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Short Communication
Bcl-rambo, also known as Bcl-2 Like protein 13 (Bcl-2-L13), with

homology to Bcl-2 protein and might contain all of the four conserved
Bcl-2 homology (BH) domains, BH1, BH2, BH3 and BH4 (Figure 1)
[1,2].

Figure 1: Schematic of the secondary structure of human Bcl-rambo
and mouse Bcl-2-L13 compared with some other Bcl-2 family
proteins. Human Bcl-rambo includes all four BH domains, and a
BHNo domain. Repeat A and Repeat B are included within the
BHNo domain, while mouse Bcl2-L-13 does not have Repeat B.

It was first reported in 2001 and was classified as pro-apoptotic
member of the Bcl-2 protein family [2]. Its NH2-terminal is stretching
into the cytoplasm and a few amino acids on the COOH-terminal are
remained in the mitochondrial inter-membrane space (IMS). Bcl-
rambo gene is located on the human chromosome 22q11.21 [3,4] with
its mRNA expressed in many tissues and cell lines, such as lymph
node, human heart and Hela cells.

While previous studies have shown that mitochondrial oriented Bcl-
xL requires the COOH-terminal transmembrane (TM) domain to be
flanked by at least two basic amino acids at both ends to maintain
localization stability [5,6], this fashion is also found in the other Bcl-2
family members, including Bcl-rambo. Besides BH domains, Bcl-
rambo has a 250 amino acids fragment in front of the TM domain
termed BHNo, which contains two distinct repeat sequences, Repeat A
and Repeat B [2]. The presence of BHNo domain significantly
enhances the apparent molecular weight of Bcl-rambo showing on
SDS-PAGE, and more importantly, it confers a new manner for Bcl-
rambo to performance. Apoptosis promoting activity of Bcl-rambo was
first reported along with its finding. In many mammalian cell types,
Bcl-rambo is located at the mitochondrial outer membrane (MOM)
and its overexpression can cause apoptosis [7,8]. The pro-apoptotic
activity could be specifically inhibited by the expression of inhibitor of
apoptosis proteins (IAPs) [9], while it was not influenced when the
inhibitors acting on upstream death receptor pathway or

mitochondrial apoptotic pathway were added [10,11]. The pro-
apoptotic function of Bcl-rambo is mediated by the BHNo domain and
TM domain rather than the BH domains. While Bcl-2 family proteins
generally display anti-apoptotic or pro-apoptotic functions through
forming hetero- or homodimers [12,13], however, Bcl-rambo does not
interact with any of the other Bcl-2 family proteins, nor does it form
homodimers [14], even using the BH domains only.

Overexpression of Bcl-rambo also causes apoptosis in HEK293T
cells, Hela cells, PC-3 prostate cancer cells and S2 cells, which might
through its interaction with adenine nucleotide translocase (ANT) to
open the mitochondria membrane permeability transition pore
(MPTP), and in turn inducing a cytochrome c (Cyt c) release [14,15].
ANT, together with cyclophilin-D (Cyp D) and voltage-dependent
anion channel (VDAC), form the complex of MPTP [16-18]. Different
from the pore formed by Bak or Bax to induce MOMP (mitochondrial
outer membrane permeabilization), MPTP is a more selective channel
for small molecules inside mitochondrial inner membrane (MIM),
such as glutathione, Ca2+, etc. However, the open of MPTP sometimes
lead to Cyt c release and apoptosis because of the induction of Bak/Bax
activation. ANT is localized at the MIM, which plays a role in the
cellular oxidative phosphorylation process by exchanging ATP in the
mitochondrial matrix with ADP in the cytosol [19]. When interacted
with Bcl-rambo, ANT was inactivated (Figure 2).

Figure 2: Mechanisms of pro-apoptotic function of Bcl-rambo.
Components of MPTP are formed in the closely contact regions of
MOM and MIM. The ADP/ATP transposition is inhibited when
Bcl-rambo impinges on ANT, and Cyt c escaped into the cytoplasm
for the damaged MPTP, and in turn apoptosis may be triggered.

In this case, MOM localization is essential for the pro-apoptotic
function of Bcl-rambo, rather than the specificity of the amino acid
sequence of TM domain. Bcl-rambo-beta is a splicing variant of Bcl-
rambo in human with BH4 domain only, which is generated by a stop
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codon within the inserted Alu sequence. It is distributed in the
cytoplasm because of lacking the COOH-terminal TM domain [20]. It
is surprising that it preserves the pro-apoptotic activity, which might
due to its Alu element [21]. On the other hand, Bcl-rambo is highly
expressed in a variety of tumors, including childhood acute
lymphoblastic leukemia (ALL), gastric cancer, liposarcoma and
glioblastoma [22]. However, incompatible to its pro-apoptotic
function, elevated expression of Bcl-rambo is strongly associated with
poor prognosis in cancer [23]. In some studies, Bcl-rambo
overexpressing could inhibit Bax oligomerization and showed an anti-
apoptotic function. Bcl-rambo bound to ceramide synthase 2 (CerS2)
and ceramide synthase 6 (CerS6) through the BHNo domain,
preventing the formation of CerS2/6 complex, therefore inhibiting its
pro-apoptotic function (Figure 3) [24-26].

Figure 3: Mechanisms of anti-apoptotic function of Bcl-rambo. In
general, CerS2 and CerS6 can form heterodimers Cer, which could
promote Bax oligomerization with a not yet fully elucidated
mechanism. Bax can form channels after oligomerization and
consequently release Cyt c into the cytosol. Bcl-rambo inhibits this
process by binding to CerS2 and CerS6 respectively, and exhibits an
anti-apoptotic function.

More studies are needed to shed light on that why Bcl-rambo
showed opposite functions under different situations? Perhaps we can
get some inspiration from the physiological function studies. After
ectopically expressing Bcl-rambo in Drosophila, induction of caspase
activity was detected in the eye imaging disc of the third instar larvae.
The chrysalis showed abnormal phenotype with chest fissure, wing
atrophy and rough eye, while there was no significant change in the
pupillary retina at the same time [22], suggesting that Bcl-rambo has a
stronger pro-apoptotic role in the active cells than in the quiescent cells
[26]. Analysis of embryos obtained from in vitro fertilization (IVF)
indicates that Bcl-rambo is constitutively expressed during early
human embryonic development; however, the cellular localization
alteration during its physiological activities is a curious phenomenon
[27,28].

Bax is an effector pro-apoptotic Bcl-2 family protein, sharing
structural homology with bacterial toxins [29,30], which could
permeabilize membranes by forming membrane channels. While Bcl-
rambo was involved in regulating Bax mediated MOM
permeabilization, however, its mouse homolog was also found to
induce mitophagy. Interestingly, another mitophagy receptor, Parkin,
was also involved in regulating Bax mediated apoptosis. Parkin directly
inhibits the translocation of Bax from cytosol to mitochondria,
therefore inhibits Bax mediated apoptosis [31]. PINK1-Parkin
mediated mitophagy pathway is the major pathway for the quality
control of damaged mitochondria [32,33], in which the degradation of
PINK1 protects mitochondria from the toxic effects [34]. The
mitochondrial damage still occurs during Bcl-rambo induced

apoptosis, so it is still uncertain whether Bcl-rambo can play a role in
inducing mitophagy to avoid inadvertent activation of apoptosis [2]. At
least it could act as a sensor of the physiological changes within the
mitochondria theoretically.

As mentioned above, mouse Bcl2-L-13 could induce mitophagy,
which is a homolog of yeast Atg32, and also the homolog of human
Bcl-rambo. The significant difference between human Bcl-rambo and
mouse Bcl2-L-13 is that the latter has a truncated BHNo domain but
does not have the Repeat B domain. Heterologous expression of mouse
Bcl2-L-13 in HEK293A cells and Hela cells promotes mitophagy rather
than apoptosis [35]. This activity is independent of Parkin, which
induces mitophagy through an ubiquitination based pathway [36,37].
Mouse Bcl2-L-13 binds to LC3 via the LC3 interacting region (LIR),
the WXXI motif, inducing mitochondrial fragmentation and
mitophagy (Figure 4).

Figure 4: Schematic of mouse Bcl2-L-13-mediated mitophagy.
Mouse Bcl2-L-13 contains LIR motif, it interacts with LC3 with the
help of CTRP9 to initiate mitophagy. The phosphorylation level of
mouse Bcl2-L-13 is positively correlated with LC3 binding,
however, the mechanism of which remains to be further studied.

The adipocytokine CTRP9 plays as adaptor protein during the
interaction of LC3 and mouse Bcl2-L-13. After mitochondrial
fragmentation mediated by the BH domains [38,39], mouse Bcl2-L-13
may require a latent kinase to further activate and attach to LC3.
Because human Bcl-rambo has all the domains of mouse Bcl-2-L13
(Figure 1), it will not surprise that human Bcl-rambo also has the
function of inducing mitophagy under some situations.

Conclusion
In general, Bcl-rambo can categorize into pro-apoptotic group of

the Bcl-2 family, and the BHNo domain confers it a profound change
in mode of action compare to canonical fashion. However, sometimes
it exhibits anti-apoptotic activity in cancer cells. This paradox may be
due to the fact that Bcl-rambo plays a different role in different cell
growth states, or some different splicing variants of Bcl-rambo may
exert opposite functions. The physiological role of Bcl-rambo is a
fascinated field, but the mechanisms have not yet been elucidated.
Studies carried out on the Drosophila, human IVF embryos, yeast, and
mice have deepened our understanding of the function of Bcl-rambo.
The fact that mouse Bcl2-L-13 has a different domain structure might
count for its mitophagy inducing function. Although Bcl-rambo
behaves differently from other Bcl-2 family proteins, the most similar
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protein might be BNip3 [40,41], which also has pro-apoptotic and
mitophagy inducing functions. Further studies on Bcl-rambo might
get some clues by examining the functions of BNip3.
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