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Abstract
Candida albicans is a dimorphic, opportunistic fungal pathogen responsible for most of the systemic candidiasis 

reported worldwide. The cell wall is the outermost component of this pathogen, which protects the cell from 
sudden changes in the external environment, is in close contact with host tissues and cells, and is elaborated by 
polysaccharides that are not synthesized by human cells. Thus, it is not surprising that the wall is the main source of 
pathogen-associated molecular patterns that are recognized by immune cells, and recognition of such components is 
critical for the establishment of a protective anti-Candida response. Here we summarize the current information related 
to the C. albicans innate immune sensing, underlying the importance of cell wall polysaccharides for the recognition 
of this pathogen.
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Introduction
Candida albicans is a dimorphic fungus that normally colonizes 

mucosal tissues, forming part of the microflora. Its population is 
normally controlled by the mucosal microenvironment and the 
bacterial flora; although changes in any of these factors may lead to 
fungal overgrowth and tissue damage. The host immune system is 
capable to control such infection, and in immunocompetent patients 
the disease is restricted to superficial tissues. However, when the host 
experiences a temporal or permanent immunosuppression the fungus 
has the potential to cause systemic infections that are associated to high 
mortality rates [1].

Microbial pathogens contain pathogen-associated molecular 
patterns (PAMPs) that allow the innate immune system, via pattern 
recognition receptors, to recognize them as non-self molecules, 
triggering a cascade of molecular events that will end with a protective 
response against the invader. For the case of C. albicans, and other 
fungal pathogens, most of the PAMPs are found at the cell wall (Figure 
1), as this protective shield is composed of molecules that are not 
synthesized by host cells [2]. However, intracellular components such 
as DNA can be recognized by the innate immune system [3].

The C. albicans cell wall is organized in two layers composed of 
different polysaccharides, and this organization is relevant for the 
fungus immune sensing (see below). Chitin and b-glucans are the main 
components of the skeletal inner layer of the cell wall, closer to the 
plasma membrane. These polysaccharides are not exposed at the cell 
surface, with exception of the chitin present at the primary septum and 
the budding scars [4]. Chitin represents about 1-2% of the yeast cell 
wall dry weight [5], and from this, about 5% is in the deacetylated form, 
i.e., as chitosan [4]. In hyphae chitin is more abundant than in yeast
cells, contributing with 4-6% of wall dry weight [6,7]. The b1,6-glucan
represents about 20% of cell wall dry weight, and is covalently linked
to chitin and b1,3-glucan, working as a molecular bridge between these
two cell wall components [5]. Cell walls from hyphae contain three
times less of this polysaccharide than yeast walls [8,9]. The b1,6-glucan
is exposed enough at the yeast cell wall surface to be recognized by
antibodies, but not in hypha walls, where FITC-conjugated anti-b1,6-
glucan antibodies are barely bond to this polymer [9]. The b1,3-glucan
is one of the most abundant cell wall components, contributing with
40% of the yeast cell wall dry weight, but the content of this polymer

increases twice in hypha cell wall [5,8]. This glucose polymer can 
directly interact with cell wall proteins, b1,6-glucan and chitin, thus 
it was proposed that works as a molecular scaffold to bring together 
most of the cell wall components [5]. As part of the inner cell wall layer, 
b1,3-glucan is not normally exposed at the cell surface, being buried 
underneath the thick outer layer composed of mannoproteins, and 
being only exposed at the budding scars [10-12]. The mannoproteins 
represent 35-40 % of the cell wall dry weight, and mannans about 40% 
of total cell wall polysaccharide content [5,13]. Glycolipids are a minor 
cell wall component of both yeast and hyphae cell wall (1-7% cell wall 
dry weight) [13].

Immune sensing of cell wall polysaccharides

Chitin and Chitosan: Chitin is a polymer of b1,4-GlcNAc that is 
essential for cell viability [14], and thus far attempts to generate mutant 
cells lacking this cell wall component have been unsuccessful. Its 
synthesis has been thoroughly reviewed before [15] and is performed by 
four chitin synthases: Chs1, Chs2, Chs3, and Chs8 [6,7,14,16,17]. Chs1 
is in charge of the primary septum elaboration and contributes to the 
synthesis of chitin found at the lateral wall [14]. This is the only chitin 
synthase essential for the C. albicans viability, stressing the importance 
of the primary septum elaboration for cell physiology, division, and 
integrity [14]. Chs3 and Chs8 synthesize short- and long-chitin 
microfibrils, respectively [18], with Chs3 synthesizing about 85% of the 
chitin present in the cell wall of both yeasts and hyphae [16,19]. Chs2 
is a hypha-specific enzyme responsible of the elaboration of about 40% 
of chitin found in this morphology [6]. The biosynthesis of chitosan 
in C. albicans has not been yet characterized, but the genome contains 
the ortholog of Saccharomyces cerevisiae CDA2, a chitin deacetylase 
involved in chitosan production [20].
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The interaction between chitin and immune cells is thus far not 
well understood, and is currently an active research area. We have 
recently demonstrated that purified chitin from either C. albicans or 
S. cerevisiae cell wall is not able to stimulate production of pro- and
anti-inflammatory cytokines by human peripheral blood monocytes
(PBMCs) [4,21], nor activation of the complement alternative
pathway [22]. Moreover, chitin can block the proper recognition of
C. albicans by human PBMCs in a dectin-1-dependent mechanism,
but this is independent on Mincle, TLR2 or TLR4 [4]. However, other
groups have shown that chitin stimulates pro- and anti-inflammatory
cytokine production in different cell types [23-26], but those effects
are dependent on particle size and phagocytosis. Furthermore, the
particle size seems to be relevant for eosinophilia stimulation [27],
and for the kind of receptors involved in chitin sensing: small chitin
particles are phagocytosed and recognized via TLR2, dectin-1, and
mannose receptor, while non-phagocytosed chitin stimulates cytokine
production via TLR2 and dectin-1 [25]. Despite these advances in

the area, there are not clear evidences about the receptor(s) involved 
in chitin sensing. Thus far there are some candidates that are 
currently under study: the C-type lectin NKR-P1 receptor recognizes 
chitooligomers and this ligand-receptor interaction triggers activation 
of natural killer cells [28]; RegIIIg (HIP/PAP) is also a C-type lectin 
expressed in the neutrophil-like Paneth cells of the small intestine [29], 
FIBCD1- a calcium-dependent acetyl group-binding receptor that is 
also expressed in the gastrointestinal tract [30]; TLR2, Dectin-1 and 
mannose receptor [4,24-26,31,32]. 

The relevance of chitosan during C. albicans immune sensing 
has not been yet analyzed; however, it has been recently shown that 
this deacetylated β1,4-glucosamine polymer strongly activates the 
inflammasome in macrophages, stimulating production of IL-1β [33]. 
As with chitin sensing, the observed effect with chitosan was dependent 
on particle size and phagocytosis [33].
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Figure 1: C. albicans cell wall triggers immune cell activation. Cell wall components are pathogen-associated molecular patterns that interact with several pattern 
recognition receptors present on immune cells, such as monocytes, macrophages and dendritic cells, stimulating production of anti- and pro-inflammatory cytokines.
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b1,6-Glucan

This is a short and amorphous polysaccharide, with most of the 
monosaccharides forming a linear structure and about 7% of them 
contain branching points [34]. The encoded products by KRE1, KRE9, 
KRE6 and SKN1 are involved in the biosynthesis of this polysaccharide, 
but the latter is specifically upregulated during hypha transition [35-37], 
which suggest that the biosynthetic machinery involved in elaboration 
of β1,6-glucan may be different in yeast cells and hyphae. Some of these 
enzymes are essential for C. albicans viability [36,37], underlining the 
importance of this polysaccharide for cell wall organization. Thus far 
the nature of the immune receptors involved in recognition of this 
cell wall component are unknown, but there are strong evidences 
indicating the immune system recognizes it: β1,6-glucan potentiates 
the immunoglobulin E-mediated histamine release from blood 
leucocytes [38], causes abnormal phenotypes during differentiation of 
human PBMCs to dendritic cells, and the latter have modification in 
the normal functions [39]. Furthermore, data indicate that this polymer 
can be involved in the stimulation of chemokines by human PBMCs 
[9], mediates phagocytosis, and production of reactive oxygen species 
in human neutrophils [40]. Finally, β1,6-glucan also participates in the 
complement activation, in a properdin-dependent way, being C3b/C3 
deposited more readily on β1,6-glucan than on β-1,3-glucan [22,40].

b1,3-Glucan: The synthesis of β1,3-glucan has been extensively 
reviewed before [41]. The β1,3-glucan synthase is a multiprotein 
complex composed of Fks1 and Gsl1 [42], and this enzyme activity 
is regulated by Rho1, an essential small GTPase of Rho family that 
inhibits the biosynthetic activity via binding to Fks1 [43]. The linkage 
between β1,3- and β1,6-glucans is likely to be performed by Phr1 and 
Phr2, GPI-anchored cell wall glycosidases [44]. 

This polysaccharide is recognized by dectin-1, a C-type lectin 
expressed in myeloid cells [45,46], and TLR2 [47]. It was originally 
thought that recognition of β1,3-glucan was a minor pathway 
contributing to cytokine production by PBMCs [47] and had no role 
in the host response mechanisms against C. albicans [48]; however, 
this information was further revisited and nowadays it is well known 
that recognition of this cell wall polymer triggers a strong activation of 
immune cells and is essential for the anti-C. albicans immune control 
in both mice and humans [49]. Interestingly, it has been found that 
some mice strains show differences in the ability to interact with β1,3-
glucan, and expression of two isoforms of dectin-1 are responsible of 
this [50]. Dectin-1 has an extracellular C-type lectin like domain and 
stalk region, followed by a single transmembrane pass and a tyrosine-
based activation-like domain at the cytoplasm. The dectin-1B isoform 
lacks the stalk region and this compromises the ability of the receptor 
to bind β1,3-glucan at 4ºC, but unexpectedly, triggers the production 
of more TNFa than dectin-1 [50]. These effects might be result of 
different abilities to interact with other surface receptors, such as 
TLR2 and CD63 [50]. The binding of dectin-1 with TLR2 is important 
to promote production of TNFa and IL-12 [51, 52], but interaction 
dectin-1-Syk kinase, and further activation of CARD9, are required for 
a TLR2-independent pathway that stimulates production of IL-2, IL-
10, IL-23 and IL-6 [53, 54]. Furthermore, dectin-1 is also involved in 
the phagocytosis and killing of C. albicans by polymorphonuclear cells 
[55], and stimulates production of IL-1β via a phagocytic process and 
activation of NLRP3 inflammasome [56].

Initially the role of β1,3-glucan during immune sensing of C. 
albicans was considered as a minor pathway, because mannans were 
demonstrated to contribute to most of the cytokine production 
stimulated by this organism. In addition, mannans are forming the 

outer cell wall layer, covering the inner components, including β1,3-
glucan. However, it was demonstrated that exposure of β1,3-glucan 
at the surface by heat inactivation [11], antifungal drugs [12,57] or 
mutations that affect the mannan layer [58-60] stimulates a strong 
cytokine production and phagocytosis. The β1,3-glucan is normally 
exposed at the budding scars, and has been demonstrated that this 
is enough to trigger C. albicans phagocytosis and production of 
reactive oxygen species through dectin-1 activation [10]. However, the 
participation of dectin-1 seems to be restricted to yeast cells, as hyphae 
do not divide through a budding process, and thus do not have β1,3-
glucan exposed on the cell surface, and do not trigger activation of 
immune cells via dectin-1 [10]. This elegant mechanism of immune 
evasion that C. albicans possesses can be dismantled by treatment 
with caspofungin: in vitro and in vivo observations indicate that sub-
inhibitory concentrations of caspofungin drive unmasking of β1,3-
glucan in hypha, being this cell wall polymer exposed enough to be 
recognized by dectin-1 [57].

It has been recently shown that the immune response triggered 
by dectin-1 requires a clustering mechanism of the receptor, forming 
a phagocytic synapse that allows the immune cells to discriminate 
between direct microbial contact and soluble ligands [61].

Mannoproteins: The cell wall mannoproteins are synthesized 
in the endoplasmic reticulum and then transported to the cell wall 
by the secretory pathway. Once the proteins are translocated to the 
endoplasmic reticulum lumen, they may be post-translationally 
modified by addition of oligosaccharides rich in mannose residues 
(mannans) that can be covalently attached to Ser/Thr residues via an 
ester bond (O-linked mannans), or to Asn residues through an amide 
link (N-linked mannans). The synthesis of these molecules has been 
extensively reviewed elsewhere [2], beginning in the endoplasmic 
reticulum and finalising in the Golgi complex. Addition of N-linked 
mannans is performed by the oligosaccharyl transferase complex that 
transfers the preformed N-linked glycan core from a dolichol-based 
donor to Asn residues within the sequon Asn-X-Ser/Thr, where X can 
be any amino acid except Pro [2]; whereas the first mannose residue 
of the O-linked mannans is attached to proteins by members of the 
PMT gene family [62]. Then, mannans undergo an elongation process 
in the Golgi complex, where they get the final structure: the O-linked 
mannans may be composed of up to five a1,2-mannose residues [63], 
while N-linked core mannan is modified with the outer chain that can 
contain up to 200 mannose units [64]. This N-linked mannan outer 
chain has a backbone of a1,6-mannoses that is modified with branches 
of a1,2-mannose residues that resemble the O-linked mannans [64]. 
This branches can be terminated with either a1,2-, a1,3- or b1,2-
mannose residues. Furthermore, both N- and O-linked mannan are 
modified with mannose residues attached to the oligosaccharide 
through a phosphodiester bond, named phosphomannan [64,65]. 
Phosphomannan may work as a molecular scaffold to add up to 14 
b1,2-mannoses to the N-linked mannans [66], by action of Bmt2, 
Bmt3, and Bmt4 [67]. 

Recognition of O-linked mannans is a relatively minor pathway 
for cytokine stimulation in macrophages and PBMCs, and depends 
on interaction of this wall component with TLR4 [47]. This has 
been confirmed in a TLR4-deficient mouse model of disseminated 
candidiasis, where mice lacking this receptor are equally susceptible to 
the systemic disease as the wild type control animals [68].

The immune recognition of N-linked mannans is more complex 
than the one against O-linked mannans, as the former are composed of 
mannose residues linked with different glycosidic bonds. The mannose 
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receptor is a C-type lectin that recognizes a-linked mannoses within 
branched oligosaccharides, such as the N-linked mannans [69]. This 
may explain why this receptor does not recognize O-linked mannans, 
even though they resemble a branch of the N-linked mannan outer 
chain. This receptor, present on the surface of PBMCs, macrophage 
and dendritic cells, is indeed involved in cytokine stimulation and 
phagocytosis through N-linked mannan recognition [47]. Once this 
role was characterized, it was proposed as the main pathway to trigger 
cytokine production upon C. albicans sensing, as mutants lacking the 
N-linked outer chain only stimulated 20% of cytokine produced by
wild type control cells [47]. The C-type lectin DC-SIGN, expressed
only at the surface of dendritic cells, is also involved in the recognition
of N-linked mannans via the a1,2-branches, is equally good to bind
C. albicans cells as mannose receptor, but might be higher expressed
on dendritic cells than mannose receptor; thus, having a predominant
role in C. albicans recognition by this type of immune cells [70].
Furthermore, the b1,2-mannose moieties can be recognized by galectin
3, and this contributes to cytokine stimulation in macrophage and
discrimination between C. albicans and S.  cerevisiae [71]. However,
this might not be the case for human PBMCs, where yeast cells lacking
b1,2-mannose residues are as good as wild type cells to induce cytokine
production [58]. Phosphomannan also plays a role during C. albicans
recognition by macrophages, being required for proper phagocytosis
[72], and the effect of cationic antimicrobial peptides generated by
immune cells [73]. Mincle is another C-type lectin expressed on the
surface of macrophages that is involved in recognition of C. albicans
mannans. This receptor is dispensable for C. albicans phagocytosis, but
is required for a strong stimulation of pro-inflammatory cytokines [74].
Although the exact nature of its ligand is still unknown, its importance
for establishment of anti-Candida defences is highlighted by the
increased susceptibility of mice lacking mincle to systemic candidiasis
[74]. Dectin-2, a C-type lectin expressed on the surface of macrophages
and dendritic cells, also recognizes N-linked mannans, showing a
preference to interact with high-mannose oligosaccharides, especially
with the N-linked mannan core [75]. This receptor lacks an intracellular
signaling motif, therefore is unable to transduce intracellular signals
by itself. However, coupling with FcRγ is enough to overcome this
problem and to induce cytokine production via Syk kinase and
CARD9 [76-78]. The receptor is dispensable for the establishment of
an immune response against C. albicans [77], but mice lacking dectin-2
are more susceptible to systemic candidiasis [78]. Recognition of both
C. albicans hyphae and yeast cells through dectin-2 induce Th17 cell
differentiation [78], and along with dectin-1 stimulate the production
of IL-17 and a Th1 response [77]. Interestingly, dectin-2 has the ability
to discriminate between C. albicans yeast cells and hyphae, showing
a preference to bind the latter [76,79], but yeast cells stimulated the
production of IL-1β and IL-23 via dectin-2, while hypha-stimulated
cytokine production was partially dependent on this receptor [78].

Phospholipomannan: The glycolipid is composed of a 
phytoceramide associating a phytosphingosine and C(24) hydroxyl fatty 
acids, which works as a molecular scaffold for a linear oligosaccharide 
that contains up to 19 b1,2-mannose residues [80]. This glycolipid is 
considered as C. albicans virulence trait, as demonstrated by its ability 
to trigger macrophages apoptosis upon C. albicans phagocytosis [81]. 
Despite the importance of this glycolipid, little is known about its 
biosynthesis. It has been shown that the BMT gene family encodes 
for b-mannosyl transferases involved in the b-mannosylation of 
N-linked mannans, but not of phospholipomannan [82]. C. albicans
phospholipomannan stimulates TNFa production by PBMCs and
macrophages [83,84], and is sensed by TLR2, although loss of TLR4
and TLR6 significantly decreased the levels of TNFa stimulated by the
glycolipid [84].

Interplay among pattern recognition receptors: The study of 
the interaction C. albicans-immune cells has been approached using 
mutants lacking specific cell wall components, blocking agents for 
specific ligands, or cell lineages lacking pattern recognition receptors. 
However, the cell-cell interaction process relies on a series of contacts 
among ligands and receptors, all working in a coordinate manner, 
and with the timing to allow a biological process. Thus, it is naive to 
conceive that the interaction C. albicans-immune cells may depend 
only on one ligand-receptor interaction. In addition, such kind of 
approach, although useful to establish the basic components during C. 
albicans immune sensing, pays little attention to the potential crosstalk 
between receptors, the recognition of one cell wall components by two 
different receptors at the same time, as in the case of N-linked mannans, 
or the co-stimulation triggered by the recognition of two different wall 
components at the same time.

As mentioned above, it is well known that dectin-1 works in 
collaboration with TLR2 for stimulation of some cytokines by b1,3-
glucan (Figure 2), but it also synergizes with TLR4, TLR5 and TLR9, via 
Syk kinase, for cytokine production in both PBMCs and macrophages 
[85-87]. Furthermore, dectin-1 and DC-SIGN work in collaboration 
during activation of arachidonic acid cascade by zymosan [88], and can 
also collaborate with SIGNR1, a mannan receptor found on murine 
macrophages surface, during C. albicans recognition, enhancing 
cellular oxidative burst [89,90], and with galectin-3 for cytokine 
production in macrophages [91]. 

Mannose receptor, along with dectin-1 and TLR2 are the main 
receptors involved in the stimulation of IL-17 production by human 
PBMCs [92]. It has been recently shown that dectin-1 mediates the 
metalloprotease-dependent hydrolysis of mannose receptor, generating 
a soluble protein with the ability to still recognize N-linked mannans 
and cover fungal particles [93]. The biological implications of this 
processing are not clear yet, but are likely to modulate the mechanisms 
behind fungal sensing.

Future directions
The last fifteen years have experienced a significant advance in 

the knowledge of the molecular mechanisms behind the C. albicans 
immune sensing. We have now valuable information about the 
main fungal components and the receptors involved in the immune 
recognition of this pathogen, and their relative contribution for 
the general outcome upon sensing. Despite this knowledge, we are 
not close yet to have the complete information set, as there are still 
receptors that need to be found, such as the one responsible for 
chitin or b1,6-glucan recognition. As described above, there are data 
indicating that dectin-1 plays a major role interacting with TLR’s, but 
little information is known about the potential cooperation between 
different C-type lectins, and TLR’s with C-type lectins different to 
dectin-1. Furthermore, the models that can be drawn so far, may only 
apply to recognition of yeast cells, as hyphae are differentially sensed 
by immune cells. Indeed, it has been reported that yeast cells but not 
C. albicans hyphae can trigger cytokine stimulation by human PMBCs
and macrophages, and this might be related to the inability of the
latter morphology to stimulate cytokines via TLR4 [94]. However,
other authors have reported that hyphae, but not yeast cells, are able to
stimulate production of IL-1b via the Nlrp3 inflammasome in primary
mice macrophages [95,96], a protective Th17 response [96], and an
innate response in oral and vaginal epithelial cells [97,98]. Finally, once
the models would be established, it remains to be determined whether
they can be applied to other Candida species that are emerging as
causative agents of systemic candidiasis.
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