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Mini Review

As an ancient microbe, Mycobacterium tuberculosis (MTB) is an
extremely successful pathogen. MTB causes more deaths worldwide
now than at any previous time in history as the World Health
Organization (WHO) estimates that approximately one-third of the
world’s population (roughly 2 billion total) is infected with MTB [1].
MTB is a major health threat, causing 9 million new infections and
between 2 and 3 million deaths annually. Future prospects look bleak
due to the increasing impact of HIV and drug resistance MTB strains
(MDR) on the TB epidemic [1].

The clinical course of TB provides clues as to the mechanisms that
underlie MTB’s success as a pathogen. First, MTB establishes infection
with a small inoculum, suggesting that it inhibits innate immune
responses. Second, it often persists throughout the life of the host,
suggesting evasion of adaptive immunity. Third, the transmission of
MTB from one host to another typically depends upon the formation
of lung cavities in which aerosols are generated by coughing or
sneezing. The mechanisms of lung cavitation are complex but include
bystander damage of healthy tissue by the host cellular immune
response. It is generally thought that granuloma formation is a means
by which the host controls certain pathogens, most notably
mycobacteria and fungal species [2]. Granulomas form in animal
models of TB and in human infection the scarred result of the
granulomatous response to initial infection is sometimes observed as a
calcified lesion abutting the pleural in a lower lobe of the lung, the
“Ghon lesion” [3]. Although the granuloma limits the extent of early
infection, it is ultimately cell-mediated immunity involving T-cells that
control MTB replication.

Protective host immune responses involve T-cells and macrophages
(Mø), whereas antibodies are unimportant by comparison [4]. MHC
class I pathways and CD8+ T-cells appear to be important in the host
containment of virulent MTB [5-7]. Previous studies demonstrated
that CD8+ T-cell lines were capable of inhibiting MTB growth in vitro
[8]. CD8+ T-cells function as cytotoxic effector cells and it has been
suggested that these cells play the greatest role in lysing infected cells
in lesion that still contain few bacteria and therefore sterilize the
granuloma [9,10]. It has been shown that in mice, moderate levels of
protection can be obtained upon transferring CD8+ T-cells even at late
stages of infection [9,11]. In contrast, in most cases, the protection
afforded by the CD4+ T-cells is much greater than that seen by CD8+

T-cells [12]. CD4+ T-cells, mediated by MHC class II pathways, secrete
IFN-γ and activate Mø to produce reactive oxygen species (ROS) and
nitric intermediates (RNI), thereby enhancing their microbicidal
activity. In mice, depletion of CD4+ T-cells prior to infection leads to
increased bacterial burden and shortened survival [12-15]. These
results are also shown in knockout models as both CD4–/– and MHC-

II–/– mice are extremely susceptible to MTB infection [16]. One of the
difficulties in discerning the nature of the T-cell responses that
correlate with protection has been that the rodent models used to
study TB do not naturally “contain” infection in a manner analogous to
how humans “contain” infection. Clinical observations and studies in
humans provide insight into the components of true “containment.”

The development of safe and effective vaccines for both drug-
sensitive MTB and MDR remains a high priority for the scientific
community. For decades, a number of factors have been considered
responsible for the variable efficacy of M. bovis BCG vaccine, the only
vaccine still available against TB. These factors are related to the strain,
the dose, and protocol for administer the vaccine [17]. Ideally, a
vaccine to prevent TB would confer lifelong protection. Despite
significant efforts over the course of several decades, several important
issues related to the immune responses or epitopes recognized by MTB
remain to be addressed. An NIH-sponsored workshop of leading
scientists and experts held in June 2007 reviewed data on T-cell and B-
cell epitopes derived from MTB, and identified several important
knowledge gaps:

• Epitopes have been described for only a small fraction of the MTB
genome

• more systematic data is necessary, addressing the recognition of
different antigens and epitopes in different stages of MTB infection
and disease, and in different ethnicities

• definition of epitopes recognized in small animals and non-human
primates would also be beneficial to further evaluations of new
vaccine candidates and vaccination strategies.

CD4+ T-cell populations appear to be very important as HIV-
infected persons with latent TB infection are at high risk of progressing
to active TB, and frequently present with extrapulmonary or
disseminated infection [18,19]. Furthermore, treatment of HIV-TB co-
infected persons with antiretroviral therapy often causes increased
clinical and radiographic evidence of TB in the lungs as the CD4+

count recovers – the so-called “paradoxical reaction”, or “immune-
reconstitution inflammatory syndrome-IRIS” [18,20]. In summary,
both HIV and TB are life-threatening pathogens in their own right, but
their synergic effects on the immune system during co-infection
markedly enhance their effect on the host [20-22].

In terms of assays to detect cellular immune responses in the
context of TB, there are few that are clinically available. One of the
main issues that exist is what specific antigens from MTB are eliciting
immune responses. The tuberculin skin test (TST) does not measure
antigen-specific CD4+ or CD8+ T-cells and often gives false results
[23]. The IFN-gamma release assays-IGRA, such as Quantiferon-Gold
(QFT) and T-SPOT.TB, however, are more appropriate in detecting
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TB-specific responses [24]. The three antigens composing the QFT test,
ESAT-6, CFP-10, and TB7.7, are represented as peptides and detected
using whole blood [25]. Nevertheless, there are now more specific
assays to detect immune responses after infection with MTB.

In all of these assays, a clear understanding of which antigens from
MTB elicit immune responses is direly needed. Recent studies have
focused on the identification of new antigens [26-31]. These studies
have varied from in silico approaches, [31] to gene expression
approaches [29] as well as MHC-specific methods [26,27,30]. The
identification of TB-specific antigens that elicit immune responses
provides the framework for new assays to assess cellular
immunogenicity.

New assays to detect CD4+ and CD8+ T-cell responses after MTB
infection includes cell specific detection systems, such as flow
cytometry and enzyme based assays (such as ELISPOT) [24,32-37].
These assays will quantitatively and qualitatively measure specific
CD4+ and/or CD8+ T-cell responses that are specific for MTB.
However, albeit TB is the leading cause of death in AIDS patients
worldwide, very little is known about early TB infection or MTB/HIV
co-infection in infants. Thus, clinically relevant newborn animal model
to study TB infection is urgently needed. An aerosol model in neonatal
nonhuman primates which mimics clinical and bacteriological
characteristics of MTB infection, with the potential to allow the
establishment of a TB co-infection model of pediatric AIDS, as seen in
human newborns/infants has been established [38]. There, post
infection specific cell-mediated immune responses and lesions were
detected suggestive of the classic Ghon focus in human children, as it
represents the first example of early MTB infection of newborn
macaques. Using ELISPOT assays, the IL-12 production correlated
with early MTB infection lesions seen by routine thoracic radiographs.
That study indicates a unique opportunity to further characterize
immunopathogenesis and establish a MTB/SIV co-infection model for
pediatric AIDS.

In sum, MTB is an extremely well adapted pathogen which has co-
existed with the human host for millennia, and it has learned how to
modulate potentially protective host immune responses to insure its
own survival. Although there is still no correlate for protection in TB,
there might be a harmonization of laboratory assays which ideally can
be used to evaluate the immunogenicity, safety and parameters, such as
vaccine "take" of a TB vaccine candidate. Better understanding of the
human immune response to MTB infection and disease, plus the
recent progress in immunology, microbiology, and molecular genetics,
will provide fundamental shifts that promise to have extraordinary
impact on the approaches to TB control. Ultimately, it is hoped that
progress in the field of vaccinology will lead to a more rational
approach towards the improvement of the BCG vaccine.
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