

Role of Biomarkers and Imaging in Individualizing Heart Failure Prognosis

Elara Mystron*

Department of Medicine, University of Lodz, Lodz, Poland

DESCRIPTION

Heart Failure (HF) remains a leading cause of morbidity, mortality, and healthcare expenditure worldwide. As a complex clinical syndrome resulting from structural and/or functional impairment of ventricular filling or ejection of blood, heart failure presents with heterogeneous phenotypes and variable outcomes. Given this variability, risk stratification has become a critical component in managing HF, allowing clinicians to identify high-risk patients who may benefit from more aggressive interventions or closer monitoring. Advances in biomarkers and imaging modalities have significantly enhanced the precision of risk stratification, enabling a shift toward more personalized approaches to care.

Biomarkers-measurable indicators of physiological or pathological processes-offer a non-invasive and dynamic means to assess the underlying pathophysiology of heart failure. Among the most established biomarkers in HF is B-type Natriuretic Peptide (BNP) and its inactive counterpart, N-Terminal pro-BNP (NT-proBNP). These peptides are secreted by cardiac myocytes in response to wall stretch and volume overload, and elevated levels correlate with disease severity, prognosis, and treatment response. Numerous clinical trials and guidelines have incorporated BNP and NT-proBNP as standard tools for diagnosis, risk assessment, and monitoring in HF.

Beyond natriuretic peptides, emerging biomarkers offer insights into additional pathophysiological pathways in HF, such as inflammation, fibrosis, oxidative stress, and neurohormonal activation. High-sensitivity troponins, traditionally associated with myocardial infarction, are increasingly recognized as markers of ongoing myocardial injury in chronic heart failure. Elevated levels of troponin, even in the absence of acute coronary syndrome, are associated with worse outcomes. Similarly, soluble ST2, a member of the interleukin-1 receptor family, reflects myocardial fibrosis and remodeling. Elevated ST2 levels have been shown to predict mortality and hospitalization, offering additive prognostic value when used alongside natriuretic peptides.

Other promising biomarkers include galectin-3, which is involved in fibrotic pathways; growth differentiation factor-15

(GDF-15), linked to inflammation and oxidative stress; and copeptin, a surrogate marker for vasopressin activity. While these biomarkers are not yet universally adopted in clinical practice, their inclusion in multi-marker strategies holds potential to enhance prognostic accuracy and guide therapy.

In parallel with biomarker advancements, imaging tools have evolved as indispensable components in the risk stratification of HF. Echocardiography remains the first-line imaging modality, offering critical information on Left Ventricular Ejection Fraction (LVEF), chamber size, valvular function, and diastolic parameters. Patients with reduced Ejection Fraction (HFrEF) generally have a different risk profile and treatment pathway compared to those with preserved Ejection Fraction (HFpEF). Moreover, echocardiographic parameters such as left atrial volume, right ventricular function, and strain imaging (speckle-tracking echocardiography) provide deeper insights into myocardial function and prognosis.

Cardiac Magnetic Resonance imaging (CMR) is regarded as the gold standard for assessing cardiac morphology and function with high spatial resolution. Importantly, it offers tissue characterization through techniques like Late Gadolinium Enhancement (LGE), which identifies myocardial fibrosis or scarring. The extent and pattern of LGE have been shown to correlate strongly with adverse outcomes, including arrhythmias and mortality, making it a powerful tool for risk stratification, particularly in non-ischemic cardiomyopathies.

Nuclear imaging techniques, such as Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography (SPECT), provide metabolic and perfusion data, while Computed Tomography (CT) can assess coronary anatomy and calcium scoring. These modalities are especially useful in identifying ischemic contributors to heart failure and in planning advanced interventions like revascularization or device therapy.

The integration of biomarkers and imaging data enhances risk prediction models and clinical decision-making. For instance, combining elevated NT-proBNP with echocardiographic evidence of left atrial enlargement or CMR-based fibrosis may identify a subgroup of patients at particularly high risk for

Correspondence to: Elara Mystron, Department of Medicine, University of Lodz, Lodz, Poland, E-mail: elaramystron@gmail.com

Received: 19-May-2025, Manuscript No. TMCR-25-38413; **Editor assigned:** 21-May-2025, PreQC No. TMCR-25-38413 (PQ); **Reviewed:** 04-Jun-2025, QC No. TMCR-25-38413; **Revised:** 11-Jun-2025, Manuscript No. TMCR-25-38413 (R); **Published:** 18-Jun-2025, DOI: 10.35248/2161-1025.25.15.348

Citation: Mystron E (2025). Role of Biomarkers and Imaging in Individualizing Heart Failure Prognosis. *Trans Med*.15:348.

Copyright: © 2025 Mystron E. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

sudden cardiac death, informing decisions on Implantable Cardioverter-Defibrillator (ICD) placement. Similarly, multi-marker panels can stratify patients for advanced therapies such as Left Ventricular Assist Devices (LVAD) or transplant evaluation.

Despite these advancements, challenges remain. Biomarker levels can be influenced by comorbidities such as renal dysfunction, age, and obesity, potentially complicating interpretation. Imaging tools, while informative, may not be universally accessible due to cost or expertise limitations. Standardization of protocols and development of integrative risk scores combining clinical, biomarker, and imaging data are needed to optimize their use in practice.

CONCLUSION

Biomarkers and imaging tools have significantly advanced the ability to stratify risk in heart failure patients, facilitating earlier intervention, better prognosis prediction, and more personalized care. As precision medicine continues to evolve, the synergy between these modalities will play a central role in transforming heart failure management from reactive to proactive, ultimately improving patient outcomes. Future innovations may further refine risk stratification models, integrating genetic, proteomic, and imaging data for comprehensive patient profiling. This holistic approach promises to enhance therapeutic precision and long-term disease management.