesis, proteoglycan-
induced arthritis model (PGIA) is dependent on IFN-γ production and 
hence suppression of TH-17 differentiation by IL-27 or deletion of IL-
17 does not affect disease pathogenesis [104,105]. Ectopic expression of 
IL-27 in CIA mice reduces TH-17 mediated angiogenesis and monocyte 
trafficking as well as TH-17 differentiation by downregulating IL-1β 
and IL-6, two important TH-17 cell polarizing factors [97]. Mounting 
evidence from experimental arthritis models and RA demonstrates that 

IL-17 is involved in the initial and progression phase of disease which 
supports IL-17 as a therapeutic target in RA. 

Conclusion
Identification of TH-17 cells has been a paradigm shifting event and 

has therefore questioned the importance of TH-1 cell involvement in 
autoimmune disorders. Strong evidence supports that TH-17 cells are 
pathologically important in chronic inflammatory and autoimmune 
disorders, namely psoriasis, SLE, inflammatory bowel disease, MS, 
and RA. In this review we have specifically focused on the implication 
of TH-17 cells/IL-17 in RA. Interestingly, IL-17 is one of the few 
T cell derived cytokines found in RA joints where the majority of 
inflammatory factors are produced from synovial tissue fibroblasts and 
macrophages. The role of IL-17 in neutrophil recruitment as well as 
cartilage and bone erosion is well established and more recently a novel 
function of IL-17 in RA angiogenesis and monocyte extravasation has 
been identified. The direct proinflammatory effect of IL-17 is often 
smaller than TNF-α and IL-1β, however IL-17 synergizes with these 
cytokines by enhancing their production and action in experimental 
arthritis and RA joint. Inhibition of TH-17 differentiation or IL-17 
function ameliorates pathogenesis of experimental arthritis models 
and neutralizing anti-IL-17 was able to improve RA symptoms. Since 
blockade of IL-6 function (an important downstream target of IL-17) 
has yielded to some success in RA patients, it is tempting to speculate 
that anti-IL-17 therapy can be employed in anti-TNF-α non responders 
or in adjunct to anti-TNF-α therapy. Therefore, more human studies 
are required to respond to these inquiries. 
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Figure 1: Schematic overview of the pathological role of IL-17 in RA. 
Several cell types are affected by IL-17 in RA joints. IL-17 can induce migration 
of RA peripheral blood monocytes to the inflamed joints where they differentiate 
to macrophages. RA synovial tissue macrophages and fibroblasts activated 
with IL-17 can produce a number of proinflammatory factors that can mediate 
inflammation and neutrophil recruitment. Angiogenesis mediated by IL-17 can 
provide the inflamed joint with nutrients and oxygen and thereby perpetuate the 
vicious inflammatory cycle. IL-17 can also play a role in RA bone destruction by 
enhancing RANKL production alone or in synergy with TNF-α.
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