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When Human Genome Project was completed, some unthinkable 
issues came to the fore. In contrast to the anticipations, the genic 
counterpart made up a mere ~2% of the genome. More surprisingly, it 
became evident the extent of the repetitive DNA, and we now know that 
it consists the most part of human genome [1,2].

Retrotransposons are discrete genetic entities, capable of moving 
their own sequences into new genomic locations, representing the 
vast majority of repetitive DNA. They are fixed and co-evolved in the 
ever-changing human genome during evolution, resulting in major 
fashioners of its landscape. Nowadays, it is widely accepted that 
retrotransposons can determine genome architecture and plasticity in a 
variety of modes, having a profound contribution to genomic variation 
(GV). Specifically, they are able to mobilize into new genomic sites 
(retrotransposition) or participate in genomic rearrangements leading 
to copy number variations (CNVs) or larger structural variations. From 
the aforementioned, one can easily deduce that the key to the genomic 
complexity does not lie into the genic, but the repetitive counterpart 
of our DNA. Moreover, retrotransposons represent an abundant and 
natural source of regulatory sequences for the host genome, having a 
great impact on a vast repertoire of cellular processes mainly through 
regulation of gene expression [3,4]. Retrotransposons, looking alike 
the double-faced Roman god Janus, have a dual impact on the genome. 
Controlled retrotransposon activity might be beneficial for the cell 
in terms of genetic and/or epigenetic regulation of gene expression, 
adaptation and homeostasis upon environmental challenges [3]. On the 
flip side, in some cases, their deregulated state may be noxious causing 
monogenic or complex (multifactorial) genetic diseases [5-7].

Disorders originating from the combinatorial effect of genetic, 
environmental and lifestyle factors in most cases unidentified yet are 
referred to as complex diseases. We now know that complex diseases 
probably represent the collection of GV in any of a large subset of 
loci, associated with disease and not obeying the standard Mendelian 
patterns of inheritance [8]. To get insights into the unusual inheritance 
patterns, genome-wide association studies (GWAS) have been widely 
used to define the genomic architecture of complex diseases. GWAS 
have revealed numerous genetic loci variants statistically associated with 
human complex diseases. Nevertheless, the results have not fulfilled the 
promise and gave rise to strenuous debate in the scientific community.

Congenital anomalies of the kidney and urinary tract (CAKUT), 
a well-known example of multifactorial/complex syndrome, are 
genetically heterogeneous anomalies of developmental origin with a wide 
spectrum of clinical phenotypes, constituting the major cause of chronic 
renal failure in childhood. The etiology of the majority of CAKUT 
phenotypes remains unknown. Mutations in HNF1B gene are common 
in CAKUT and the genomic imbalance, such as CNVs, genomic or de 
novo mutations, can only explain up to one third of all CAKUT cases. 
Siomou et al. have recently reported a novel aspect on the mechanism 
underlying the GV (genomic imbalance) leading to a complex disease, 
such as CAKUT. Using array-CGH, they have provided evidence for the 
causative role of a retrotransposon-associated genomic rearrangement 
- a 1.4 Mb deletion of chromosome 17q12 spanning HNF1B gene on

a CAKUT phenotype (ureterovesical junction obstruction), uncovering 
retrotransposons activity as a possible source of pathogenic variants [9].

The multifactorial nature of complex diseases renders challenging 
the investigation of the cause(s) of such disorders. Interestingly, GV 
associated with complex disease often appears in non-coding parts of 
the genome, denoting that “cryptic variation” consists a major source 
of disease susceptibility. The advances of high-throughput genomics 
approaches have provided functional information about the human 
genome, emerging the central role of retrotransposons in GV between 
individuals [10-12]. Knowing that retrotransposons activity is affected 
by: (i) genetic, (ii) environmental and (iii) lifestyle factors [3], all three 
also “inducers” of complex diseases traits, an unequivocally reasonable 
number of questions is raised. Which factors are critical for complex 
diseases pathogenesis? Do GV matter in complex diseases and, if yes, to 
which extent? What is the role, if any, of retrotransposons in complex 
diseases? In practice, we must still await enlightening responses to such 
questions. Considering that: (a) a typical genome differs 82% from the 
reference human genome, counting in the variants single nucleotide 
polymorphisms (SNPs), short indels, large structural variants and 
CNVs [13], (b) retrotransposons constitute an important agent for 
generation of GV, being responsible for 20.5% of the structural variation 
in humans [14], (c) retrotransposons influence gene expression, as 31% 
of total protein-coding genes transcription start sites in humans are 
located within retrotransposon sequences and 14,546 retrotransposon-
derived regions are identified as enhancers [15,16] and (d) 1.04% of the 
retrotransposon-generated variants lie within already known risk loci 
for common and rare human diseases [14], it seems straightforward 
a demand to determine the genomic landscape of individuals with 
complex diseases using advanced “omics” approaches. In this manner, 
it can be determined each individual’s “mobilome” the sum of 
retrotransposon counterpart of the genome further representing a 
pathogenic “genomic identity card” (GID). GID data resulting from 
whole-genome sequencing (WGS) coupled with RNA sequencing 
(RNA-Seq) and Proteomic analyses will be exploitable to decipher both 
the genomic architecture and the pathogenic variants. To this direction, 
it would be of great help the existing approaches for identification of the 
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LINE-1 and Alu mobilome designed and executed until now [17-19]. 
Nevertheless, the development of novel experimental methodologies, 
which can support and supplement the existing ones is necessary, in 
order to determine the whole human mobilome. Taken together, the 
above will likely contribute to the definition of the causative factors of 
complex diseases.

Definitely, it will take a lot of effort to understand and elucidate 
complex diseases susceptibility. However, the progress made in the 
post-genomic era will enable the development and application of a 
holistic retrotransposon-based “omics” genome profiling approach. 
Such an approach can be applicable to unravel the genomic architecture 
of complex diseases and elucidate the origins of pathogenesis. Barbara 
McClintock stated “one must await the right time for conceptual change”. 
To our opinion, retrotransposons matter in complex diseases and it is 
the right time to be taken into consideration.
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