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Introduction
Liver fibrosis has been defined as a disease in which excessive 

collagen is deposited in the liver leading to dysfunction of the liver. 
Hepatic stellate cells are the major liver cells involved in the development 
of liver fibrosis. They comprise about 15% of the total liver cells and are 
located in the sub endothelial space of Disse between the hepatocytes 
and the endothelial cells [1]. These cells are usually quiescent and 
they store lipid droplets. Upon activation by other factors they change 
into myofibroblast like cells and lose Vitamin A droplets and become 
proliferative, fibrogenic and contractile and act as major sources of 
extracellular matrix components [2]. HSC activation usually involves 2 
steps i.e. initiation and perpetuation. HSC initiation is due to the stimuli 
released by the surrounding cells such as hepatocytes, endothelial cells, 
Kupffer cells, and platelets. The stimuli, which initiate these cells, are 
growth factors, inflammatory cytokines and reactive oxygen species or 
lipid peroxides [2]. As previously indicated, pancreatic fibrosis shows 
remarkable similarity to hepatic fibrosis [3].

Aryl Hydrocarbon Receptor (AHR) knockout mice were developed 
by the homologous recombination in the embryonic stem cells [4]. 
These mice have decreased ability to catabolize retinoic acid due to Ah 
receptor deficiency and this leads to liver fibrosis [5]. AHR knockout 
mice have genes coding for the Aryl hydrocarbon receptor protein 
deleted and the mice develop fibrosis at about 6-10 months of age [6]. 
Yellow phosphorous is a well-known toxic compound that produces 
degenerative changes characteristic of fibrosis and cirrhosis [7,8]. 
The animal model demonstrating these biochemical and histological 
changes characteristic of hepatic fibrosis was first established in our lab, 
liver fibrosis was induced in pigs by 8 weeks YP treatment (0.6 mg/kg) [8].

In the current study there was a significant increase in collagen 
content as the mice developed from week 5 to week 24 when they 
showed marked fibrosis, indicating that spontaneous fibrosis occurs 
in untreated AHR knockout mice over the 7 month time period. The 

results also indicate that one week of YP treatment increased the rate of 
fibrosis development in the AHR knockout mice such that fibrosis was 
evident in 5-week-old AHR knockout mice.

This increase in liver collagen content in 5 weeks old AHR knockout 
mice treated for one week with YP was equivalent to spontaneously 
elevated collagen levels in 24-week-old untreated AHR knockout mice. 
In this study the molecular changes occurring in this mouse model are 
investigated and antisense technology is used to intervene.

Methods 
Animals and treatments 

Mice (age 5 weeks) were treated with yellow phosphorous (0.6 mg/
kg i.p.) for 1 week and compared to age matched controls. The mice were 
sacrificed and 15 μm sections of liver were stained by Sirius Red/Fast 
Green collagen staining technique to assess liver collagen content as an 
index of fibrosis. AHR knockout mice treated with yellow phosphorous 
were compared to untreated age matched AHR knockout mice and 
C57BL/6 mice controls (with and without treatment with yellow 
phosphorous). Collagen content was also assessed in AHR knockout 
mice aged 5-8 weeks, 10-12 weeks, 14-16 weeks and 24 weeks to 
demonstrate the spontaneous development of fibrosis in AHR knockout 
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mice. In the experiments utilizing antisense, the phosphothioated c-jun 
antisense (5’ GCAGTCATAGAACAGTCCGTCACTTCACGT-3’ 
was administered (10 mg/kg) to a subgroup of AHR knockout mice, 
on three separate days via the tail vein, during the week of yellow 
phosphorous treatment.

Liver collagen estimation 

The mice were sacrificed by injecting somnitol i.p. (0.05 ml). The 
liver was removed and 1cm x 1 cm piece of the liver was placed in 10% 
buffered formaldehyde and 4 % paraformaldehyde solution. The fixed 
liver tissue was embedded in paraffin and 5 (15 μm) sections were 
cut. The collagen content was evaluated by the Sirius Red/Fast Green 
staining [5]. The paraffin embedded 15 μm sections were deparaffinized 
by treatment with xylenes and ethanol. Then these tissue samples 
were incubated with Fast green FCF 0.04% (Gurr, BDH Chemicals, 
Canada) for 20 minutes and after subsequent washings they were again 
incubated with Fast green FCF 0.2% and Sirius Red F3B 0.08% (Gurr, 
BDH Chemicals, Canada) for 30 minutes and were then subsequently 
washed. Samples were eluted with 0.05N NaOH /50% methanol and 
were read in a spectrophotometer at 530 nm (Sirius red) and 605 nm 
(Fast Green). The average absorbance values were quantitated using 
their respective colour equivalencies [6,9] i.e. 38.4 for Sirius red and 
2.08 for Fast green. The non-collagenous protein (mg) was determined 
as absorbance 605nm/2.08 and the collagen (μg) protein was calculated 
as absorbance 530 nm- 0.26 absorbance 605 nm/38.4. Finally the 
collagen content (μg/mg total protein) was determined as μg collagen/ 
μg collagen + mg non –collagenous protein [6].

Western analysis 

Liver tissue lysates were prepared by pulverizing frozen tissue with 
a liquid nitrogen-cooled mortar and pestle. Ice-cold RIPA buffer (1% 
Igepal CA 630, 0.5% sodium deoxycholate, 0.1% SDS in PBS, pH 7.4) 
containing standard protease inhibitors (PMSF, aprotinin, sodium 
orthovanadate) was added at a ratio of 3uL RIPA/mg tissue. Suspensions 
were homogenized followed by sonication and were incubated on 
ice for 30 minutes with additional PMSF (0.03 uL/mg tissue) before 
centrifugation (10 min, 10,000 rpm, 4°C). Supernatants (lysates) were 
stored at -86°C. Protein estimation was done using the QuantiPro BCA 
Assay Kit (Sigma-Aldrich). 50 μg of protein were run on 10% Tris-
HCl gels (Bio-Rad) and transferred to PVDF membranes overnight. 
Proteins were probed with primary antibody, e.g., c-Jun (1:1000; 
New England Biolabs); secondary antibody (Anti-rabbit; 1:2000) was 
applied and protein bands were visualized with LumiGlo (New England 
Biolabs). Densitometry was done using Scion Image software. Results 
are expressed as Relative Density Units (RDU).

Statistical analysis 

An unpaired Student’s t-test was used to compare two variables and 
an analysis of variance Student-Newman-Keul’s test was used while 
comparing more than two variables [10].

Results 
Collagen content in untreated AHR knockout mice over 24 
weeks 

The collagen content in liver sections taken from AHR knockout 
mice (AHR-/-) of various ages is shown in Figure 1. Collagen content 
was determined in liver sections of AHR knockout mice (5-8 weeks) 
and compared with other age groups and was expressed as μg/mg 
protein. There was a significant increase (*p<0.001, when compared to 
5-8 weeks) in collagen content as the mice developed, which indicated 

that fibrosis developed spontaneously in AHR knockout mice between 
5 weeks and 24 weeks of age.

Collagen content in AHR knockout mice treated with yellow 
phosphorous

Liver collagen content was determined in 5 week old AHR-/- mice 
with and without treatment with YP and contrasted to the collagen 
content in C57BL/6 mice with and without YP treatment. There was 
no significant difference in collagen content (ug/mg protein) in livers of 
C57BL/6 mice with and without treatment for 1 week with YP (Figure 
2). In contrast, following 1 week of YP treatment in AHR knockout 
mice, there was a significant increase (p<0.001) in collagen content 
compared to age matched controls, representing a 46% increase in the 
collagen content when compared to untreated AHR knockout mice. 
This increase in collagen content following YP (1 week) treatment in 
5 week old AHR knockout mice was equivalent to collagen levels in 
untreated 24 week old AHR knockout mice. 

Effect of yellow phosphorous treatment of c-Jun in AHR 
knockout mice

 Treatment of the AHR-/- mice with yellow phosphorous for only 
4 days significantly increased c-Jun two fold compared to untreated 
AHR-/- mice (Figure 3). Based on these results we determined the 
optimum time to treat mice with c-jun antisense in subsequent 
experiments.

 

Figure 1: Quantitation of collagen content in liver sections taken from AHR 
knockout mice (AHR -/-) mice of various ages. Collagen content is shown in 
liver sections of AHR knockout mice (5-8 weeks) and compared to other age 
groups and is expressed as μg/mg protein. *p<0.001, significantly elevated 
when compared to 5-8 weeks.

 

Figure 2: Collagen content in livers of C57BL/6 mice with and without treatment 
with YP for 1 week in contrast to the effect of Yellow phosphorous (1 wk) on 
the development of liver fibrosis in AHR knockout mice (AHR -/-). *p<0.001, 
significantly different from corresponding age-matched controls.
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Effect of yellow phosphorous treatment on collagen -1 in 
AHR knockout mice

The results shown in Figure 4 indicate that treatment of the 
AHR-/- mice with yellow phosphorous for 2 weeks significantly elevated 
collagen type 1 compared to untreated AHR-/- mice. It is interesting to 
note that no change was observed in collagen type 3 in AHR-/- mice 
treated with yellow phosphorous for 2 weeks. 

Demonstration of c-jun fluorescence in liver sections 
following tail vein injection

Following injection of c-jun antisense via the tail vein, the c-jun 
antisense effectively reached the liver, shown as positive fluorescein 
labelled c-jun antisense by fluorescence microscopy of the liver 
(Figure 5). 

Effect of c-jun antisense on c-Jun and collagen -1 in liver of 
AHR knockout mice

The results shown in Figure 6 illustrate the effect of c-jun antisense 
on c-jun (Figure 6A) and coll-1 (Figure 6B) in the AHR-/- mice which 
had also been treated with yellow phosphorous. The c-jun antisense 
significantly reduced the c-Jun and coll-1 in livers of AHR-/- mice 
treated with yellow phosphorous; this is in contrast to the lack of effect 
that occurred using missense.

Discussion 
Liver fibrosis is characterized by a significant elevation in hepatic 

collagen content. Sirius red/Fast green staining allows us to quantitate 

B

A

Figure 3: Effect of YP treatment on c-Jun in livers of AHR-/- mice at several 
time points after treatment. A representative Western (Panel A) showing the 
effect of YP treatment on c-Jun in livers of AHR-/- mice compared to control. 
The liver lysates samples were C57 (lane 1), AHR-/- (lane 2), AHR-/- treated for 
2 days with YP (lanes 3 and 4), AHR-/- treated for 4 days with YP (lanes 5 
and 6), AHR-/- treated for 7 days with YP (lanes 7 and 8). Equal protein loading 
on lanes was verified by anti- β actin antibody. *p<0.05, significantly different 
compared to control and other groups.

 

Figure 4: Collagen -1 and collagen-3 in livers of YP treated AHR-/- mice 
compared to untreated AHR/- mice. *p<0.05, significantly different compared to 
untreated AHR-/- mice.

 

Figure 5: Fluorescence microscopy of the liver following injection of fluorescein 
labelled c-jun antisense via the tail vein.

A

B

Figure 6: The effect of c-jun antisense on c-Jun (Figure 6A) and coll-1 (Figure 
6B) in the AHR-/- mice which had also been treated with yellow phosphorous. 
*p<0.05, significantly different compared to control C57 mice. **p<0.05 
compared to YP treated AHR-/- mice.
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the collagen deposition in liver sections [6,8,9]. Our results established 
that there was a significant spontaneous increase in the liver collagen 
content as the AHR knockout mice developed from 5 weeks to 24 
weeks of age. The results also indicate that one week of YP treatment 
increased hepatic fibrosis in 5-week-old AHR-/- mice and this increase 
in liver collagen content was equivalent to spontaneously elevated 
collagen levels in fibrotic 24 week old AHR-/- mice. This is in contrast 
to C57BL/6 mice where the hepatic collagen content was not changed 
following one week treatment with YP. Hence the knockout of the AHR 
results in hepatic fibrosis which can be accelerated with the addition 
of another known fibrogenic agent, in this case, yellow phosphorous. 
Interestingly, a recent report indicates the protective role of AHR in 
acute pancreatitis induced by cerulein and further suggests this occurs 
through regulation of pancreatic IL-22 [11]. The AHR knockout mouse 
will spontaneously develop hepatic fibrosis and eventually develops 
hepatocellular carcinoma. In a similar fashion, it is well established 
that chronic pancreatitis can contribute to pancreatic cancer which is 
characterized by an extensive collagen deposition i.e., fibrosis [12].

The yellow phosphorous treatment of AHR-/- mice represents a 
novel way to accelerate liver fibrosis in an animal model and such a 
model may prove useful in other forms of fibrosis including pancreatic 
fibrosis. This fibrosis model is more rapid than the AHR-/- model or YP 
model alone. We characterized several key molecular changes in this YP 
induced liver fibrosis model in AHR-/- mice with Western analysis and 
our results indicate that c-jun and collagen type -1 are elevated. Using 
this information we intervened with c-jun antisense technology. In 
contrast to a lack of effect of missense, the c-jun antisense significantly 
reduced the c-jun and coll-1 in livers of AHR-/-mice treated with yellow 
phosphorous.

We have previously shown that the drug pentoxifylline (PTX) 
[13] blocks fibro proliferation and collagen synthesis by inhibiting 
phosphorylation of c-jun and thus blocks c-jun mediated signalling 
including signalling via the PDGF receptor. PTX also prevents both the 
biochemical and histological changes associated with hepatic fibrosis 
in the animal model of liver disease [8,14]; PTX inhibits neutrophil 
function [15-17], which may be important since neutrophils play a 
major role in mediating inflammatory conditions [18-20] and PTX 
prevents the fibro proliferative effect of PDGF in vitro [21-25]. PTX 
will reduce fibrosis in cirrhotic patients who undergo resections and 
decrease collagen deposition in colitis [26,27] and prevent fibrosis in 
an animal model [23,28,29]. PTX can also reduce fibro proliferation in 
early stages of injury in the bile duct ligated rat model [28] and down 
regulate c-jun gene expression known to be involved in growth and 
proliferation of fibrogenic cells [13,30]. Our studies indicated that PTX 
alters hepatic stellate cell function and other fibrotic parameters [31]. 
A recent report suggests that PTX modulates oxidative and nitrosative 
stress in acute pancreatitis [32], further suggesting the potential 
therapeutic role for PTX in acute pancreatitis.

The activation of c-jun is important in the up regulated expression 
of growth and proliferation genes [33] and phosphorylated-c-jun 
is known to stimulate expression of proliferative genes that promote 
HSC proliferation during liver fibrosis [13,34]. PTX, normally used 
to treat vascular disorders [35], decreases fibroblast [36,37] and HSC 
proliferation [38], decreases PDGF stimulated fibro proliferation and 
collagen synthesis [23,39] and inhibits IL-18 production [40], NFкB 
activation [41] and can also down regulate the expression of c-jun 
in HSCs [13]. HSCs are activated in liver fibrosis [2,42] and express 
α-smooth muscle actin (α-SMA) [43,44]. We have reported that sera 
obtained fibrotic HCV patients stimulated HSC proliferation and 
phosphorylation of c-jun on ser 73, which was decreased by PTX [45]. 

Recent results suggest that PTX can protect mitochondria in cerulein 
induced pancreatitis [46].

In this study the technique of Neurath et al. [47] was used to deliver 
antisense. 

Our initial studies using the c-jun antisense involved dose-finding 
and duration-finding experiments. Our data indicates that we can 
visualize the c-jun antisense in the liver. Tail vein administration of 
c-jun antisense downregulated c-jun expression in the livers and this 
was verified using immunoblots to verify a decrease in c-jun protein 
levels in livers.

These studies were done in the accelerated model of fibrosis that 
was developed by administering yellow phosphorous to the AHR-/- 
mouse. A role for signalling molecules in experimental fibrosis was 
established using this novel accelerated model of fibrosis which we 
developed. The yellow phosphorous treatment of AHR-/- knockout 
mice caused fibrosis within 7 days and provided a narrow window in 
which to characterize the up regulation of signalling molecules and in 
this study an up regulation of c-jun was documented. The accelerated 
model allowed the identification of targets and also provided a 
reasonable treatment period to inhibit these target molecules. These 
results together with this accelerated fibrosis model may have significant 
application in pancreatic fibrosis where there appears to be significant 
overlap in target cells, mechanism and cytokine involvement [4]. Very 
recently, a report suggests that JNK signaling may play a significant 
role in production of reactive oxygen species in cerulein-induced acute 
pancreatitis [48].

In summary, this study characterized the early stimulation of 
c-jun and collagen type 1 in the accelerated fibrotic mouse model 
and employed antisense technology to block the increase in c-Jun and 
prevent the subsequent increase in collagen, thus blocking fibrosis. 
These findings could play a significant role in understanding the 
underlying mechanism in pancreatic fibrosis and have implications in 
the development of new therapeutics for the treatment of both hepatic 
and pancreatic fibrosis.
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