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Abstract
Rheumatoid arthritis is a common, well studied autoimmune disease characterized by a loss of self-tolerance. 

Current therapies have significantly advanced the successful treatment of the disease, but have been unsuccessful 
for a large number of patients. Furthermore, they have failed to induce long term medication free remission because 
they target a consequence of the disease, not the origins of a dis-regulated immune system. Current research is now 
focused on finding ways to correct and restore the balance of the immune system rather than just suppress it. The 
scientific foundations for a number of potential approaches to restoring immune tolerance already have been laid. 
This paper reviews a number of proposed targets for immunotherapy including vaccinations, shifting from Th1 to Th2 
responses, molecules that promote the resolution of inflammation, tolerogenic dendritic cells, mesenchymal stem 
cells, and T regulatory cells. These strategies will hopefully allow a closer approach to a “cure” for this potentially 
devastating disease.
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Introduction

The Holy Grail in the treatment of any disease is not simply 
improved outcomes, but rather a cure. Even though we have made 

huge progress in treating rheumatoid arthritis, our current therapies 
are not always successful, and the patient usually has to continue the 
medication in order to sustain improvement. However, if we were able 
to get to the original cause of the problem, and restore tolerance and 
balance to the immune system back to its pre disease state, we might be 
able to accomplish much more, with results approaching a cure.

This article aims to review a number of potential such 
immunotherapeutic options for the treatment of rheumatoid arthritis. 
These include vaccinations against cytokines, shifting T cell immune 
response patterns, molecules that promote the resolution of the 
inflammatory response, tolerogenic dendritic cells (DC), mesenchymal 
stem cells, and T regulatory cells (Treg).

Vaccination
Vaccines have been proven effective treatments for over 50 years 

for promoting appropriate responses from the human immune 
system. This includes vaccination with antigens from pathogenic 
bacteria and viruses to induce a memory measured response against 
future infections. It also includes desensitization regimens for various 
allergens in conditions such as allergic rhinitis. However to date similar 
approaches to other conditions involving a malfunctioning immune 
system such as malignancy and autoimmune disease have failed to 
achieve the same degree of success.

The proof of concept, however, has already been achieved in 
animal models. For instance in a transgenic mouse model expressing 
human TNF induced arthritis, vaccination against TNFα has resulted 
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Figure 1: Mechanism of action of anti-rheumatic medication.

Rheumatoid arthritis (RA) is a common autoimmune disease 
affecting between 0.5% and 1% of the population [1]. Twenty five 
years ago the consequences were devastating, with patients routinely 
suffering long term damage, loss of function, and increased mortality 
[2]. Since then the addition of disease modifying rheumatic drugs 
(DMARDs) and more recently biologic medications such as anti-tumor 
necrosis factor α (TNFα) to our treatment arsenal has dramatically 
improved long term outcomes [3,4]. However, these strategies all target 
downstream consequences of the disease in an attempt to suppress one 
or more aspects of an over active immune system (Figure 1). None of 
them focus primarily on the root cause of the disease, which is a loss 
of self-tolerance and an immune system which is out of balance. This 
is like trying to stop a runaway train by simply applying the brakes 
without stopping the malfunctioning engine that started the whole 
problem to begin with. It might work sometimes, or maybe just slow 
the train down enough so no one is hurt, but you have to keep the brake 
on, or the train speeds back up again.
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in protection against the spontaneous development of arthritis, as well 
as improvement in the outcome of established arthritis [4,5]. Similar 
results have been seen within other animal models with anti-cytokine 
vaccinations against TNFα, IL-1β, or IL-23 [6-8]. A small phase IIa trial 
of vaccination against TNFα has already been completed in humans, 
with successful development of anti-TNFα antibodies. A broader phase 
IIb/III trial is underway to assess clinical outcomes [9].

The challenge of this approach is to develop high titers of 
neutralizing antibodies against the target cytokine, without also 
invoking a pathogenic T cell response [10]. This problem has already 
been seen with significant morbidity and mortality in an early vaccine 
trail in patients with Alzheimer’s [11,12]. Additionally, there needs to 
be a significant concern about immunosuppression caused by anti-
cytokine antibodies. For instance, in autoimmune polyendocrinopathy, 
candidiasis, ecodermal dystrophy (APECED) syndrome, defects in the 
autoimmune regulator (AIRE) gene lead to a lack of thymic deletion of 
auto-reactive clones. Among other problems, this leads to high levels 
of anti–IFN-α, anti–IL-17, and anti–IL-22 autoantibodies, leading to 
frequent fungal skin infections [13]. Similar problems can be seen in 
thymoma patients, where high levels of biologically active anti-cytokine 
antibodies have correlated with infection frequency [14].

The vaccination approach only represents one step forward from 
our current treatments. While it does provide the added benefit of 
inducing the patient’s native immune system to do the long term work, 
it still targets downstream cytokines just as our present treatments do, 
and therefore, may not be able to fully restore balance to the immune 
system.

Shifting Th-1 to Th-2
Rheumatoid arthritis has long been described as a disease with an 

imbalance of T helper cells, with too much pro inflammatory cytokine 
secreting Th-1 cells, and too few anti-inflammatory TH-2 cells [15,16]. 
Thus shifting the balance back towards Th-2 has seemed a very 
attractive target for long term remission in RA (Figure 2).

Invariant natural killer T cells (iNKT) are a subset of T cells which 
have an invariable rearrangement in their α-chain, resulting in a lack 
of diversity of repertoire compared to other T cells. They recognize 
glycolipids presented not by MHC but rather the MHC-1 like CD1d 
[17-19]. They are able to very rapidly release large amounts of cytokines 
due to existing stores of cytokine mRNA [20]. Interestingly, their 
response can be either with Th-1 or Th-2 depending on the glycolipid 
being recognized. One such glycolipid is OCH (sphingosine truncated 
analogue of α galactosylceramide), which has been demonstrated to 
stimulate a Th-2 response from iNKT cells. Several studies have shown 

immunosuppressive benefits of OCH in animal models of rheumatoid 
arthritis [21-23].

One recently published study using a citrulline induced arthritis 
model, treatment with OCH prevented the development of arthritis 
in the mice, as well as stopping clinical progression in mice after the 
development of arthritis [21]. Whether this can translate into similar 
benefits in humans remains to be investigated, but OCH seems to be 
much less effective in human iNKT cells than in mice [24]. Furthermore 
evidence suggests specific Th-2 polarization may be more difficult in 
humans [25].

RAMPs
It is well described that invasion of the body by foreign organisms 

or trauma to the body can induce a cascade of pro-inflammatory 
signals started by pathogen associated molecular patterns (PAMPs) or 
damage associated molecular patterns (DAMPs) [26]. These families of 
molecules serve to ring alarm bells which activate the immune system 
to react to danger. Another family of molecules known as resolution 
associated molecular patterns (RAMPs) appear later in the course of 
healing to promote resolution of the inflammatory response, and a 
return to normalcy (Figure 3). This includes molecules such as HSP-
10, HSP-27, αB-crystalline, and binding immunoglobulin protein (BiP) 
which can act on macrophages to induce anti-inflammatory signals 
including IL=10, sTNFR, and IL‐1Ra [27].

BiP in particular may be important in rheumatoid arthritis [28]. 
It is a master regulator of the unfolded protein response when the 
endoplasmic reticulum is subjected to stress [29]. Cells in and around 
the rheumatoid joint are clearly under significant physiological 
stress, so it should come as no surprise that BiP levels are increased 
in both synovial fluid and tissue [30,31]. Recombinant human BiP 
administered in animal models of inflammatory arthritis has been 
shown to improve the outcome of the disease. Thus includes decreases 
in pro-inflammatory markers IL-6, TNFα, HLA DR expression, and 
CD86 expression, as well as increases on the anti-inflammatory side 
with IL-4 and T regulatory cells (Treg) [32-35]. Providing a caution 
to the contrary, BiP has been recently shown to promote angiogenesis 
in RA synoviocytes, and could therefore play a pathological role [36]. 
BiP has been shown previously to be important in cancer cell survival, 
and could be another downside to its use in autoimmune disease [37].

Tolerogenic Dendritic Cells
Dendritic cells (DC) play a dual function in the immune system, 

with both the initiation of the immune response with the presentation 
of antigens via major histocompatibility complexes (MHC) to T cells 
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and B cells in secondary lymphoid organs, but also helping establish 
and maintain tolerance to self-antigens [38]. The plasticity of DC to 
respond to environmental signals results in their implication as major 
contributors to autoimmune disease, but also represent a great target 
to restore tolerance to an immune system out of balance (Figure 4). 
These tolerogenic DC expresses less co-stimulation molecules, less pro-
inflammatory cytokines, and more anti-inflammatory cytokines than 
their immunogenic kin [39].

In animal models such as collagen induced arthritis (CIA), IL-4 
stimulated DC shift T cells to a more Th-2 response with increased 
IL-4 and decreased (Th-1) IFN-γ as well as (Th-17) IL-17, capable of 
either preventing CIA or reducing the severity of established disease 
[40-42]. Tolerogenic DC produced by stimulation with CTLA-4 Igor 
indolamine 2,3 dioxygenase (IDO) have also been demonstrated to 
improved CIA disease activity [43].

In patients with rheumatoid arthritis, the intense inflammatory 
environment can result in maturation of DC, increased antigen 
presentation, and activation of Th-1 phenotype T cells, despite overall 
reduced numbers [44]. Conversely, patients whose RA is under 
control have been shown to have a restoration of normal DC cell 
levels, and increased Tregs and IL-10 levels [45]. The induction of a 
non-inflammatory environment by existing treatments may then allow 
DCs to revert to their previous tolerogenic role, and may be part of the 
mechanism of action for clinical remissions sometimes seen with these 
agents. In vitro, drugs that inhibit the pro-inflammatory transcription 
factor nuclear factor κB (NF-κB) can induce tolerogenic DC [46].

One question yet to be fully worked out before human applications 
is whether Tolerogenic DC need to be “prepped” with the relevant 
self-antigen prior to administration. Animal models have yielded 
conflicting results that may be model specific, or stimulation agent 
specific. Also the potential auto-antigens are less well understood 
in humans than in mouse models. There is also the danger that the 
inflammatory environment in RA patients could turn the DC back over 
to the “dark side” and further drive inflammation.

Mesenchymal Stem Cells
Mesenchymal stem cells (MSC) have the ability to differentiate into 

chondrocytes, adipocytes, and osteoblasts. They are immune-privileged 
cells due to the low expression of class II MHC as well as co stimulatory 
molecules on their surface [47]. MSC have been demonstrated to have 
considerable immune-modulating effects, including down regulation 
of both T cells and dendritic cells [48,49]. Because of these properties, 

MSC are intriguing targets for restoring balance to an overactive 
immune system.

MSC cells derived from the blood of patients with RA interact 
with T cells within 24 hours in vitro to promote a Th-17 response [62]. 
Synovial fluid from patients with RA can also induce an inflammatory 
differentiation of MSC, including increased IL-6 [63]. One recent study 
noted a couple of positive results for MSC in human patients with RA, 
but few details were provided [64].

Collectively these studies suggest that the best target window for 
MSC therapy in rheumatoid arthritis is either very early in the disease 
or after clinical improvement is obtained with another treatment, with 
the hope of not needing to continue that treatment. Use of MSC in 
patient with very active disease might promote worsened outcomes.

T Regulatory Cells
T regulatory cells (Treg) are T cells characterized by a CD4+, high 

CD25+, and Fox P3+ phenotype. They are thought to play a strong role 
in self-tolerance and thus prevention of autoimmune disease, but also 
preventing tolerance to malignant tumors and chronic viral tolerations. 
Shifts to one or the other extreme can play a major role in perpetuating 
disease. Natural Tregs are produced in the thymus, and inducible Tregs 
can be derived in peripheral tissue [65] (Figure 5).

It has long been recognized that pregnant patients with rheumatoid 
arthritis can often undergo significant clinical improvement, followed 
by worsening disease after delivery [66-69]. This observation, in fact, 
helped lead Hench to the discovery of corticosteroids as the first 
treatment for RA [70]. In fact, Tregs play a major role in facilitating 
implantation of the embryo and maintaining the pregnancy despite the 
presence of “foreign” paternal antigens, effectively inducing tolerance 
to the developing fetus [71,72]. In fact, it has recently been shown 
that the enhancer locus conserved noncoding sequence 1 (CNS1) 
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Some studies in the CIA mouse model have shown improvement, 
[50-54] especially in early disease, while other studies have shown 
no effect or worsening of disease [55-59]. In CIA, the addition of 
cord derived stem cells showed no change, but led to worsening in 
the presence of TNFα. The addition of anti TNFα antibodies along 
with the stem cells led to improvement in arthritis [60]. In adjuvant-
induced arthritis (AIA) and the spontaneous K/BxN arthritis model, 
pretreatment with bortezomib, a proteasome and nuclear factor kappa 
B inhibitor with broad cytokine suppressive properties, prior to MSC 
infusion seemed to restore immunosuppressive properties of MSC. 
Animals in both models with both bortezomib and MSC had better 
improvement in arthritis than bortezomib alone, suggesting that the 
MSC added to its benefits [61].
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in the Foxp3 gene is present only in placental mammals. This site is 
rich in SMAD and RXR binding sites, and appears to be necessary 
for the differentiation of peripheral but not thymus derived Tregs. 
CNS1 deficient mice show decreased fetal survival associated with 
lymphocytic infiltration of the placenta [73]. Decreased ratios of Treg 
to Th-17 phenotypes have also been associated with recurrent fetal 
loss in human pregnancy [74]. Levels of Tregs during pregnancy have 
been shown to inversely correlate with RA disease activity, so that 
the more Tregs, the less active the arthritis [75]. One recent study in 
the CIA mouse model demonstrated that CD 25+ T cells transferred 
from pregnant mice which had been previously primed with collagen 
injections could prevent the development of arthritis in the recipient, 
but not if the mouse had been primed [68]. This suggests the protection 
is antigen specific. Being able to replicate this pregnancy induced 
tolerance could have huge benefits for RA patients, although with some 
concerns about long term effects on infection and tumor surveillance 
[76,77].

Further animal data in the CIA model also support Tregs as 
a potential RA therapy. Depletion of Tregs from the mice before 
immunization with collagen or afterwards but before the disease has 
led to both higher arthritis incidence and more severe disease [78,79]. 
Transfer of Tregs from naïve mice was also able to reduce disease 
activity [80].

Patients with rheumatoid arthritis, however, do not have a shortage 
of Tregs in their blood or synovial fluid [78]. Rather, their Tregs appear 
to be dysfunctional, with a loss of ability to suppress inflammatory 
cytokines such as TNF-α and interferon γ [81,82]. TNF-α, which is 
present in abundance in the rheumatoid joint, seems to be the major 
mediator of this down regulation [82-85]. This may occur through 
TNF-α inducing the release of PKCθ which blocks CTLA-4 binding 
[82].

There is a growing amount of evidence that many existing RA 
therapies work at least in part through increased Treg function. A 
recent placebo controlled trial showed that patients on an anti TNF-α 
antibody plus methotrexate had higher Tregs and lower T effector cells 
after 12 weeks than patients on methotrexate alone [86]. Another study 
of patients on anti TNF-α therapy showed that their Tregs were able to 
suppress Th-17 phenotypic expression, but not the Tregs from normal 
controls or active RA patients not on an anti TNF-α. This affect was 
exerted through monocyte derived IL-6. Interestingly, they observed 
this Treg suppression only in patients on the anti TNF-α monoclonal 
antibody adalimumab, and not with the TNF receptor fusion protein, 
etanercept [87]. Increased Tregs and decreased Th17 cells have also 
been reported in RA patients treated with the anti IL-6 antibody 
tocilizumab [88]. In the mouse model proteoglycan induced arthritis, 
the efficacy of the B cell depleting antibody rituximab was wiped out by 
eliminating Tregs prior to treatment, suggesting that increase in Treg 
function may be a very important part of its mechanism of action [89].

However, increased levels of Tregs can play pathological role in 
human disease. It is well described in chronic viral infections such as 
HIV and Hepatitis B that Tregs can lead to worsened outcomes [90,91]. 
It is also known that Tregs are the “enemy” in certain types of cancer, 
with a direct role in allowing tumor cells to escape immune surveillance, 
leading to growth and metastasis [92,93]. In virally mediated cervical 
cancer, tumor cells can directly express Foxp3 themselves, pretending 
to be Tregs to avoid detection [94]. Tregs seem ideal goals for achieving 
a successful restoration of immune tolerance in patients with RA, but 
achieving balance will be the key to success.

Conclusion
This paper has reviewed a number of promising pathways to 

achieve a restoration of tolerance to the immune system of patients 
with rheumatoid arthritis, as well as potential stumbling blocks. They 
all share the goal of a return to self-regulation, and therefore fit our 
hope to be able to return our runway RA train to its normal route and 
function, without needing to keep the brakes on. Thus they could lead 
to that elusive cure, without needing to continue immunosuppressive 
therapy. However, we have seen in many instances, improvement in 
the inflammatory environment may be a necessary first step, suggesting 
that we need to apply the brakes first. Secondly, we need to insure that 
we do not turn the train around and head in the wrong direction, 
leading to increased infection and malignancy. So to achieve all these 
goals, it seems likely that we will need a combination of approaches 
to be successful, a balanced treatment to achieve a balanced immune 
system.
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