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Commentary
The highly evolutionary conserved mitogen activated protein kinase

kinases 1 and 2 (MEK1/2), are known as upstream protein kinases that
phosphorylate ERK1and ERK2. There are two distinct gene isoforms
Mek1 and Mek2. While MEK1 and MEK2 show high homology in
their kinase domains, their N termini are significantly divergent. The
differential role of MEK1 and MEK 2 in cellular signaling in
inflammation has not been widely investigated. In this commentary,
we address new insights gained in recent years and comment on
emerging work using a genetic approach to address the role of MEK1
in TLR4 mediated signaling as well as possible alternative pathways
that lead to ERK activation in macrophages independent of MEK1.

The mitogen activated protein kinase kinase (MAP2K) 1 and 2, also
known as MEK1/2, are protein kinases that phosphorylate serine/
threonine residues on extracellular signal–regulated kinases (ERK) 1
and 2, hence increasing their activity. Upstream of MEK, the RAS-RAF
pathway is one of the most extensively studied signal transduction
pathways and has long been implicated in the transmission of
extracellular signals such as growth factors through GTPase membrane
bound receptors followed by a cascade of intracellular signaling to
their respective nuclear targets [1]. The physiological consequences of
MEK/ERK activation depend on the extracellular stimuli, cell type and
pathways involved as well as the interaction with certain scaffolding
proteins and the subcellular distribution of ERK1/2 [2,3]. This can lead
to a variety of outcomes including proliferation, oncogenesis, cell
differentiation and cell cycle regulation. It is not surprising that with
overwhelming frequency the MEK/ERK pathways are aberrantly
regulated in various cancers promoting inappropriate cell proliferation,
survival and metastasis [4,5].

Additionally, members of the RAS-RAF-MEK-ERK pathway can
interact with kinases from other pathways, especially with the PI3K/
PTEN/Akt/mTOR and Jak/STAT pathways, to modulate their activity
[6]. For instance, MEK1 can regulate AKT phosphorylation through
recruitment of phosphatase and tensin homolog (PTEN) [7].
Previously, we have shown that low dose rapamycin, a well-known
inhibitor of the mTOR pathway, activates the MEK/ERK and AKT
pathways and this was required for the induction of dual specificity
phosphatase-1 (DUSP-1 or MKP-1) [8]. MKP-1 is an important
phosphatase, which regulates de-phosphorylation of several MAP
kinases, including p38, JNK as well as ERK. In that study, both MEK1
and MEK2 deficient macrophages failed to respond to rapamycin with
MKP-1 upregulation [8]. Another member of the serine–threonine
kinases that is evolutionary related to phosphatidylinositol 3-kinase
related kinase (PIKKs), is ataxia-telangiectasia mutated (ATM) [9].
ATM has been implicated in activation of ERK in response to DNA

damage [10]. One study suggested that ATM mutated lung carcinomas
are highly susceptible to MEK1/2 inhibitor treatment. This was
thought to be related to the known cross talk between the MAPK and
AKT/mTOR signaling pathways, which leads to an increased
dependency on MEK kinase activity for cell survival due to the
inability of these cells to compensate through the pro-survival AKT/
mTOR pathway [11]. These findings collectively suggest an intensive
cross talk between the PI3K/AKT/mTOR and the MEK/ERK pathways.

In mammalian cells there are two distinct gene isoforms Mek1 and
Mek2, which are highly evolutionary conserved [12,13]. The only
known downstream substrates of MEK1/2 are the ERK isoforms ERK1
and ERK2. In this regard MEK1/2 is exquisitely specific, whereas ERK
can activate hundreds of substrates [14]. While MEK1 and MEK2
show high homology in their kinase domains, their N termini and
their proline-rich domains are significantly divergent (only 40%
identity), which provides an opportunity for the two isoform to
interact and partner differently with scaffolding proteins as well as
their activators and substrates [15,16]. This may provide an
explanation of the distinctive role of these kinases in cellular function,
in contrast to the common assumption that these two isoforms are
functionally equivalent.

For instance, the deletion of the Mek1 gene leads to embryonic
lethality most likely due to aberrant angiogenesis of the placenta,
whereas the interruption of the Mek2 gene is compatible with life
[17,18]. MEK1 has a regulatory role in cell migration [18,19].
Interestingly, MEK1 deficient mice exhibit a lupus-like syndrome and
myeloproliferative phenotype [7]. There is evidence that MEK1 and
MEK2 play a unique role in ERK activation depending on cell types
and signal [7,20]. For instance, one study has shown that MEK1
deficient fibroblasts respond to EGF stimulation with a sustained
ERK1/2 phosphorylation and this prolonged ERK activation was due
to a lack of a negative feedback loop through MEK1/MEK2
heterodimerization [20].

There is limited data available about the role of MEK2. One study
found that MEK2 is the predominant isoform in human neutrophils,
and MEK2 exhibited considerably higher activity than MEK1 in
response to chemotactic peptide [21].

In contrast to the well-defined role of the MEK/ERK pathway in
cancer biology, the roles of MEK1 and MEK2 in response to Toll like
receptor (TLR) activation is not well understood. TLRs are type I
transmembrane proteins that mediate the recognition of pathogen
associated molecular patterns (PAMPS) [22]. The TLR family of
receptors is composed of up to 10 members in humans and 12 in mice
[23]. TLR4 is the mammalian receptor recognizing bacterial
lipopolysaccharide (LPS), the main cell wall component of Gram-
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negative bacteria, and plays a critical role in sepsis and controlling
bacterial infections [24]. The molecular basis of how TLR4 mediates
activation of RAS-GTPase upstream to MEK is not precisely
understood. Association of LPS with MD2 as well as other lipid based
mediators (e.g. lipid A) interacts with TLR4 to recruit several adaptor
proteins [25]. This is thought to lead to the subsequent activation of
receptor tyrosine kinases (RTKs) and the classical RAS-RAF-MEK1/2
cascade [26-28]. Additionally, TLR4 ligation can activate ERK1/2
through alternative pathways [29,30]. For instance, LPS can activate
MEK/ERK through PKC ζ [31]. However, the differential role of MEK
isoforms in TLR4 mediated ERK activation is not well studied. In the
study of Bouhamdan et al. we addressed the physiological function of
MEK1 in macrophages and interrogated the role of the MEK1/2
isoforms in ERK1/2 activation in response to diverse stimuli, including
TLR4 ligand, recombinant (r) IL-10 and retinoic acid (RA) [32].
Although previous studies extensively evaluated the role of MEK/ERK
using conventional inhibitors, we evaluated the effect of MEK1
deficiency on the cellular response to TLR4 stimulation in
macrophages using a genetic approach. Interestingly, we found
virtually no ERK1/2 phosphorylation following LPS treatment in
MEK1 deficient macrophages despite the presence of MEK2,
suggesting a predominant role for MEK1 in TLR4 mediated activation
of ERK1/2. Furthermore, MEK1 deficiency led to differential
regulation of IL-12 and IL-10 production in response to LPS.
Moreover, MEK1 deficiency was associated with increased activation
of the signal transducer and activator of transcription (STAT) 4, a
major transcription factor for IL-12 production [33]. However, when
MEK1 deficient macrophages were challenged with LPS in the
presence of rIL-10 or RA, it facilitated ERK1/2 phosphorylation and
led to decreased STAT4 phosphorylation and lower IL-12 production.
Our findings indicate that engagement of upstream signals
differentially regulate MEK1 and MEK2 activation leading to various
biological effects. Neither rIL-10 and RA alone nor TLR4 ligation
evoked ERK activation in MEK1 deficient macrophages. This implies
that in the absence of MEK1, ERK activation requires a collaboration
of different kinases to overcome MEK1 deficiency. Our results also
suggest that LPS stimulation alone cannot activate ERK1/2 through
MEK2 in the absence of MEK1 unless additional receptors are engaged
(e.g. IL-10 receptor or the RA receptor). One previous study in T cells
showed that development of IL-10-producing T helper 1 cells requires
repeated T cell receptor (TCR) ligation and a sustained ERK1 and
ERK2 phosphorylation, suggesting that signal strength dictates ERK
activation and its biological effect [34]. It remains unclear whether a
stronger signal is able to recruit different kinases besides MEK.

MEK1 deficiency led to an increase in STAT4 tyrosine
phosphorylation and increased IL-12 production. Our observations
confirm that STAT4 is an important positive regulator of IL-12 and
that ERK activation is important for IL-10 production [35-37] and
show the essential function for MEK1 in macrophages in regulating
the ERK1/2 and STAT4 pathways in response to TLR4 activation. The
results of our study could lead to the assumption that MEK2
phosphorylates ERK1/2 in response to LPS in the presence of RA or
rIL-10. However, it has been shown that ERK1 and ERK2 can be
activated in a MEK- independent fashion in neuronal cells as well as
immune cells including neutrophils [38]. It is possible that RA or
rIL-10 activate kinases other than MEK2 that contributed to ERK
phosphorylation. Candidate kinases that can activate ERK
independent of MEK include PKC and PKA [21,38]. If these kinases
activate ERK independent of MEK, specifically MEK2 in our case, it
poses the question what is the physiologic role of MEK2?

To add another layer to the complexity, ERK regulates expression
and function of several phosphatases including MKP-1 (DUSP-1), and
PTEN as well as protein phosphatase 2A (PP2A) [6-8,39]. Through de-
phosphorylation, these phosphatases regulate the activity of various
kinases including MEK/ERK and STAT proteins. In our work the lack
of MEK1 led to increased STAT4 phosphorylation even in the absence
of any stimulation. This may suggest a lack of negative regulation
through a phosphatase, for instance PP2A.

Figure 1: Schematic diagram for MEK1-dependent and
independent ERK activation. A. In the presence of MEK1and
MEK2, TLR4 engagement activates RTKs as well as RAS GTPase.
This leads to activation of the RAF pathway upstream to MEK1/2,
utilizing predominantly MEK1 to subsequently phosphorylate
ERK1/2. B. In the absence of MEK1, ERK activation requires two
signals. TLR4 (LPS) and RAR (RA) engagement may lead to co-
activation (stronger signal) of the classical pathway through RTKs,
RAS GTPase-RAF-MEK2 to activate ERK1/2. Alternatively, ERK
can be activated directly by PKCζ. C. Co-activation of the TLR4 and
IL-10 receptor (IL10R) leads to the activation of the classical RTKs,
RAS GTPase-RAF pathways with subsequent activation of MEK2,
followed by phosphorylation of ERK1/2. Alternatively, co-
stimulation of TLR4 and IL10R may activate PI3K and/or PKC
followed by activation of ERK in the absence of MEK1 either
through MEK2 or through the activation of unknown kinases.
Engagement of IL-10 to its receptor activates the JAK-STAT
pathway, predominantly STAT3 with positive feedback on IL-10
production. Similarly, activation of ERK parallels a decrease in
STAT4 phosphorylation but an increase in STAT3 phosphorylation
resulting in decreased IL-12 promoter activity.

Classically, RA acts as ligand-inducible transcription factor by
binding as heterodimers with the retinoid X receptors (RXRs) to RA
response elements (RAREs) located in regulatory regions of target
genes [40]. In recent years, it has been shown that RA can induce rapid
and transient MAPK activation, including ERK [41]. The effect of RA
appears to be cell type specific, in some cells leading to a slow (up to
hours) activation of ERK, whereas in other cell types, for instance
bronchial epithelial cells to a rapid ERK activation [42]. Similarly, RA
activates other kinases, including MEK, PKC, PKA and RSK as well as
phosphatidylinositol-3-kinase and even p38 [42,43]. Such activation
appears to depend on a non-genomic action of RA is mediated
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through receptors located at the cytoplasmic side of the cell membrane
[43]. In our study RA, in the absence of LPS, did not evoke activation
of ERK in MEK1 deficient macrophages, whereas the combination of
RA and LPS led to a robust and rapid ERK phosphorylation followed
by an increase in IL-10 production. Additionally, it is well known that
IL-10 regulates the JAK-STAT and ERK pathways as well as negatively
regulates IL-12 production [34,36]. Yet, it is not clear whether IL-10
mediated ERK phosphorylation in our study is due to the activation of
the classic RAS-RAF-MEK pathway or mediated through alternative
pathways.

Although, our work shed some light on the role of TLR4 mediated
MEK/ERK activation it raises several unanswered questions that need
further investigation, especially the role of MEK2 in macrophages and
innate immunity as well as the potential alternative pathways in
regulating ERK activation in the absence of MEK1 or MEK2. Proposed
pathways leading to ERK activation in the absence of MEK1 in
response to a combination of LPS and RA or LPS and IL10 are shown
in (Figure 1).
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