
Volume 4 • Issue 1 • 1000113J Glycobiology
ISSN: 2168-958X JGB, an open access journal

Kanodia and Finn, J Glycobiol 2015, 4:1 
DOI: 10.4172/2168-958X.1000113

Review Article Open Access

Role of HSGAGs in Regulation of FGF Signaling Pathway: Insights from 
Mathematical Modeling
Jitendra Kanodia* and Greg Finn

Merrimack Pharmaceuticals, Suite B7201, 1 Kendall Square, Cambridge, Massachusetts, USA

Abstract
Signaling pathways act as relay systems that drive how biological systems respond to specific environmental 

cues. These cues act as regulators of how cells undergo biological processes like development and normal tissue 
homeostasis among others. Errors in environmental cues or the ability of cells to respond to such cues leads to 
erroneous cellular behavior and potentially disease states like cancer. Accordingly, insghts into cell-signaling and 
processing can be instrumental in design of effective therapies against malignancies. A central paradigm of signaling 
pathways is that ligands bind to and activate cell-membrane bound receptors, which in turn leads to activation of 
intracellular cascades. However, to target receptor mediated signaling effectively, it may not be enough to understand 
the biology of the target receptor in isolation. Interactions with other receptors of the same receptor tyrosine kinase 
(RTK) family or other families might be critical for understanding the signaling diversity of a particular pathway from the 
systems perspective. For instance, the role of kinase-dead ErbB3 receptor in the regulation of EGFR and ErbB2 has 
been critical for a deeper understanding of the ErbB-pathway Along similar lines, heparan sulfate glycosaminoglycans 
(HSGAGs) have been shown to serve as co-receptors essential for signaling through cell-surface interactions on 
multiple receptors such as MET and FGFRs. We have recently investigated signaling responses in the FGFR system 
and found a thus far unappreciated signaling mechanism. We have leveraged a data-driven mechanistic modeling 
approach to examine the role of FGF2-dependent FGFR signaling driven by FGF2-HSGAG-FGFR1 trimeric complexes. 
The insights gained from this work can be useful for targeting the FGFR pathway but also to reveal greater insights into 
the fundamental principles of signaling pathway regulation by HSGAGs in general.
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Introduction
Typically, binding on monomeric ligand to monomeric receptors 

leads to Michaelis-Menten type activation of intracellular signaling 
cascades. Specifically, as the concentration of extracellular ligand 
increases from low to high, larger fraction of receptor gets activated 
until the ligand concentration becomes high enough such that receptor 
activation is saturated. Receptor activation initiates a cascade of 
enzymatic reactions that lead to phosphorylation of effector molecules 
like ERK and AKT amongst others. Thus, saturable activation of 
receptor by ligand leads to saturable activation of effector molecules. 
Accordingly, one would expect that cellular responses to signaling 
pathway activation also follow Michaelis-Menten type kinetics. 
This is indeed the case for signaling pathways like ErbB and IGFR at 
physiological ligand concentrations [1-6].

Interestingly, some cells respond to FGF signaling in an atypical 
fashion. Instead of following Michaelis-Menten type reaction kinetics 
and responding in a saturable fashion, cells respond in a biphasic 
manner [7-11]. Specifically, from low to intermediate concentrations 
of FGF-ligands, cellular response increases but then decreases from 
intermediate to high concentrations of FGF-ligand. For example, FGF2-
induced neurite outgrowth reaches a peak at 4ng/ml and decreases 
for FGF2 concentrations from 10-200 ng/ml [12-14]. Similarly, FGF-
induced proliferation of NIH3T3 cells also reaches a maximum at 
1ng/ml of FGF2 and decreases for 10-100ng/ml concentrations [13]. 
Such biphasic response has been shown for fibroblasts and osteoblasts 
as well [14,15]. Despite multiple instances of biphasic phenotypic 
responses to FGFR signaling, the underlying molecular mechanism for 
these atypical biphasic responses remained unexplored until recently.

To address this question we have investigated the mechanistic 
rationale for biphasic response to FGFR signaling by specific ligands 
[9]. We calibrated an Ordinary-Differential-Equation (ODE)-based 
mathematical model to high-density signaling data (dynamic pERK 
response to FGF2 stimulation at 11 time points over 120 minutes) using 
a published particle swarm optimization algorithm combined with a 

novel feature-based constraint approach [16]. The proposed model 
structure was based on published data including binding affinities, 
crystal-structures and signaling effects [17-20]. Briefly, FGF2 binds to 
HSGAG to form a dimer which subsequentially binds to FGFR to form 
a trimeric complex. The trimer dimerizes to form the signaling unit 
that recruits FRS2, enzymatically phosphorylates it and subsequently 
activates the intracellular Ras-Raf signaling cascade. The model also 
accounts for the negative feedback loop where downstream effector 
molecule pERK, binds to upstream FRS2 and pFRS2 which ultimately 
leads to their degradation [21]. The model was validated by testing 
model simulation predictions with in-vitro experiments for multiple 
intracellular and extracellular perturbations. We demonstrated that 
the reduced model accurately predicted pERK responses to multiple 
perturbations and thus can be considered a parsed version of the FGFR-
network that captures the essential features of the pathway and thus can 
be utilized to investigate FGFR pathway behavior. It is noteworthy at 
this point that the quantitative relationship between biphasic signaling 
response and corresponding biphasic phenotypic response is currently 
missing. Such experimental data will be the subject of future work and 
can help establish a link from ligand concentration in media all the way 
to cellular phenotypic response.

An in-depth investigation of the model indicates that ligands 
like FGF2 elicit biphasic responses owing to the ternary interactions 
between FGF2, HSGAGs and FGFRs on the surface of the cell. 
Specifically, HSGAGs and FGFRs compete to bind with FGF2 at all 

Jo
ur

nal
 of Glycobiology

ISSN: 2168-958X
Journal of Glycobiology

http://dx.doi.org/10.4172/2168-958X.1000113


Citation: Kanodia J, Finn G (2014) Role of HSGAGs in Regulation of FGF Signaling Pathway: Insights from Mathematical Modeling. J Glycobiol 4: 
113. doi:10.4172/2168-958X.1000113

Page 2 of 3

Volume 4 • Issue 1 • 1000113J Glycobiology
ISSN: 2168-958X JGB, an open access journal

ligand-concentrations. Furthermore, at low to intermediate FGF2-
concentrations, there exist enough free FGFRs on the cell surface in 
addition to the FGF2-HSGAG and FGF2-FGFR complexes. Thus, 
FGF2-HSGAG complex can bind to free FGFRs and form the trimeric 
signaling unit. In contrast, at high levels of FGF2, a large fraction 
of FGFRs are bound to FGF2 and trimeric signaling units cannot 
form because binding of FGF2-FGFR complex to HSGAG is weak, 
thereby leading to a decrease in pERK response (Figure 1). Although 
the existence of biphasic response is initiated on the cell surface, the 
magnitude of such biphasic behavior is controlled by the intracellular 
signaling cascade. Thus, ternary interactions on the cell surface 
combine with intracellular signaling to regulate the specific cellular 
responses observed.

These results shed light on the critical role of HSGAGs in 
regulation of signaling pathways. They indicate that HSGAGs are 
not just passive scaffolds that facilitate interactions between ligands 
and receptors physically but actively participate in signaling response 
[22] HSGAGs interact with the ligands of multiple RTK families and 
coordinate the binding of ligands to their respective receptors. In 
addition, HSGAGs also stabilize the ternary complex of ligands and 
receptors [23]. Furthermore, targeted disruption of the HS interaction 
with HGF & VEGF by means of amino acid substitution on key basic 
residues that govern the HS-HGF & HS-VEGF surface interaction 
uncovered a novel mechanism of action, where the mutant proteins 
acted as selective competitive antagonists of their respective normal 
and oncogenic signaling pathways. These findings further highlight 
the critical role for HSPG in FGF, MET, VEGF, HB-EGF, PDGF and 
TGF-β RTK signaling pathways. [8,24-27].

One of the biggest hurdles in investigating the role of HSGAGs is 
that currently measuring HS patterns is rather difficult experimentally, 
requiring specialized reagents such as pattern specific HS antibodies 
to measure HS structures on the cell surface [28]. HSGAGs on the cell 
surface are not a single homogenous mixture but rather a heterogeneous 
mixture of molecules with different lengths and sulfation patterns. 
Fractions of specific species with specific lengths and patterns can bind 
to different ligands with different affinities and differentially modulate 
signaling responses [29]. Therefore, in the absence of detailed HSGAG 
measurements and characterization, our work provides an alternative 
approach for understanding the relevance of HSGAGs in the regulation 
of signaling responses. Of particular interest in the future, would be 
the integration of HS pattern analysis into the current signaling model 
which will help further define the exact mechanisms of receptor 
activation in both normal and pathologic situations.

Looking forward, this data offers a new perspective on the FGFR 
signaling pathway which has recently been verified as a bona-fide 
therapeutic target across multiple indications, including lung and 
breast cancer [30]. Finally, a deeper understanding of the mechanisms 
of signaling regulated by HSGAGs should inform better therapeutic 
design which might translate to improved patient outcomes. It would 
also be interesting to extend this model explore any differences that 
might exist between cellular response to endocrine vs. paracrine ligand-

dependent activation, different FGF-ligands as well as how different 
cell-types with different combinations of HSGAGs would influence 
signaling pathways.
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Figure1: Schematic of the FGFR signaling model that accounts for FGF-
ligand, FGFR and HSGAG ternary interactions. The schematic is a visual 
representation demonstrating how at high levels of FGF2, FGFR and HSGAGs 
are saturated and cannot form the signaling trimer which is responsible for the 
observed atypical biphasic behavior.
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