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Introduction
Monitoring gene expression can aid in cancer classification [1] and 

in identifying clinically-relevant tumor subgroups [2]. Additionally, 
profiling of gene expression is one key approach for finding new 
biomarkers and therapeutic targets for different cancer types [3]. 
Several data portals such as the Gene Expression Omnibus (GEO) [4] 
and The Cancer Genome Atlas (TCGA) now provide convenient access 
to thousands of normalized expression datasets for most cancer types. 
However, automatic processing of these data is complicated due to the 
occasional appearance of outlier samples or outlier genes in such large 
datasets.

In simple words, an outlier is an observation that deviates “too 
much” from other observations. Detecting outliers might be important 
either because the outlier observations are of interest themselves or 
because they might contaminate the downstream statistical analysis. In 
the field of gene expression, an outlier can be an abnormal sample that 
deviates significantly from the other samples in its class. One common 
reason for this is mislabeling, where accidently a sample of one class 
might be falsely assigned to another one. Mislabeled samples might 
then reduce the distinction between true dataset classes. On the other 
hand, an outlier might also be a gene with abnormal expression values 
in one or more samples from the same class. In the case of cancer, this 
may reflect that this patient or his/her disease is a special case. Hence, it 
is important to identify outliers in expression datasets and, depending 
on the type of analysis to be performed, to consider whether this data 
should be removed [5].

Recently, several methods have been proposed for outlier detection 
in microarray data that used, for example, principle component analysis 
and estimation of Mahlanobis distances [5], a hybrid evolutionary 

algorithm [6], cross validation of an SVM classifier [7], a Gene Tissue 
Index [8], or the OASIS methods [9]. Some studies predicted outliers 
for the sake of filtering while others predicted them for further analysis. 
To the best of our knowledge, no approach so far detects sample as well 
as gene outliers with a set of suitable filters to validate the detection. 

In this work, we propose and test a simple approach that combines 
multiple established methods to detect outlier samples or genes in 
expression and methylation datasets. Average hierarchical clustering 
is used to detect outlier samples and the clustering is later validated 
using the Silhouette coefficient. To detect outlier genes we use the three 
algorithms GESD [10], Boxplot, and MAD [11]. As there is no fixed 
threshold for outlier observations required to label a gene as an outlier, 
and it is dataset size-dependent, we introduce in this work the usage of 
co-expression feature to address this issue. 

We note that, some outlier genes might carry useful information 
behind the outlier observations. For this, we introduce functional 
similarity of abnormal genes as an additional filter for outlier genes. 
Semantic similarity is analyzed using tool GOSemSim [12]. If genes 
show outlier expression and share high functional similarity with other 
detected outliers, they are kept for further analysis.

Materials and Methods
In this work we introduce a hybrid technique based on established 
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algorithms to detect outlier samples and genes in expression datasets. 
Samples are denoted as outliers if they deviate more than a certain 
threshold in Euclidean distance from other samples in the same class 
(tumor/normal). The threshold is not fixed but dataset-dependent. To 
find outlier samples, we used average hierarchical clustering based on 
Euclidean distance (AHC-ED). Subsequently, we use the Silhouette 
measurement to validate the quality of the clustering. On the other 
hand, genes are labeled as outliers if their reported expression values 
contain outlier observations that pass a suggested threshold and if they 
share no significant functional similarity with other detected outlier 
genes. If the expression of one gene follows a normal distribution, we 
use the Generalized Extreme Studentized Deviate algorithm (GESD) 
[10]. If the gene expression data does not follow a normal distribution, 
then we apply the two distribution-free algorithms Boxplot and Median 
Absolute Deviations about the median (MAD) [11]. We additionally 
test functional similarity within outlier genes using GOSemSim [12]. If 
such gene pairs are found, we check whether their outlier observations 
are detected in common samples. Functionally dissimilar outlier genes 
are later marked for removal. The pipeline is illustrated in Figure 1.

Datasets

To test the hybrid approach just introduced, we generated four 
simulated expression datasets with known outliers at the gene and 
sample levels. Additionally, we tested the workflow on a public colon 
cancer dataset with known outliers published by [13]. Subsequently, 
we applied our approach to predict outliers in public datasets of colon 

cancer, glioblastoma multiforme (GBM), ovarian cancer (OV), and 
liver cancer obtained from The Cancer Genome Atlas (TCGA) and the 
Gene omnibus (GEO) databases.

Data with known outliers

Initially, we generated four simulated datasets with known outlier 
samples or genes in a scenario that resembles a typical cancer dataset. 
Each dataset contains two clearly distinguishable classes of samples. Thus 
outlier samples either do not match the majority of samples in either of 
the two classes or are simply mislabeled. On a different manner, a gene 
is considered an outlier if it presents a clear uneven simulated behavior 
within either class. In the literature, the overall shape of the distribution 
of gene expression levels is typically not explicitly mentioned. Several 
studies apply tests for normality to check whether the data follows a 
Gaussian distribution [14-16]. We speculated that in rare cases, the 
distribution of gene expression might also follow a Poisson distribution. 
Thus, we created two simulated datasets that obey either a Gaussian 
distribution or a Poisson distribution. 

The simulated datasets contained 100 samples distributed equally 
to two classes and 1000 genes each. The first 50 samples belonged to 
class 1 (C1) and the other 50 to class 2 (C2). The form of the first two 
datasets (SDS1/2) is the same and they were both used for identification 
of sample outliers. At first, the first 900 rows are drawn from the same 
distribution for both classes but the remaining 100 were drawn from 
different distributions. In SDS1, 900 rows were drawn from the normal 

Figure 1: Detection approach.

Entity relationship model for the outlier detection approach.
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distribution N(0,2²) (see equation 1  by setting μ=0 and σ=2) but the 
remaining 100 were drawn either from N(10,1²) or N(20,1²) for samples 
of classes C1 and C2, respectively. In SDS2, the first 900 rows were 
drawn from the same distribution like in SDS1 but the remaining 100 
were drawn from distributions N(10,2²) and N(15,1²) for samples of 
classes C1 and C2, respectively. SDS2 represents clearly overlapping 
classes. Later, samples 10, 15, and 20 from class 1 were switched with 

samples 60, 65, and 70 from class 2 as a set of mislabeled samples in 
both datasets. Additionally, the last sample from each class was replaced 
by one drawn either from N(25,1²) or N(30,1²) in classes 1 and 2, 
respectively, to create clear outlier samples (Figure 2).
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21( , ) = exp
2 2
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                                   (1)

The third and fourth datasets (SDS3, SDS4) were used for 

Figure 2: Simulation datasets.

Datasets of simulated gene expression. Different gray levels represent different classes. Outlier cases are in black. SDS1/2 (left) has two known outliers and 3 known 
switched samples. SDS3/4 (right) contain 50 outliers each. SDS1-3 follow Gaussian distributions while SDS4 follows a Poisson distribution.
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identification of outlier genes. Each had 50 known outlier genes with 
outlier values at the same positions in classes C1 and C2. In SDS3, 
the 950 non-outlier genes were filled from Gaussian distributions 
N(0,2²) and N(15,3²) for classes C1 and C2, respectively. Regarding the 
outlier genes, 45 points followed the class rules and the other five were 
drawn from N(12,1²) and N(2,1²) for classes 1 and 2, respectively. To 
overcome the randomness in the created distributions, we generated 
100 arrays in the form of SDS3 and passed them later to the outlier 
detection algorithms. All normal distributions for non-outlier points 
were controlled by Shapiro tests with p-value threshold of 0.1.

The 950 non-outlier genes in SDS4 were filled from a Poisson 
distribution with λ equal to 2 or 3 for classes 1 and 2, respectively. 
To simulate outliers in the remaining 50 genes, we filled 45 out of 50 
points in each gene with values from the class distribution like before 
but the remaining five points were filled from Poisson distributions 
with λ equal to 3 or 0.5 for classes 1 and 2, respectively. Here, we used 
minimum chi-square estimation [17] to fit the generated distributions 
and accepted those with an upper p-value threshold of 0.0001.

As a further test on an experimental dataset, we considered an 
extensively studied experimental dataset with documented outlier 
samples in colon cancer [13]. This dataset has 22 normal and 40 tumor 
samples. Several classification algorithms were previously applied to 
this dataset and suggested many outliers and misclassified samples 
between tumor and normal [5,7]. For example, Alon et al. [13] used 
a two-way clustering algorithm and found eight misclassified samples. 
Furey et al. [18] and Moler et al. [19] used linear SVM classifiers and 
found six misclassified samples. Also, Li et al. [20] found 6 misclassified 
samples using a genetic algorithm. Albert Shieh et al. [5] found the nine 
outlier samples using PCA. Overall, nine samples can be considered as 
confirmed outliers (T2, T30, T33, T36, T37, N8, N12, N34, N36) and 
were used here to test our outlier detection approach.

Application to public datasets

After validating the workflow shown in Figure 1 on the test 
datasets with known outliers, we applied this hybrid technique to detect 
unknown outliers in public cancer datasets downloaded from TCGA 
for colon, GBM, and OV cancers and from GEO for liver cancer (Table 
1). In GEO, a sample description is included in the main dataset page. 
This is not the case with TCGA. In TCGA datasets, normal and tumor 
samples can be distinguished by their barcodes. The barcode has several 
parts separated by hyphens. The third part - with two digits number 
and a character - describes the sample. Numbers from 0-9 label cancer 
samples while numbers from 11-19 label normal samples.

Detection algorithms

To detect outlier samples, we cluster samples using the average 
hierarchical clustering based on Euclidean distance. Subsequently, 
we use the Silhouette measurement as a measure of the quality of 
clustering. Based on the clustering vector and the set of distances, the 
algorithm calculates the average dissimilarity of a point to its current 
class a(i) and the lowest dissimilarity of the point to other classes b(i). 
The combination of dissimilarity according to equation 2 measures how 
well elements fit into their clusters. S(i) ranges between (-1,1) where 1 
indicates a better fit to the current cluster and -1 means that the point 
actually belongs to the other class or a so called neighboring cluster.

( ) ( ) ( )
( ) ( )( )
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The Silhouette coefficient for the objects of one cluster is defined as 
the arithmetic mean of the Silhouette values of all objects.

To detect outliers at the gene level, we use the 3 algorithms GESD, 
Boxplot, and MAD. GESD was developed to detect one or more 
outliers in a dataset assuming that the body of its data points comes 
from a normal distribution [10]. Precisely, this algorithm calculates the 
deviation from the mean for every point,

µ−
= i i

i

Max x
R

SD
                 (3)

and then removes the point with the maximum deviation at each 
iteration. This process is repeated until all outliers that fulfill the 
condition Ri>λi are identified where λ is the critical value calculated for 
all points using the percentage points of the t distribution.
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GESD and its predecessor ESD will always mark at least one data 
point as outlier [10] even when there are in fact no outliers present. 
Therefore, using GESD to detect outliers in microarray data must be 
accompanied with a threshold of outlier allowance where a certain 
amount of outliers are detected before marking a gene as an outlier. The 
GESD method is said to perform best for datasets with more than 25 
points [10]. Additionally, the algorithm requires the suspected amount 
of outliers as an input. The default in this work is half of the tested size.

Besides GESD, we additionally use the well-known Boxplot method. 
This is also a non-parametric algorithm but can detect outliers without 
pre-assumption about the underlying statistical distribution. Boxplot 
calculates five key points for plotting; two extremes (whiskers), upper 
and lower hinges (quartiles), and the median. Data points outside the 
hinges are labeled as possible outliers. As the quartiles and whiskers 

Dataset Raw data type Normal 
samples

Tumor samples Download data # Genes # Genes obeying normal 
distribution

 COAD Expression Agilent 7 143 08.Feb.2013 11687 5971
GBM expression Agilent 10 594 04.Apr.2013 17430 2820
OV expression Agilent 7 591 07.Apr.2013 17436 4112

Liver expression 
(GSE14520)

Affymetrix 239 247 01.July.2013 12701 N:1144
T:1791

COAD Methylation Illumina Infinium 
HumanMethylation27

0 129 28.Apr.2013 11633 1082

GBM Methylation Illumina Infinium 
HumanMethylation27

0 294 28.Apr.2013 10256 98

OV Methylation Illumina Infinium 
HumanMethylation27

8 597 28.Apr.2013 7876 14

Table 1: Datasets.
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are not distribution-driven (related), Boxplot normally suggests many 
points as outliers and thus datasets might extremely shrink [21]. 
Therefore, we use this algorithm for gene expression data sets that failed 
the normality test and we suggest an allowed margin of outliers.

The last algorithm we apply is the MAD algorithm. This algorithm 
does not rely on the variance or standard deviation and thus it assumes 
no special statistical distribution of the data similar to Boxplot. Here, 
first the raw median for each gene is calculated over all samples. Then 
the median absolute deviation (MAD) of data points from the raw 
median is calculated as 

( )( )= −i i j jMAD median X median X                 (5)

Data points with maximum MAD are labeled as possible outliers. 

Hereafter, in this manuscript, we will label as outliers those genes 
with at least two outlier values (see below). We will use the GESD 
algorithm only if the gene expression follows a normal distribution and 
expression data is available from at least 25 samples. For other genes we 
use MAD and Boxplot to detect outliers and we accept decisions if they 
match for at least 2 of the outlier observations.

The analysis in this work was completed in R-cran mainly using the 
parody package. To make it publicly available, the same workflow was 
implemented as a GUI Python tool for outlier detection. This tool offers 
special implementations of the algorithms mentioned in this work 
and some other features. AHC-ED followed by Silhouette are used to 
identify outliers at the sample level while GESD, Modified z-score [22], 
adjusted Boxplot [23] and the median rule [24] are used at the gene 
level. Once the outliers are detected, the tool offers to group outliers on 
the basis of their co-expression, functional similarity, or their KEGG 
pathway participation. The user is asked almost at every step to input 
his confidence thresholds. The tool provides dataset statistics, detection 
statistics, and outlier similarity statistics while allowing the user to 
export the findings at the different stages. Related Figures are generated 
and saved to the disk automatically where needed. The tool is available 
at GitHub via the link: https://github.com/TanerArslan/outlier-detection

Results
As a start we illustrate the effect of two outlier data points on co-

expression analysis.

Effect of two introduced outlier observations

Co-expression analysis is important for suggesting functional 
gene-gene interactions. Thus, one may wonder how many outliers are 
needed to ruin a known co-expression. To test this, we randomly picked 
one gene each from the 4 public cancer expression datasets studied in 
this work and introduced two outliers to it. Then we compared the 
correlation of expression between its raw expression and its modified 
one. The magnitude of their deviation from the mean was measured 
in multiples of the standard deviation (SD). Perturbations ranged from 
2SD to 12SD. Figure 3 illustrates the effect on genes with different 
numbers of samples

Figure 3 illustrates that introducing only 2 outlier data points with 
2 standard deviations from the mean in samples with 143 to 594 data 
points decreases the auto-correlation of the data from 1 to 0.76-0.94 
depending on the size of the dataset. Hence, already few undetected 
outliers may have a large effect on the biological interpretation of the 
data. Based on this result, and knowing that some outlier detection 
algorithms have a marginal error of one outlier, we consider in the 
following genes as outlier genes if they have at least 2 outlier values.

Detecting outliers in data with known outliers

Next, we tested the outlier detection approach illustrated in Figure 
1 using four datasets of simulated expression. SDS1/2 were generated 
to have two classes to simulate cancer and normal classes. Each class 
contained a pure outlier sample and three mislabeled samples. In 
SDS3/4, 50 outliers were distributed among the members of the two 
classes with five outlier points out of 50 in each class (Figure 4). 

Detecting known outlier samples in simulated datasets

Here, we first tested the sensitivity of the clustering algorithms 
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Figure 3: Effect of two outliers.

Effect of two introduced outlier points on co-expression analysis of a gene with itself. The x-axis illustrates the magnitude of perturbations applied as multiples of 
standard deviations (SD).

https://github.com/TanerArslan/outlier-detection
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using simulated expression data. The first 900 rows in the two classes 
were filled from the same distribution and the remaining 100 rows 
were filled from different distributions for the two classes. The outlier 
sample detection module successfully classified samples into the two 
main classes even when only 10% of these rows are different between 
classes C1 and C2. Additionally, the module detected the two pure 
outlier samples and labeled them as a third class away from the other 
two. Finally, the module successfully managed to detect the mislabeled 
samples 10, 15, 20 from the first class and 60, 65, 70 from the second 
class and mapped them to the correct classes.

Then, we tested the quality of clustering using the Silhouette 
method. We found that the two clusters are well separated with an 
average distance of 0.36 within the SDS1 clusters and 0.14 in SDS2 with 
semi-nested classes, see Figure 5.

Since this first test was very satisfactory, we then tested the stability 
boundaries of this detection method. First, we varied the proportion 
of the SDS1 dataset that is being filled from the same distributions. 
Here we performed 3 runs filling 950, 975, or 990 rows from the raw 
distribution and filling the remaining rows from the class specific 
distributions as before. Then we clustered the samples using AHC-ED 
and tested the clustering using Silhouette coefficients. In all runs, AHC-

ED successfully clustered the samples pointing to the outliers and to 
the mislabeled ones. Silhouette confirmed the clustering result but with 
a continuously decreasing average width S(i) of 0.23, 0.14, and 0.07 on 
average.

As a final test, we filled the differing parts from distributions 
that have a larger overlap: N(0,1²) as raw distribution and N(8,1²) 
and N(9,1²) for classes C1 and C2, respectively. Again we tested the 
four class proportions (900/100, 950/50, 975/25, 990/10) as in the first 
analysis. Now, Silhouette did not validate the clustering up from the 
second run, returning negative S(i) width, because of the frequent 
mislabeled samples and because of treating small differences as noise. 
Generally, the average Silhouette width was lower than in the first test.

Detecting known outlier genes in simulated datasets

For testing the outlier gene detection module, we used the three 
algorithms GESD, MAD, and Boxplot to identify simulated outliers 
in 100 generated datasets in the form of SDS3. Each outlier gene was 
modeled to have 5 known outlier values out of 50 points. We observed 
that the GESD algorithm was able to detect at least four out of five 
outlier values in 46 out of 50 outlier genes on average. In contrast, 
MAD and Boxplot on average detected four out of five outlier points in 

Figure 4: Clustering dendrogram of dataset of simulated expression.

Average Hierarchical Clustering bases on Euclidean distances (AHC-ED) clustered SDS1 into 3 main classes grouping the outlier samples (50 and 100) in a separate 
class. All switched samples –marked by asterisks- were correctly clustered into their original classes.

Figure 5: Silhouette validation of clustering in Figure 4.

Silhouette validation of the AHC-ED clustering of SDS1. The average distance of 0.36 indicates that AHC-ED succeeded in clustering SDS1.
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only 33 and 34 genes, respectively, and some outlier points of the other 
outlier genes. On average, 31 outlier genes were commonly detected by 
all algorithms as listed in Table 2. For comparison, we also tested the 
Rousseeuw method [25] to detect outliers in our simulated datasets but 
its performance was much lower less with 14/50 outliers on average. 

To test the stability of the detection module, we then performed 3 
runs filling the dataset with more intersected distributions each time. 
In each run we created 100 datasets with 50 outliers each and calculated 
the average detection of the different algorithms. We found that the 
GESD detection was more stable than Boxplot and MAD but still failed 
in the last case showing strong overlap. Table 3 lists the distributions 
used in each run and the detection results.

In the datasets following a normal distribution, all three 
algorithms detected the outliers with good accuracy unless the 
distributions overlapped to a major extent. To describe the accuracy, 
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accuracy measures. As explained in [26], 

accuracy measures in prediction and classification approaches emphasize 
the role of unexpected predictions (precision) or the role of missing 
predictions (recall). Along the same lines, F-measure is frequently 
calculated to merge the precision and recall decisions. In this sense, we 
consider the known outliers correctly predicted by the algorithms as 
“True positives (TP)” and the missed known outliers as “False negatives 
(FN)”. Hence, recall for the first runs of the disjoint distributions was 
calculated as 90%, 74%, and 72% for the GESD, Boxplot, and MAD 
results, respectively. On the other hand, the algorithms detected at most 
one additional outlier observation in non-outlier genes (which we did 
not introduce). Such cases could be considered “False positives (FP)”. 
However, no gene contains two such outlier observations which suggest 
perfect precision. The F-measure calculated for GESD, Boxplot, and 
MAD was 94%, 85%, and 83%, respectively.

However, the algorithm detected only few outliers in SDS4 
following a Poisson distribution what is rarely the case in gene 
expression datasets. In that case, GESD detected on average 46% of the 
outlier points in 16 out of 50 genes and failed to detect any outlier point 
in the rest. MAD detected 46% of the outlier points in only 3 out of the 

50 outlier genes. Boxplot detected only 23% of the outlier points in only 
6 out of the 50 outlier genes. This indicates that the algorithms are most 
robust to detect outliers in expression datasets following more or less a 
normal distribution.

We now summarize the main decisions taken when establishing 
the workflow of Figure 1 that is implemented in the provided software 
package. Even in apparently “well behaved” distributed normal 
distributions, all algorithms detected some less significant outliers (on 
average one for each gene). More of such insignificant outlier values 
can be found in real datasets (data not shown). Therefore, we suggest 
that only genes with at least two outlier observations should be labeled 
as outliers. We experienced in our analysis that GESD is powerful in 
detecting outliers in data sets following Gaussian distribution. We also 
found that Boxplot is a quite restrictive algorithm and places many 
points outside of the whiskers. Therefore we suggest to implement 
the GESD decision in data following a normal distribution (Shapiro 
test p-value >0.1) and to accept the decision of Boxplot and MAD 
for other genes only if they match the positions of at least two outlier 
observations.

Detect outlier samples in public datasets with known outliers

Next, we tested the outlier sample detection module using a public 
dataset for colon cancer with known outlier samples in normal and 
tumor classes [13]. Normal and tumor classes were treated separately. 
Average hierarchical clustering found 8 out of the 9 reported outlier 
samples and placed them on the far left in the dendrograms, see 
Supplemental Figure 1.

Detect outliers in public data sources

Then, we applied the established workflow to detect outliers in 
datasets from the public sources TCGA and GEO. At the gene level we 
checked the normality using Shapiro test as a precondition.

Genes with outlier behavior might actually carry useful 
information behind the outlier values. Therefore, as a last filter, we 
tested whether the genes with outlier behavior belong to a functional 
group by analyzing Gene Ontology (GO) annotations using the 
package GoSemSim [12]. We postulate that if two or more outlier 
genes show a certain degree of functional similarity and have outlier 
points in the same samples, then the causative outlier behavior of this 
functional group might be interesting to analyze and thus genes should 

GESD Boxplot MAD
GESD 46
Boxplot 33 34

MAD 33 31 33

Table 2: Detection results of simulated gene outliers. 

Average of commonly detected outliers by GESD, Boxplot, and MAD algorithms in 100 simulated datasets of the SDS3 form. An outlier is considered as correctly detected 
if four out of five outlier values are detected from the other 50. DS3/4 has in total 50 outlier genes out of 1000.

Approximate Intersection Class' Distributions Outlier  distribution Detection  Result
1SD C1: N(0,2²)

C2: N(5,1²)
C1: N(10,2²)
C2: N(11,1²)

GESD: 45
Boxplot: 37
MAD: 36

2SD C1: N(0,2²)
C2: N(5,1²)

C1: N(8,2²)
C2: N(10,1²)

GESD: 30
Boxplot: 18
MAD: 17

3SD C1: N(0,2²)
C2: N(5,1²)

C1: N(6,2²)
C2: N(9,1²)

GESD: 10
Boxplot: 4
MAD: 4

Table 3: Distributions of simulation datasets.
Lists of all distributions used in different runs creating matrices of simulated expression.
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not be discarded right away. Hence, we first needed to establish a cut-off 
threshold for meaningful semantic similarity. To this aim, we computed 
the semantic similarity between all pairs of the around 11000 human 
genes, see Figure 6. Based on the data shown, we suggest that 0.85 is a 
reasonable cut-off threshold for meaningful functional similarity.

Detection of outliers in TCGA datasets

In the colon dataset, AHC-ED clustered the normal samples into 
one cluster distanced away from most tumor sub-clusters without 
detecting any clear outlier or mislabeled samples, see Figure 7. The 
Silhouette coefficient validated this clustering with an overall average 
width of 0.22 (Supplemental Figure 2). As TCGA datasets so far contain 
only few normal samples for most cancer types, we analyzed only the 
tumor samples for outlier genes. The gene expression of TCGA datasets 

frequently followed a normal distribution. Among these genes, GESD 
detected only four outlier genes with at least 2 outlier values (EIF3G, 
GLUD1, GSG1L, STARD6). The results of MAD and Boxplot on these 
genes mostly supported the GESD findings. Among the non-Gaussian 
genes, Boxplot detected 1692 and MAD detected 1840 outliers. 1586 
genes had common outlier observations in at least two samples reported 
by Boxplot and MAD. Interestingly, 1163 of these outlier genes were 
also detected by GESD applied to the non-Gaussian expression. When 
searching for functionally similar outliers using GOSemSim, we found 
that 400 outlier genes show high pairwise functional similarity to other 
outliers among these 400 genes.

In the GBM dataset, AHC-ED grouped the normal samples as 
one of the outer clusters like for the colon dataset. Additionally, several 

Figure 6: Frequencies of semantic similarities found in around 11000 human genes.

Histogram of semantic similarity between all pairs of 11000 genes. 85% of all gene pairs have functional similarity of 0.85 or less according to GOSemSim. Those 
pairs with larger values than 0.85 are considered as functionally similar here.

Figure 7: Clusters found in TCGA colon expression dataset

Detected clusters in public colon cancer dataset from TCGA. All 7 normal samples with barcode 11A were clustered together on the left side of the dendrogram away 
from tumor samples with barcode 01A.
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tumor samples were clustered away from the core clusters and thus they 
can be labeled as outliers (Supplemental Figure 3). Overall clustering 
was validated using Silhouette with overall an average width of 0.22 
(Supplemental Figure 4). Here we suggest that further downstream 
analysis will be slightly improved after removing these outlier samples. 
At the gene level, the expression values of 2820 out of 17430 genes 
followed a Gaussian distribution according to Shapiro test and GESD 
detected 6 outlier genes among these (C6orf151, DOCK2, EIF2S2, 
NPR2, PLEKHA8, SH3GL1). Among the genes with non-Gaussian 
body, Boxplot and MAD detected 6788 and 7130 outlier genes, 
respectively. Both algorithms detected that 6671 outliers had at least 
two outlier points in common samples. Additionally, the detection of 
5032 of these genes was supported by GESD. 2325 of the 6671 outlier 
genes shared high functional similarities and outlier observations in at 
least two common samples.

In the OV dataset, normal samples were clustered together 
but not on the outer sides. For tumor samples, clustering resulted 
in many small clusters which indicates weak relations between the 
samples (Supplemental Figure 5). Silhouette validated this clustering 
with average widths of 0.47 and 0.05 in normal and tumor samples, 
respectively (Supplemental Figure 6). The removal of the outermost 
10 samples improved the clustering only slightly. At the gene level, the 
expression of 4112 out of 17436 genes follows a Gaussian distribution. 
GESD found 8 outlier genes among the genes with Gaussian expression 
profiles. Boxplot and MAD found 5757 and 6067 outlier genes, 
respectively, of which 5659 have outlier observations in common 
samples. GESD supported the detection of 786 of the outlier genes. 
1665 outliers shared high functional similarity and outlier observations 

in common samples.

Detect outliers in GEO datasets

NCBI GEO provides more cancer related datasets than TCGA. 
Also, GEO datasets normally contain a balanced amount of normal 
samples. Here we applied our hybrid approach to a liver cancer dataset 
with 486 samples; 239 normal and 247 tumor. Normally, samples were 
mostly clustered into one core cluster. However, clustering tumor 
samples presented at least two clear tumor clusters as shown in Figure 
8. Silhouette validated these findings with an average width of 0.4 for 
normal and 0.03 for tumor samples (Supplemental Figure 7). Here, we 
suggest removing only the outliers among normal samples clustered 
outside the core cluster. Also, for this case, we suggest that performing 
further analysis to tumor clusters separately might achieve clearer 
results.

In this dataset where only 14% of the genes had a Gaussian 
expression body, we found many outlier genes in this dataset as listed in 
Table 4. Boxplot and MAD matched at least 2 outlier positions in 7742 
and 6128 outlier genes in normal and tumor samples, respectively. We 
found 4541 outliers in common between normal and tumor samples. 
However, 4716 and 3208 outlier genes shared high functional similarity 
in normal and tumor samples and they had outlier observations 
commonly in at least 2 samples.

Detecting outliers in DNA methylation datasets

Finally, we tested the outlier detection approach to identify outliers 
in 3 methylation datasets downloaded from TCGA for colon, GBM, and 

Figure 8: Circular dendrogram of clusters found in the GEO HCC expression dataset GSE 14520.

Hierarchal clustering of the GEO liver cancer dataset. Sample names are replaced by N for normal and T for tumor.
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OV cancers. Only the OV dataset had normal and tumor samples. Out 
of these, only the normal samples were clustered together as validated 
by Silhouette (Supplemental Figure 8). At the gene level, fewer genes 
had a Gaussian methylation body compared to expression datasets. 
However, most outliers found shared high functional similarity with 
other detected outlier genes and thus were not removed except the case 
of outliers detected by MAD in the COAD dataset.

Interestingly, we noticed that the 3 algorithms matched at least two 
outlier positions in most of the detected outliers although only few had 
a Gaussian body. Additionally, at least 50% of the commonly detected 
outliers shared high functional similarity. The fraction of outliers 
detected and returned by the three algorithms is shown in Figure 9.

Discussion
Here we presented a new robust strategy for detecting outlier 

samples and genes in gene expression and DNA methylation datasets. As 
outliers might carry useful information we set filters to remove only the 
extreme outliers while labeling interesting outliers for further analysis. 
We presented two modules for outlier detection working at the sample 
and gene levels. The outlier sample detection module consists of AHC-
ED to define outlier samples and the Silhouette coefficient to validate 
the clustering. In the outlier gene detection module we observed that 
the underlying distributions of the expression or methylation play a key 
role in the detection process. The underlying distributions are frequently 
Gaussian und thus the GESD algorithm would fit for detecting outliers. 
This module includes two other methods (Boxplot, MAD) that detect 
outliers regardless of the underlying distribution found.

To validate this approach, we created several expression simulated 
datasets with introduced sample and gene outliers and searched them 
using the proposed methods. Simulation datasets were filled either from 

disjoint or intersected distributions. AHC-ED clustered successfully 
samples into two classes even in the case where less than 10% of the 
class rows were generated from two disjoint distributions while the 
rest came from the same distribution. On the other hand, the more 
intersected the classes are the less they can be distinguished on the basis 
of clustering dendrograms. AHC-ED successfully clustered samples 
filled from intersected distributions but with a less strong Silhouette 
validation compared to the completely disjoint ones. In simulated 
datasets, we also introduced 3 mislabeled samples and the clustering 
mapped them to their original classes. Two additionally introduced 
pure outlier samples were successfully clustered far most from other 
classes. Later we tested the outlier sample detection module using one 
colon cancer public dataset that has a set of known outlier samples. 
Here the module detected 8 out of the 9 known outlier samples.

We used a similar method to test the outlier gene detection 
module. We created expression simulated datasets and introduced 
outlier points for a set of genes. The datasets were filled from several 
normal distributions. The GESD algorithm detected 90% of the outliers 
coming from disjoint distributions where Boxplot and MAD detected 
around 70%. On the other hand, the three algorithms performed less 
well when the outliers were drawn from a distribution intersecting with 
the original distribution. 

The amount of outlier observations defining an outlier gene remains 
an open question. In this work we found that two outlier observations 
can ruin a known co-expression and thus was used as a threshold. Once 
the outliers are defined, we tested how functionally similar they can be. 
It is an interesting research topic to study functionally similar outliers 
that have outlier observations in the same samples. Therefore, outliers 
fulfilling these conditions were not removed but labeled for further 
analysis. 

This approach was used later to detect outliers in expression and 
methylation datasets downloaded from public sources TCGA and GEO. 

In this approach, it is not possible to automate the removal of 
sample outliers as it is impossible to fix a threshold for the cuts. The tool 
generates a dendrogram for the basic clustering and lets the user decide 
what the tool shall remove. 

In summary, we have demonstrated the dramatic effect how a 

Figure 9: Outlier detection statistics in the TCGA methylation datasets.

Percentage of detected and returned outliers -due to functional similarity and common positions- in the TCGA methylation datasets COAD, GBM and OV. 
The left column in each group refers to the fraction of detected and the right column refers to the fraction of returned outliers.

Table 4: Outliers detected separately in normal and tumor samples of the 
HCC dataset.
Statistics of outlier detection in GEO HCC dataset. GSE 14520. Common refers to 
outlier genes detected by a specific algorithm in tumor and normal samples

Tumor Normal Common
GESD 7 2 0
Boxplot 6215 7846 4636

MAD 6668 8174 5071
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few outlier points may contaminate gene expression or methylation 
data for further downstream analysis. We make available a convenient 
tool that implemented established algorithms for detecting outliers. 
We presented a clear workflow that chooses the most appropriate 
algorithms depending on the form of the data and on the type of 
analysis to be presented.
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