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Introduction
Aging represents a unique paradox of autoimmunity and impaired 

response to exogenous antigens resulting in an increased susceptibility 
to infections. This is of particular significance since patients with 
autoimmune diseases are not at risk for increased susceptibility to 
infections, unless on immunosuppressive/biological therapy. Aged 
humans develop a variety of autoantibodies, and display poor response 
to vaccines and increased susceptibility to both viral and bacterial 
infections. The progressive impairment in immune functions include 
progressive T cell deficiency, which is contributed by thymic involution 
[1], increased apoptosis of T cells and T cell subsets [2-4], and impaired 
priming of T cells by DCs [5-7]; B cell dysfunctions are revealed by 
impaired specific antibody response to vaccines, and development of 
autoimmunity [8-12]. 

Dendritic cells are a heterogeneous population of hematopoietic 
antigen-presenting cells. They play a major role in initiating and shaping 
both innate and adaptive immune responses, and in the maintenance 
of immunological tolerance [13-20]. Recent studies in humans and 
experimental models suggest that DCs are involved in the pathogenesis 
of autoimmune diseases. There are two major subpopulations of DCs, 
namely “conventional” (cDCs), which are also known as myeloid DCs, 
and plasmacytoid DCs (pDCs). The cDCs are known to differentiate 
from the common myeloid hematopoietic precursors. It appears there 
is a significant plasticity in the DC lineage. pDCs could be derived 
from either myeloid or lymphoid precursors [21]. Furthermore, pDCs 
and cDCs maintain plasticity even after their differentiation [22]. 
Therefore, a numbers of functions are shared between two subtypes 
of DCs; for example, production of IFN-I and IFN-III, albeit their 
relative concentrations may be different among two DC subtypes, and 
priming of naïve T cells. The cDCs exist in peripheral tissues, secondary 
lymphoid organs, and in the circulating blood. pDCs circulate in the 
blood and enter lymphoid organs through high endothelial venules. 
Compare to cDCs, pDCs express different sets of Toll like receptors 
(TLRs) [23]. pDCs express TLR7 and TLR9 and upon stimulation 
secrete large amounts of IFN-α [24]. In response to microbial infection, 
monocytes migrate into inflammatory sites and differentiate into DCs 
[24]. In humans, in vitro activation of monocytes with GM-CSF and 
IL-4 induces differentiation of monocytes into monocyte-derived DCs, 
which serves as a model for cDCs. In this review I will refer them as 
mDCs.

The Role of DCs in Immune Tolerance and 
Autoimmunity

Knight and colleague [25] provided initial evidence for the role of 
DCs in autoimmunity. They demonstrated that DCs from animals with 
EAE could transfer the disease in naïve recipients. 

DCs play a role in both central and peripheral tolerance. In the 
central tolerance, thymic DCs have shown to cross present self-
antigens, which have been acquired from medullary thymic epithelial 
cells (mTECs) [26,27]. In addition, thymic DCs may also facilitate 
generation of natural Treg (nTreg) [28]. There is also an evidence that 
peripheral DCs might migrate into the thymus, and present peripheral 
self-antigens to induce clonal deletion or to generate Treg [29,30]. In 
general, DCs appear to play only a minor role in central tolerance; 
mTECs appear to play the major role in inducing central tolerance.

DCs appear to play a role in peripheral tolerance by supporting 
the homeostasis of peripheral Treg cells. DCs can polarize naïve 
CD4+ T cells to Treg cells (iTreg) in the presence of TGF-β [31,32]. 
Recently it has been suggested that migratory cDCs and not the 
resident DCs in the lymph nodes induce the development of Treg 
specific to a particular self-antigen [33]. It appears that DCs facilitate 
the induction and/or maintenance of Treg cells; however; they are not 
indispensible for both the induction and maintenance of Treg. This 
is further supported by lack of significant autoimmunity in patients 
with primary immunodeficiency of DCs [34]. In peripheral tolerance, 
nTreg generated in the thymus by mTECs may more important than 
iTreg generated by DCs in the periphery. In general, DCs may induce 
tolerance by inducing Treg and induction of energy.

A role of DCs have been demonstrated in a number of autoimmune 
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Abstract
Immunological tolerance to self-antigen is mediated by deletion of self-reactive lymphocytes by apoptosis, 

unresponsiveness to self-antigens (anergy), regulation by T cells (Treg), and efficient removal of apoptotic bodies 
by phagocytic cells. Dendritic cells (DCs) play an important role in both tolerance (predominantly via induction of 
Treg) and inthe induction of immune response to non-self antigens. Therefore, an impairment of DCs functions 
may result in the loss of tolerance and induction of immune response to self-antigens, resulting in autoimmunity. 
Aging represents a paradox of impaired response to non-self antigens, and an increased response to self-antigens, 
resulting in an increased susceptibility to infections, and development of autoimmunity in aged humans. I have 
reviewed the role of DCs and mechanisms involved in autoimmunity, including epigenetic changes in aged DNA, and 
histone modifications in chromatin in human aging.
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diseases and animal models of autoimmune diseases, including systemic 
lupus erythematosus (SLE), multiple sclerosis (MS), experimental 
autoimmune encephalitis (EAE), and autoimmune myocarditis [35]. 

Role of Apoptosis in Tolerance and Autoimmunity
Apoptosis (programmed cell death) also plays an important role 

in maintaining tolerance and immune homeostasis [2]. Almost every 
cell is programmed and equipped to die only to be replaced by new cell 
to main homeostasis. These apoptotic cells contains a number of self-
antigens, and therefore, must be removed by neighboring phagocytic 
cells and self-antigens degraded to avoid their uptake by DCs and 
presentation to self-reactive lymphocytes. Apoptosis is induced by 
death receptor pathway, mitochondrial pathway, and endoplasmic 
reticulum stress pathway [2,36-38]. Apoptotic cells express a number 
of surface antigens to provide a ‘eat me’ signals, which are recognized 
by receptors on phagocytic cells. Apoptosis also provide a major 
mechanism for deletion of self-reactive T cells (central tolerance). 
Therefore, disorders of apoptosis are associated with autoimmunity 
and autoimmune diseases [39]. An impaired apoptosis, resulting in 
failure to remove self-reactive lymphocytes, and increased apoptosis 
with excessive load for the phagocytic cells, and defects in uptake of 
phagocytic cells may lead to late necrosis of apoptotic blebs resulting 
in increased release and therefore, exposure of self-antigens to DCs 
resulting in autoimmunity and autoimmune diseases. 

Role of Interferons in Autoimmunity
Secretion of interferons (IFNs) from virus-infected cells is a 

hallmark of host antiviral immunity. In addition, interferons modulate 
both innate and adaptive immune responses. DCs are major producers 
of both IFN-I (IFN-α, IFN-β, IFN-κ, IFN-ω) and IFN-III [IFN-λ1 (IL-
29), λ2 (IL-28a), λ3 (IL-28b)]. mDCs produce greater amount of IFN-
III, whereas pDCs are major source of IFN-I [13,14,17,40,41].

IFN-I promote the differentiation of naïve CD4+ T cells to TH1 
cells, and survival of activated T cells, and enhance the cytotoxicity 
of CD8+ T cells and NK Cells [42-44]. In addition, IFN-I enhance 
antibody production, and induces isotype class switch in B cells [45-
47]. Furthermore, IFN-I enhances antigen cross presentation and 
maturation by DCs by up-regulating co-stimulatory molecules and 
TLRs, and inducing secretion of pro-inflammatory cytokines [48,49]. 
IFN-I and IFN-I regulated genes are increased in systemic [50,51], 
and organ-specific autoimmune diseases [52], suggesting its role in 
autoimmunity. Autoantigens from apoptotic cells stimulate pDCs to 
prduce large amounts of IFN-I, which induces B cell differentiation and 
Ig class switch, including autoreactive B cells resulting in autoantibody 
production. 

IFN-III (IFN-λs) is family of interferons encoded by 3 different 
genes that were discovered in 2003 [53,54]. They play a major role in 
viral defense; however, provides much better protection at mucosal 
surfaces than IFN-I [40,55]. 

Though IFN-I and IFN-III signal through different receptors, 
they share a common downstream signaling pathway, a common 
set of interferon-stimulated genes (ISGs), and share many biological 
properties, including anti-viral and anti-proliferative activities [55,56].

Since a role of IFN-I in autoimmunity and autoimmune diseases 
has been demonstrated [50-52], it is expected that IFN-III may also play 
a role in autoimmunity and autoimmune diseases. Increased serum 
IFN-λ1 levels have been observed in patients with rheumatoid arthritis 
as compared to healthy controls and patients with osteoarthritis [57]. 

Lin et al. [58] reported dysregulated expression of IL-28α (IFN-λA) in 
patients with SLE.

Mannechet et al. [59] have shown that in vitro, IFN-λ-treated DCs 
induce proliferation of FoxP3-expressing regulatory T cells. More 
recently, Rynda et al. [60] have demonstrated that endogenous IFN-III 
(IL-28) protects against EAE in the absence of Treg cells, and treatment 
of animals with neutralizing antibodies against IL-28 render mice 
susceptible to EAE, suggesting a role of IFN-III in tolerance.

Autoimmunity in Aging
Role of apoptosis in autoimmunity in aging

In contrast to progressive decline in immune functions with 
advancing age, there is an increased reactivity to self and endogenous 
antigens as evidenced by the presence and increased titers of a variety 
of autoantibodies [8-12], which suggest a loss of peripheral tolerance in 
aging. The information regarding mechanisms of impaired tolerance 
in human aging is limited. Apoptosis plays an important role in the 
effector functions and immune homeostasis. One of the critical steps 
in apoptosis is a rapid uptake of apoptotic cells and apoptotic bodies 
by neighboring phagocytic cells, resulting in intracellular degradation 
of self-antigens, and induction of anti-inflammatory response and 
generation of Treg. We have shown that in aging, apoptosis of T cells 
and T cell subsets is increased [2-4,61,62], whereas DCs are impaired 
in their capacity to uptake apoptotic cells [63]. As a consequence 
apoptotic cells would undergo secondary necrosis with additional 
proteolytic degradation of specific autoantigens, leading to the release 
endogenous danger signals like nuclear antigens clustered in apoptotic 
blebs and bodies (e.g. chromatic, DNA, RNA, histones etc), resulting 
in maturation of DCs, presentation of self-antigens to lymphocytes 
and induction of T cell immunity to self antigens, and stimulation of 
autoreactive B cells and production of autoantibodies. 

Role of DCs in Autoimmunity in Aging
Increased reactivity of aged DCs to self-DNA

DCs are unique antigen-presenting cells because of their capacity 
to prime naïve T cells [14,16-18]. DCs therefore function as initiators of 
T cell immunity. DCs can prime or tolarize T cells. Under physiological 
conditions, DCs play a role in unresponsiveness to self-antigens. DCs are 
essential for both central and peripheral tolerance. Impaired clearance 
of apoptotic cells has been implicated in autoimmune diseases like 
lupus [64,65]. Therefore, we examined the priming capacity of young 
and aged DCs to self-DNA. DNA was purified from young humans and 
delivered intracellularly to mDCs from young and aged subjects and 
examined for the activation and cytokine production by mDCs and 
their capacity to induce T cell proliferation [66]. DNA-primed mDCs 
from aged subjects upregulated co-stimulatory molecules, and secreted 
increase levels of IL-6 and IFN-α as compared to young mDCs. Similar 
increased in cytokine secretion was observed by aged mDCs in response 
to late apoptotic cells. Furthermore, young DNA-primed aged mDCs 
induced autologous T cell proliferation, whereas young DNA-primed 
young mDCs did not induce T cell proliferation, suggesting a role of 
DCs in increased reactivity to self-DNA and a loss of tolerance in aged 
humans. This increased reactivity to DNA is independent of TLR-
9. Furthermore, expression of the cytosolic DNA sensor DAM1 was 
comparable between young and aged, suggesting steps downstream 
of cytosolic sensor may be involved in self-reactivity to DNA by aged 
DCs. Since there are several DNA censors, a possibility of involvement 
of one of the other DNA sensors cannot be excluded. One of the steps 
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downstream of DNA censors is the interferon-responsive factor-3 
(IRF-3). We observed an increased activation of IRF-3 transcription 
factor in mDCs from aged in response to Intracellular self-DNA [61]. 
Furthermore, mDCs from aged display higher basal levels of NF-kB 
activation, suggesting that DCs from aged are in an activated state. 
Panda et al. [67] also observed increased basal levels of cytokines in 
aged DCs.

Role of Epigenetic modifications in aging DNA in 
autoimmunity

Epigenetic regulation of gene expression occurs via chemical 
modification such as histone acetylation and methylation, without 
alteration in the nucleotide sequence in the genome [68]. Human 
DNA undergoes age-associated genetic and epigenetic changes 
[69,70]. During aging, cells and tissues become hypomethylated while 
selected genes become progressively hypermethylated [71]. There is 
a relationship between genomic instability, DNA damage, and DNA 
repair mechanisms, which are in aging resulting in DNA lesions with 
single and double-stranded breaks [72]. Furthermore, oxidative damage 
to DNA has been implicated in aging and age-related degenerative 
disorders [73]. 

Human DNA is generally inert and does not stimulate DCs. We 
demonstrated that DNA from aged mononuclear cells when introduced 
into young mDCs resulted in upregulation of co-stimulatory molecules 
CD80 and CD86, and increased secretion of IFN-α, as compared to 
young DNA, suggesting an increased immunogenicity of aged DNA 
[74]. We also showed that DNA from aged subjects is hypomethylated, 
and when aged DNA was hypermethylated comparable to methylation 
of young DNA, aged DCs could no longer induced increased secretion 
of IFN-α, demonstrating that immunogenicity of mammalian DNA 
correlates inversely with DNA methylation. Finally, we observed that 
intracellular delivery of oxidative-damaged DNA did not result in the 
activation of mDCs, which suggest that DNA damage per se does not 
increase immunogenicity of aged DNA, and hypomethylation of DNA 
is responsible for its increased immunogenicity in aging. It remains to 
be determined which site-specific hypomethylation confer increased 
immunogenicity to self-DNA. 

Interferons in aging

The role of interfrons in defense against viruses is well established. 
IFN-I are known to have anti-proliferative and antitumor activities 
[44,49,56]. IFN-III also display anti-viral activity; however, 
predominantly at mucosal surfaces because of more restricted 
expression of IFN-III receptors as compared to IFN-I receptors, 
which are more widely expressed [75,76]. IFN-II has predominantly 
immunoregulatory role. A role of IFN-Iα in autoimmunity and 
autoimmunity is well documented. IFN-Iα expression is increased 
in autoimmune diseases [40,50-52] and IFN-Iα treatment has been 
associated with exacerbation or development of certain autoimmune 
diseases [77-79]. This is in contrast to use of IFN-β in the treatment 
of multiple sclerosis, an autoimmune disease. A role of IFN-III 
in immune regulation and autoimmunity has not yet established; 
however, abnormal and dysregulated expression of IFN-III and IFN-
III receptors in certain autoimmune diseases, including rheumatoid 
arthritis and systemic lupus erythematosus has been reported [57,58]. 

Because of increased susceptibility of aged humans to viral 
infection, especially respiratory tract infections, and development 
of autoimmunity, others and we have investigated the production 
of IFN-I and IFN-III by DCs from healthy young and aged subjects. 

pDC from aged are impaired in secreting both IFN-I and IFN-III in 
response to Influenza virus (TLR signal) and CpG (TLR9 signaling) 
[7,67,80-83]. However, the expression of TLR7 and TLR9 on aged 
pDCs is comparable to young [7]. Furthermore, we demonstrated that 
the protein expression of downstream signaling molecules IRAK-1, 
Myd88, and IRF-7 in aging pDCs is comparable to young; however, 
CpG and influenza virus-induced IRF-7 phosphorylation in aged pDCs 
is impaired [7]. pDCs from aged are also impaired in priming CD8+ T 
cells as determined by proliferation, perforin and granzyme production, 
and IFN-γ secretion [7]. pDCs are also impaired in priming of CD4+ T 
cells as determined by CD4+ T cell proliferation. 

We also examined a role of mDCs in responses to influenza virus. 
The phenotype of aged and young mDcs was comparable following 
activation with heat-inactivated influenza virus. However, mDCs 
from aged were impaired in their ability to produce Influenza virus-
induced both IFN-I and IFN-III. Panda et al. [67] also demonstrated 
decreased IFN-I production in aged mDCs. We examine whether 
histone modification (epigenetic changes) play a role in impaired 
interferon secretion by mDCs in aged humans [84]. Association of 
IFN-A2 and IFN-l1 (IL-29) promoter to H3K4me3 and H3K9me3 is 
altered in aged DCs. This impaired association was specific to IFN-A2 
and IFN-l1 since no such impairment of association was observed 
between histones and TNF-α promoter, and no association of IFN-
2A, and IL-29 (IFN-λ) non-promoter to H3K4me3 and H3K9me3 was 
observed. Additionally association of IFN-A2, IFN-l, TNF-a promoter 
to H3K4me and HeK9me in aged mDCs is unstable. Both IFN-α and 
IFN-β have shown to mediate their effects though a common IFNAR1 
and IFNAR2 [85,86]. However, recently it has been reported that IFN-β 
may not use IFNR2 and uses a different partner with IFNAR1 [85]. The 
expression of IFNAR1/2 and response to IFN-β remains to be studied. 

Since functions of mDCs and pDCs and production of both IFN-I 
and IFN-III are impaired, it is unlikely that altered IFN production 
in aging plays an significant role in autoimmunity in aging; perhaps 
impaired uptake of apoptotic bodies, and increased reactivity to self-
antigen and production of pro-inflammatory cytokines by aged DCs 
may predominantly contribute to autoimmunity associated with aging. 
An impaired interferon production may be responsible for increased 
susceptibility to viral infections in aged humans.
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