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Abstract

Ovarian hormones regulate a wide variety of non-reproductive functions in the central nervous system by interacting 
with several molecular and cellular processes. Estrogens are steroid hormones that are synthesized in the gonads 
[peripherally-synthesized or “neuroactive steroids”] as well as in various tissues throughout the body, including the 
brain [brain-synthetized or “neurosteroids”]. 17β-Estradiol [E2] is the most potent and predominant form of estrogen. 
E2 has a number of effects on cognition and brain function. The effects on memory depend on hormone levels and on 
binding to different estrogen receptors within neural circuits. 

The purpose of this review is to highlight the complex relationship between E2 and cognitive functioning, analyzing 
the difference of effects described by observational studies compared to randomized controlled large-scale clinical 
trials. We review how E2 signaling affects memory processes: it starts from neurons and reaches superior learning and 
memory function through the effect on synapses and on the neuronal network. 
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Introduction
Memory is a complex process involving different brain structures, 

hippocampus, amygdala and the adjacent para hippocampal gyrus 
usually defined as medial temporal lobe structure [MTL]. 

The processes of memory formation are quite complex and can 
be subdivided into memory encoding, consolidation, storage and 
retrieval. These processes are sequential, and fully inter-connected. 
The perception of sensory inputs triggers the encoding process. MTL 
structures are responsible for the transformation sensations into a 
memory representation which is first stored and consolidated in the 
MTL then allocated to other areas of the cortex committed for long-
term storage. Attention such as association with positive and negative 
emotions may affect episodic memory performance: emotional 
response to an event is usually remembered more easily than neutral 
information and a negative context seems to narrow attention to 
central information at the expense of more peripheral details. 

Encoding memory undergoes consolidation, a process by which a 
fragile short-term memory is transferred into stable long-term memory 
through neocortical areas. Emotionally arisen experiences are better 
remembered than other information.

After the process of consolidation, memories are represented by 
networks of neurons distributed across the neocortex, bound together 
for rapid storage and later retrieval by MTL structures. 

Morphological and functional sex dimorphism in brain is present 
also in brain regions that are not directly associated with reproductive 
success but are important for learning, memory, mood like the 
hippocampus, the amygdala, the striatum and the neocortex, both 
in animals and in humans [for a review see Gillies and McArthur, 
2010, [1]. All these brain regions display a sex-specific organization in 
neural network and on a cellular level, for example, in the number and 
branching of the dendrites of hippocampal CA1 and CA3 pyramidal 
cells, as well as in the number of glial cells present in these two 
hippocampal regions [1]. 

In addition, evidences in human and experimental animals have also 
documented that the sex differences in specific cognitive and behavioral 
tasks depend on the type of the task: males generally outperform 
females in visuo-spatial, and quantitative tasks and in targeted motor 
skills; females excel in perceptual tasks, and in verbal and fine motor 

skills [2]. Adult brain dimorphism arises from the organizational effect 
that sex steroid hormones exert during critical developmental windows 
by spanning from gestation to puberty in humans, followed by a correct 
hormonal activation at puberty/adulthood. 

There are three potential sources for the estrogens that act within 
the brain: circulating estrogens produced outside the Central Nervous 
System [CNS]; estrogens produced through the conversion of the 
androgen precursor locally circulating; local estrogen synthetized 
directly from cholesterol sources It should be noted that to initiate 
rapid molecular and cellular responses a nanomolar concentration of 
E2 is required and it is not a concentration reached by the peripherally 
circulating hormone. At the current state of art experimental evidences 
do not allow us to identify with certainty the source of estrogens that 
underlies modulation of cognition.

Estrogen Effect on Cognitive Outcomes
The majority of women experience some symptoms of menopause 

of varying severity, such as hot flushes, vaginal symptoms, night sweats 
and insomnia. For ameliorating menopausal symptoms Hormone 
Therapy [HT] is the most effective options. The early observational 
studies reported supplementary health gains with HT, such as decreased 
risk of cardiovascular disease and hip fracture [3]. Sex hormones 
influence cognition [4-6] and numerous clinical research studies have 
examined memory and cognitive function in women whose levels 
of E2 have been altered either through ovariectomy or menopause. 
In general, the results of these studies show a decrease of cognitive 
function [increased memory deterioration and dementia] in women 
following the surgical removal of their ovaries or menopause. The level 
of estrogens and in particular, E2 exerts a definite beneficial influence 
on learning and memory process [7,8] and on cognitive decline during 
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physiological aging and in neurodegenerative diseases. Cognitive 
impairment occurs when E2 concentrations are above or below an 
optimal level [9]. This inverted U-shaped dose-response of the estrogen 
effect on cognition may reflect the optimal level of estrogen receptors 
activation (Figure 1) [10]. 

It has interestingly been suggested that endogenous sex hormone 
fluctuations associated with the menstrual cycle can also have 
cognitive effects [11,12]. The menstrual cycle is characterized by 
changes in ovarian sex hormones, including neuroactive steroids E2 
and progesterone. During the midluteal phase of the menstrual cycle, 
characterized by high levels of E2 and progesterone relative to the early 
follicular phase, memory in multiple mnemonic domains is enhanced 
and superior performance has been shown on tasks of conceptual 
implicit memory [13], visual memory [14], and verbal memory [15]. 
Conversely, when ovarian sex hormones are decreased during the early 
follicular phase better spatial memory performance has been described 
[16,17].

The HT effect on cognition gives inconsistency in findings. 
Actually, observational studies in midlife and aging women suggested 
that HT might also benefit cognitive function, but randomized clinical 
trials have produced mixed findings in terms of cognitive outcomes.

Observational studies describing the effects of HT on cognition 
suggest that individuals undergoing estrogenic treatment performed 
significantly better on tests of verbal memory [18], working memory 
[19-21], and visual memory [22] in comparison to non-HT users. 
Furthermore, observational studies suggested that HT offered a 50% 
reduction in Alzheimer’s disease [AD] and protection against risk of 
dementia [23-25].

The neuroprotective effect of estrogen replacement therapy [ERT] 
was questioned some years ago by the results of the two randomized 
controlled large-scale clinical trials: the Women’s Health Initiative 
[WHI] and the Women’s Health Initiative Memory Study [WHIMS] 
[26-28]. Contrary to expectation, WHI and WHIMS showed increased 
dementia risk and poorer cognitive outcomes in older postmenopausal 
women randomized to HT versus placebo with prolonged 
administration of estrogens, leading to trial withdrawal. 

Subsequent studies have demonstrated that HT has a positive effect 
on cognitive performance, only if the therapy is initiated immediately 
after the ovarian hormone loss [29] and therefore it is strictly linked to 
women’s physiological status at the time of the initiation of treatment. 
Therefore, a window of opportunity may exist shortly after menopause 

during which estrogen treatments are most effective as suggested by 
the “critical window hypothesis” [30]. This observation is confirmed by 
the results of more recent studies that show that increase in cognitive 
performances of HT are minimal in women older than 65 [31,32]. 

In rodents, the ability of E2 to improve performance on spatial 
memory learning tasks is highly dependent on the age of animal in 
ovariectomized rodents, the estrogen dose, and the time window 
between the estrogen decline and the initiation of E2 treatment [33,34]. 
Studies in rodents have demonstrated the ability of estrogens to 
improve the cognitive performance of several types of hippocampal-
dependent memories, including spatial memory [35,36], novel object 
recognition, social recognition, inhibitory avoidance memory [37,38]. 
This effect depends on many factors: sex and age of animals, treatment 
and duration dose, the length of hormone withdrawal before treatment, 
the type of memory tested, the time window between treatment and 
testing [39]. 

These findings apparently mirror HT clinical observation in 
women and strongly suggest that the underlying mechanisms that 
account for the effectiveness of HT to improve memory performances 
in women are likely to be multifactorial. Therefore, the inconsistency of 
findings about the HT effect on cognition could be explain by possible 
variables known to influence cognitive abilities such as age, education 
and socio economic status, and by factors linked to HT therapy like 
types, doses and duration of hormones administered [including cyclic 
versus continuous administration], route of treatment delivery, and 
the time of the initiation of treatment compare to proximity relative 
to menopause. 

Recently, it has been published the randomized large scale trial 
Women’s Health Initiative Memory Study-Younger [WHIMS-Y] 
[40], an ancillary study to the [WHI], to test whether an average of 
5.4 years of HT during early menopause has longer term protective 
effects on global cognitive function and if these effects vary by regimen, 
time between menopause and study initiation, and prior use of HT. 
Furthermore, the KEEPS Cognitive and Study Affective [KEEPS-Cog] 
[41] demonstrate that HT did not improve cognition when initiated 
in healthy recently postmenopausal women compared to placebo. For 
mood outcomes, HT up to 4 years was associated with statistically 
significant improvements in symptoms of anxiety and depression, 
mood symptoms commonly seen in recently postmenopausal women. 
It is notable that in both these randomized large scale studies the 
hormone therapy does not alter cognition. In other words, these results 
did not indicate adverse or beneficial cognitive effects associated with 
HT. 

In addition, it is emerging evidence that potential adverse effects 
of HT on cognition are most pronounced in women who have other 
health risks, such as lower global cognition or diabetes [30]. In 
agreement with this hypothesis, in observational studies, women who 
opted to use HT were inclined to be healthier overall.

It is now apparent that in women’s therapy with transdermal 
estrogen coupled with micronized progesterone at the time of 
menopause is associated with cognitive and affective benefits [32,35]. 

Interestingly, the nasal route is an effective and well-established 
route for E2 delivery [42]. 300 µg intranasal E2 produces a pulsed 
profile of plasma E2, with systemic plasma levels rising, reaching the 
peak concentration in about 30 minutes and returning to baseline 
level within 12 hrs. Nasal administration of E2 induces a significant 
vasodilatatory effects on cerebrovascular and ocular circulation [43]. It 
is supposed that E2 may reach the brain via trans-ethmoidal absorption 

Figure 1: Relationship between 17β-estradiol (E2) level and 
memory performance is described by an inverted U function. 
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through areas not protected by the Blood Brain Barrier [BBB], reaching 
the olfactory lobe and the base of the brain [43]. 

Genomic and Non-Genomic Estrogen Action in the 
Brain

Classically, a steroid function has been described to occur via the 
regulation of a gene transcription, a process that typically takes hours 
to days to manifest a so called “genomic response”. Critically, it is now 
emerging that steroids can also elicit cellular actions that occur as fast 
as seconds to minutes. The rapid actions of steroids has been described 
as “non-genomic” [Figure 2]. 

The slow genomic response involves the two classic nuclear 
estrogen receptors [ERalpha and ERbeta], while rapid onset response 
involves cytoplasmic estrogen receptors [mERalpha and mERbeta].
Typically, mERs activation is involved in synaptic plasticity, required 
for memory coding and retrieval, while nuclear ERs are associated with 
neuroprotection and long-term maintenance of cognitive functions 
[39]. 

ERalpha and ERbeta activation can bind to classical estrogen 
responsive elements [ERE] on DNA, or interact with other DNA-
bound transcription factors, as CREB or FOS/Jun regulating gene 
transcription. 

Microarray DNA studies describe different batteries of genes up 
and down regulated upon single or chronic estrogen administration in 
young or middle-aged rats [38,44,45]. Among proteins, the expression 
of which is modulated by estrogens there are proteins involved in 
neurotrophism and neuroprotection [e.g., BDNF-, IGF2 and its binding 
protein], in neuronal plasticity [Enpp2], in protein folding activation 
[Hsp70], in cytoskeletal modifications and protein trafficking [actin, 
beta-tubulin]. Estrogens also modulate the expression of some enzymes 
involved in DNA methylation and histone remodeling [see chapter 5 
on epigenetic effect]. 

Rapid non-genomic response is mediated through mERalpha 
and mERbeta, including GPER1 G-protein coupled receptor and the 
interaction of mERalpha and mERbeta with metabotropic receptors. 
Investigations using receptor specific agonists suggest that all of the 
three receptors rapidly activate signaling cascades involving Ca2+, 
adenylcyclase, phospholipase C, and specific kinase-signaling [IP3K, 
Src, PKA, PKC, ERK, AKT etc.,] which in turn can rapidly influence 
neurons activity or the phosphorylation state of transcription factors 
such as CREB or ERalpha [46-49]. Kinase activity within a few minutes’ 
rises and declines and activation curve exhibits an inverted U function, 
with inhibition at low and higher doses [50].

To add a further level of complexity to this mechanism of action, 
studies on neuronal cells have demonstrated that kinase activation 
phosphorilates nuclear ERs, enhancing their transcriptional activity 
[51]. What is emerging in the overall mechanism of action of 
estrogens is a cross-talk between the rapid non-genomic signaling 
and the activation of transcriptional/translational machinery, and this 
cooperation promote long-term changes in synaptic plasticity. During 
aging, loss of ERs, disruption of the hormone cycle, or uncoupling of 
the hormone/receptor system could contribute to a decline in these 
pathways.

The relative levels of nuclear ERalpha and ERbeta, mERs and 
GPER1 varies across brain regions [52,53]. Estrogen receptors are 
present in all the areas involved in the processing of learning and 
memory: amygdala, cerebral cortex and hippocampal formation. The 
maintenance of hippocampal functions depends on a balance between 
estrogen levels and relative expression of the two ER subtypes within the 
structure. In addition ERalpha is basic for the maintenance of cognitive 
processes while ERbeta seems to play a minor role: when estrogen levels 
decline with aging, the ippocampal expression of ERalpha relative to 
ERbeta is reduced, by decreasing the ability of estrogens to preserve 
cognition. ERbeta could compensate ERalpha decline but only if the 
estrogen levels increase [54].

In agreement with this hypothesis, it has been demonstrated 
that albeit a common decrease of hippocampal ER expression with 
aging, the decline of ERalpha is more pronounced, causing a shift in 
the relative expression and a parallel reduction of estrogen-driven 
neuroprotection, synaptogenesis and synaptic plasticity [55,56].

Estrogen Effect on Long-Term Potentiation

Very rapid and presumably non-genomic effects are triggered 
by estrogen. Brief infusions of E2 in rat hippocampal slices result in 
an almost immediate enhancement of fast excitatory postsynaptic 
potentials [EPSPs] in CA1 neurons [57]. E2 increases synaptic 
excitability in part by enhancing the magnitude of α-amino-3-hydroxy-
5-methyl-4-isoxazoleproprianate [AMPA] receptor-mediated 
responses probably through a postsynaptic effect. This facilitation 
reverses quickly upon washout. 

A second acute physiological action related to memory encoding is 
the generation of long-term potentiation [LTP] or depression [LTD]. 
This involves both a reduced threshold for inducing LTP and the 
enhancement of both AMPA and NMDA-mediated responses [57]. 

In area CA1 of hippocampus, LTP requires NMDA receptor 
activation for its induction, and an increase in AMPA receptor function 
for its expression and maintenance. The ability of estrogens to modulate 
the activity of the two ionotropic glutamate receptors demonstrates the 
important role of these hormones on LTP. Manipulations that promote 
LTP are reported to improve memory in animal models [for a review 

Figure 2: The “Two-steps wiring plasticity” hypothesis (see Srivastava et 
al. 2013). Treatment with E2 primes the formation of novel spines within 
30 minutes. These “silent” synapses containing only NMDA receptors can 
undergo two different destinies. In the presence of high frequency stimulation 
the novel connections will be stabilized causing a long-lasting increase in 
synaptic strength and in network remodelling. In the absence of a second 
stimulus the new spines will be eliminated and the network returns to control 
level. 
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see Lynch et al. 2008, 58]. The ability of estrogens to enhance memory 
consolidation occurs also via the physical interaction of mERS with 
metabotropic glutamate receptor [mGluR1] and the activation of a 
common signal transduction pathway [59]. 

In vitro and in vivo studies demonstrate that estrogens rapidly 
influence LTD, a necessary step for a complete memory processing, 
both in males [60] and females [61]. The use of selective ER agonists 
reveals that, as opposed to LTP, mERalpha, but not mERbeta, 
participate to LTD [60]. 

Estrogen and Synaptic Remodeling
The expression of a large number of postsynaptic proteins is 

regulated by steroids, whereas presynaptic proteins appear to be less 
sensitive to steroid regulation. The change in the profile of post-synaptic 
proteins affected by estrogens involves PSD-95, a scaffolding protein 
involved in the organization of glutamate receptors, and spinophilin, a 
dendritic actin-binding protein present primarily in excitatory neurons 
[62]. The effect might be due to a redistribution from cytosolic regions 
to nascent dendritic spines. 

One of the main post-synaptic morphological changes induced by 
estrogens is the fast formation of dendritic spines. Dendritic spines 
exhibit both transient and enduring morphological modifications. 
Novel dendritic spines are highly dynamic structures that can be either 
stabilized or eliminated. A single estrogen administration [63] rapidly 
increases the number of thin, philopodia-like spines, able to make 
synaptic connections, and the spine density returns to pretreatment 
levels within an hour unless further stimulated [64]. 

Cellular and molecular studies indicate that E2 can rapidly “prime” 
neurons to respond with greater efficacy to subsequent synaptic 
stimulation [50]. This “two-steps wiring plasticity” begins with the 
transient formation of new dendritic spines and generates new 
connections with silent synapses containing NMDA but not AMPA 
receptors. The addition of a subsequent activity-dependent stimulus 
shortly after, is followed by the appearance of AMPAR in both new and 
pre-existing synapses. The combined treatment of E2 and an activity-
dependent stimulus result in a long-term increase in connectivity in 
neurons that lasts for at least 24 hrs. Without this second stimulus, the 
new synapses are eliminated and the neurons return to a “resting state” 
[50]. This “two-step wiring plasticity” [Figure 2] mechanism might be 
responsible for the enhanced cognitive performance in rapid learning 
paradigms observed in female rats treated with low estrogen doses 
[65,66]. 

For the consolidation of the altered synaptic configuration and the 
AMPAR transfer to the synaptic membrane [leading to a stable LTP] a 
re-organization of sub-synaptic actin cytoskeleton is required. 

Estrogen activates synaptic TrkB receptors for Brain Derived 
Neurotrophic Factor [BDNF], and synaptic integrins, modulate actin 
assembly and stabilization [67,68]. 

Role of Estrogen in the Epigenetic Mechanism of 
Memory

Studies exploring the role of epigenetics mechanism in learning and 
memory [69,70] have focused primarily on the hippocampus. However, 
recent data support the importance of epigenetic modifications for 
memory processes in other brain regions including the amygdala and 
the prefrontal cortex [71,72]. Epigenetic modifications of chromatin 
consist in post-translational modifications of nuclear proteins and in 
covalent modification of DNA. Epigenetic modifications of chromatin 

result in potent regulation of gene readout. Two basic molecular 
epigenetic mechanisms currently studied are post-translational histone 
modifications and DNA methylation.

Histone acetylation is involved in ERE-sequences mediated 
gene transcription, since ER needs to recruit as coactivators, histone 
acetyltransferases [HATs or interact with HATs], or as corepressors 
histone deacetylase [HDAC] activity [73,74]. 

Furthermore, estrogens may exert epigenetic effects through 
membrane receptors. In this case, mER activates cell signaling pathways 
and in particular, the mitogen-activated protein kinase [MAPK] and 
the extracellular signal-regulated kinase 1/2 [ERK1/2]] that, among 
the various neuronal responses, initiate also processes like histone 
acetylation [75,76]. 

DNA metylation seems also to be involved in some of the mnemonic 
effects of estrogens. Infused E2 significantly increases both the mRNA 
level of DNA [cytosine-5-]-methyltransferase 3a [DNMT3A] and DNA 
[cytosine-5-]-methyltransferase 3b [DNMT3B] at dorsal hippocampus 
[77]. These findings suggest that DNA methylation is necessary in the 
E2 induced memory enhancement and that E2 enhances memory, at 
least in part, by DNA methylation.

In conclusion, histone H3 acetylation and DNA methylation play 
a pivotal role in regulating the beneficial effects of E2 on memory. A 
possible interplay between histone acetylation and DNA methylation 
in the modulation of memory has also been suggested [78].

Epigenetic treatments [e.g., HDAC inhibitors] might provide 
menopausal women with the cognitive benefits of HRT without the 
harmful side effects [e.g., cancer, heart disease, and stroke] common 
to such therapy. However, even if histone deacetylase inhibitors are 
generally well tolerated [79] the lack of specificity of the compound 
currently available might make their use rather problematic in post-
menopause.

Conclusions
This review provides an overview of the current literature 

concerning the effect of E2 on cognitive function. We review the 
relationship between hormone therapy and cognitive functioning, 
highlighting the difference of effects described by observational 
studies compared to randomized controlled large-scale clinical trials. 
The effectiveness of HT to improve memory performances in women 
is likely to be multifactorial. The “critical window hypothesis” [for a 
review see Maki 2013, [80] posits that early treatment in younger 
postmenopausal women, closer to the menopausal transition, might be 
more beneficial to cognition. In addition, the potential adverse effects 
of HT on cognition are most pronounced in not-healthy women with 
lower global cognition or diabetes.

In summary, investigations of HT in menopausal women have 
produced many inconsistent findings. The lack of cognitive benefit 
described in WHIMS-Y and KEEP-Cog trials and the absence of short- 
and long-term harm to cognitive function should reassure healthy 
women who choose to use HT for treatment of menopausal symptoms.

The mechanisms of learning and memory encoding, consolidation, 
storage and retrieval are not completely clarified. Neuronal activity 
changes in a dynamic way to handle different types of information in 
the network and creating new memories. In this first step of memory 
encoding the mechanisms involved in formation and modulation of 
synaptic connectivity are crucial. Change in synaptic strength and LTP 
are the main processes involved. The formation de novo of synapse 
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or the remodeling of pre-existing dendritic spines is the sequential 
event aimed at stabilizing new memories for storage and retrieval. 
The transduction of synaptic event into intracellular signaling leads to 
the induction of gene expression and protein synthesis critical for a 
stable memory formation. The most potent and predominant form of 
estrogen, E2 might modulate the series of events leading to memory 
formation and storage, through slow genomic and fast non-genomic 
effects. Non genomic, rapid, transient effects are extremely active in 
modulating memory mechanisms. E2 appears to enhance memory 
through epigenetic modifications, DNA methylation and histone 
acetylation, processes that are both critical for the basic memory 
formation. 

A cartoon summarizes the main mechanism linking E2 with 
memory [Figure 3].
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Figure 3: A cartoon summarizes the main mechanism linking E2 with 
memory.
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