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Background
The metabolic network of a cell is the complete set of interconnected 

metabolic processes that determine the physiological and biochemical 
properties of the cell. In recent years, metabolic networks have 
enormously contributed to our understanding of metabolic genotype 
and phenotype relationship. This leads to important applications 
through systems biology and metabolic engineering. Recently, meta-
proteome-scale metabolic network reconstruction has also emerged as 
a promising and challenging approach for investigating the metabolism 
of microbial communities [1].

In recent years, there has been an effort to reconstruct the genome-
scale metabolic networks for hundreds species [2-7]. In principle, 
the reconstruction of metabolic networks is an iterative multi-stage 
process [8,9], which starts from gene annotation, and goes all the way 
to network development. Several sophisticated techniques have been 
developed for metabolic network reconstruction [10-15]. 

Metabolic Gaps and their Implications
However, most of the reconstructed networks remain incomplete, 

namely there are significant numbers of metabolic gaps [16,17]. A 
metabolic gap in a network for genome (G) is a metabolic reaction (R) 
(described by its EC number) that is present in the network. But the 
annotation through the network reconstruction methods have failed to 
find the corresponding gene in G that is responsible for that reaction R. 
We distinguish two types of metabolic gaps: local metabolic gap where 
the corresponding gene responsible for R can be found in other related 
organisms and global metabolic gap where the corresponding gene 
responsible for R has not been found in any known organism or have 
not been so annotated in any genome. 

Metabolic gaps impede downstream biological analysis of these 
metabolic networks. For examples, in the reconstructed metabolic 
networks of yeast Saccharomyces cerevisiae [2], filamentous fungi 
Aspergillus oryzae [3], Aspergillus nidulans [4], and Aspergillus niger 
[5], and bacterium Streptomyces coelicolor [6], between 6% to 19% of 
the biochemical reactions are metabolic gaps. 

Filling these metabolic gaps (and thus, enhancing these networks) 
is the most time-consuming task that may take years to complete 
since there is a lot of manual curation involved [16-18]. This can be 
a bottleneck for gaining high quality metabolic networks. Our work 
therefore proposes to fill those metabolic gaps by considering new 
algorithmic methods.

Current Metabolic Gap Filling Methods
Current direct methods for filling local metabolic gaps (i.e. genes 

that are un-annotated in the target organism, but have been found in 
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other related organisms) are based on the profile of the protein family, 
such as GFAOP [3] and Reed et al. [19]. In these methods, the first 
step is to identify the specific protein family for the metabolic gap. 
The next step retrieves and/or builds a family profile of this protein 
from reference databases. Then this profile is used to search against 
the target organism (i.e. genome sequence) to detect candidate gene. 
Finally, candidate gene (if any) is manually validated by querying with 
annotation databases. These gap filling methods have been successfully 
used to fill some of the gaps in the metabolic networks of Escherichia 
coli [19] and A. oryzae [3]. Despite that, many gaps still remain in these 
networks. 

The success (and failure) of these direct gap filling methods is 
highly dependent on the first step of identification of the protein 
family for the metabolic gaps. This step requires an expert to precisely 
interpret the proper family that performs the intended enzymatic 
function (described by an EC number) of the metabolic gap, specific 
up to substrate binding. However, this first step is challenging for two 
reasons. Firstly, the protein family is not well-defined. For example, in 
the Swiss-Prot database, there are 251 annotated genes encoding for 
the EC 2.1.1.64. Of these, 242 genes have no known specific protein 
family which are available. 

Secondly, even if the protein family is found, it may not be particular 
enough to be helpful for finding the candidate gene with a specific 
function. Based on Swiss-Prot database, for example, there are a total 
of 673 annotated genes encoding for the EC 2.7.7.3 and all of them 
carry the Cytidylyltransferase (PF01467) domain. Meanwhile, there 
are the other 527 annotated genes encoding for the same domain, but 
show different functions. This indicates that the domain is too general 
and hence the generated protein family profile will not be specific 
enough to find good candidate gene for the EC 2.7.7.3. We noticed that 
a current A. oryzae metabolic network, 52 gaps (out of 61 gaps) do not 
have a specific protein family interpretation. Hence, these direct gap 
filling methods have failed in the beginning step as shown in example 
case of the A. oryzae metabolic network (iWV1314).

Overview of Our Approach
In this work, we aimed to develop MeGaFiller, an ensemble of 

indirect approach to overcome the difficulties of existing direct methods 
in cases of poorly characterized protein family. Our indirect approach 
leverages the following duality between gap filling and protein function 
prediction. In gap filling, we determine protein function (f), and we 
desire to search for candidate gene (p) in the genome sequence of 
the target organism with the protein function f. In protein function 
prediction, we determine a candidate gene p, and we desire to predict 
its protein functions f. Thus, gap filling and protein function prediction 
are dual problems of one another. 

In theory, therefore, if we have a candidate gene p in the target 
organism (genome G) that performs a protein function f, then the 
“perfect” gap filler is able to find gene p in G given the protein function 
f, and the “perfect” protein function predictor is able to predict protein 
function f given the gene p in G. In reality, however both procedures are 
far from the “perfect”. Current direct gap filling methods are not able 
to find the genes encoding for some protein functions, as evident from 
the gaps in current metabolic networks. Additionally, current protein 
function predictor may miss some protein function f due to very low 
scores from the prediction.

We propose to use the dual approach using protein function 
prediction methods to help find candidate gene p that have the predicted 

protein function f. We initially predict the functions of all the proteins 
in a target organism (genome G) using a protein function predictor. 
Then, we keep only the genes with predicted protein functions that are 
matched to those of the metabolic gaps. Once completed, the list of 
candidate genes is generated for the metabolic gaps.

There are additional reasons to pursue this dual approach. Firstly, 
there has been tremendous progress in the state-of-the-art protein 
function prediction methods and they have vastly improved recall and 
precision rates. Many enhancements have been developed for BLAST-
based protein function predictors and these included Gotcha [20], 
PFP [21], and Blast2GO [22,23]. There have also been enhancements 
to protein function predictors that used Hidden Markov Model 
(HMM) profiles with improved prediction accuracy and these 
included ModEnzA [24] and EFICAz [25,26]. Hence, it is timely to 
leverage on these state-of-the-art protein function predictors to help 
find candidate genes for the “difficult-to-fill” metabolic gaps. Another 
crucial reason is that our dual approach does not require knowledge 
of the specific protein family and hence gets around the inherent 
challenge of identifying the proper family at the beginning. Thirdly, 
even in case where the protein family is not well-defined, there may 
still be some of individual protein list in the annotation databases that 
can infer function. Several protein function predictors can leverage on 
the protein list (via sequence similarity for BLAST-based methods or 
profile similarity for HMM based methods) to help in their function 
prediction. In this way, the protein list may help, indirectly, to predict 
the given metabolic function for achieving the candidate genes, without 
having the certain protein family.

To successfully use this dual approach, we identified good protein 
function predictors that were suitable for retrofitting for the purpose 
of filling metabolic gaps. We focused on protein function predictors 
that gave more predicted functions, even those with low scores. To deal 
with a large pool of predictions, we needed a retrofitting procedure to 
carefully filter and find the “difficult-to-fill” candidate genes for the 
metabolic gaps (Details given in the next section). Based on this, we 
retrofitted gap fillers based on the different state-of-the-art function 
predictors. After evaluating their individual effectiveness, we found 
that no one method dominates the rest and each of them has different 
strengths and weaknesses. General protein function predictors tend to 
give many more predicted functions (per protein) and thus, achieve 
higher coverage, but lower accuracy. In contrast, enzyme-specific 
function predictors give fewer predicted functions (per protein) and 
gain higher accuracy, but lower coverage. 

To leverage on their different relative strengths, we developed 
novel MeGaFiller (Metabolic Gap Filler) method that uses a weighted 
ensemble of the individual retrofitted protein function predictors. We 
then optimized the relative weights of the individual protein function 
predictors within MeGaFiller. This optimization of MeGaFiller was 
then performed separately in each of five species, as our performance 
analysis showed that the optimal parameter setting is species-
dependent. To the end, the optimized MeGaFiller was used to fill the 
gaps in five different metabolic networks. MeGaFiller showed effective 
in filling metabolic gaps remaining in these networks. It was also able to 
predict more candidate genes for existing reactions and novel putative 
reactions in these metabolic networks. 

Methods
Our proposed method is called MeGaFiller, which carefully 

combined the prediction results of several individual gap fillers based 
on retrofitted protein function predictors. In the following, we first 
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explain how these individual gap fillers were designed, and then discuss 
how they were retrofitted into MeGaFiller.

In the dual approach for gap filling, we used protein function 
predictors to indirectly find candidate genes that have the predicted 
protein functions of the metabolic gaps. For a given metabolic network 
of a target genome G, and any chosen protein function predictor (FP), 
the general procedure is as follows: First, we used FP to predict the 
functions of all the proteins in a target genome. This produces, for each 
gene p in the target genome G, a list of predicted protein functions 
(given in EC numbers or GO terms). Usually, these predicted protein 
functions were ranked based on a variety of scores (e.g. confidence, 
significance) depending on the predictor used. Metabolic gaps were 
given by their EC numbers. Hence, the next step was to use EC2GO 
mapping [27] to map any predicted GO terms into EC numbers. 
Next, we matched these predicted protein functions with the gaps in 
the metabolic network. For each metabolic gap with EC number, we 
collected all the genes for which the protein function f that was predicted 
by FP and formed the list of candidate genes for the metabolic gaps. 

We pointed out that the ranking/scores of candidate gene p for a 
given metabolic gap were produced by considering candidate gene p 
individually, and the ranking/scores were given relative to the other 
predicted protein functions for that candidate gene p. Hence, it does 
not make sense to directly compare the ranking/scores of genes in the 
candidate list. Hence, we may need to do some retrofitting by post-
processing of the candidate list (for example, re-ranking by their 
confidence/significance scores) to produce the list of missing gene 
candidates.

With the recent advances and proliferation of protein function 
predictors, we selected suitable ones. For our purposes, we focused 
on state-of-the-art protein function predictors that are also relatively 
easy to retrofit for metabolic gap filling. We thus selected two general 
protein function predictors, PFP [21] and Blast2GO [22,23] that can 
predict general protein functions. We also selected an enzyme-specific 
function predictor, EFICAz [25,26]. We ran all the three protein 
function predictors using their default settings (see Appendix A for 
more details). 

Next, we describe how we retrofitted them for gap filling and called 
them as PFP-GF, B2G-GF, and EFICAz-GF, respectively.

PFP-GF: Retrofitted PFP for gap filling

Among the general protein function predictors tested, PFP [21] 
gave the most predicted functions with the best coverage (but lower 
accuracy). Given an input as protein sequences, PFP uses PSI-BLAST 
on the Uniprot database to predict a list of GO terms, each of which 
comes with several scores (i.e. rank, raw score, P-value, and three 
different confidence scores). By default, PFP sorts GO terms by the 
“4-edge confidence score”. This list contains many predicted protein 
functions (some may contain up to 500 GO terms), including many 
predicted protein functions with very low scores.

We retrofitted the protein function predictor PFP for gap filling 
as shown in Figure 1. After PFP was done, the output GO terms were 
mapped into EC numbers using EC2GO [27]. Then, for each EC 
number, we re-ranked the list of candidate genes based on the following 
criteria (in priority order): confidence score, raw score, and P-value. A 
top-rank cut-off to filter the candidate list was chosen to maximize the 
F2 score. The best F2 score for PFP-GF was obtained when setting this 
cut-off to keep only the top 5 candidates. 

B2G-GF: Retrofitted Blast2GO for gap filling

The other general protein function predictor, Blast2GO, is very 
simple to retrofit. Blast2GO produces EC numbers for their predicted 
functions. It produces relatively few predicted functions per proteins 
and they tend to have high accuracy. Thus, the retrofitting procedure 
consists of just matching predicted functions per proteins with the 
given set of EC numbers, and consolidating all the candidate genes for 
each of the given EC numbers. 

EFICAz-GF: Retrofitted EFICAz for gap filling

EFICAz is an enzyme-specific function predictor. It predicts only 
enzyme-specific functions. It gives relatively few predicted functions 
and these have high accuracy. The predicted protein functions are also 
given by their EC numbers. Thus, like B2G-GF, retrofitting consists of 
just matching predicted functions per proteins with the given set of 
EC numbers, and consolidating all the candidate genes for each of the 
given EC numbers.

Our proposed method: MeGaFiller

To achieve better prediction results and higher confidence, our 
proposed method, MeGaFiller, considers an ensemble of these three 
individual gap fillers. For this integration, we need to handle the 
fact that the three individual gap fillers produce different types of 
prediction scores. Specifically, PFP-GF gives several scores, and, after 
our performance analysis, the confidence score was chosen as the score 
for PFP-GF. In contrast, B2G-GF ranking relies on the BLAST hit score, 
thus the best bit score of hits was chosen as the score of candidates for 
B2G-GF. Finally, EFICAz-GF does not produce any prediction score, 
and so all its predictions were equally weighted (i.e. all have score of 
1.0).

To rationally combine these gap fillers, a generic weighted ensemble 
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List of
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Figure 1: Retrofitting procedure for gap filler PFP-GF. The original PFP 
takes a genome sequence as an input and generates a list of predicted 
GO terms for each sequence. PFP-GF takes the PFP’s output, the EC2GO 
mapping, and a metabolic gap described by an EC number. Then, PFP-GF 
generates the sorted list of candidate genes for the gaps.
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scheme (similar to [28]) was adopted, as shown in Figure 2. Firstly, for 
each EC number (e), the scores for each candidate gene p for e were 
normalized using as follows: 

� 

SN
i (e, p) =

si(e, p)
max

k
si(e, pk )

where 

� 

SN
i (e, p) is the normalized score and is (e, p)  is the predicted 

score of pair (e, p) produced by gap filler (i). Secondly, we assigned 
weight (wi) to each gap filler i as a measure of its prediction significance. 
These were also normalized, i.e. 

� 

(wi)
i

∑ =1. 

The combined score, C(e, p), for a pair of  a candidate gene p and an 
EC number e, was given by a weighted summation over all individual 
gap filler, as follows:

� 

C(e, p) = wi ⋅ SN
i (e, p)

i
∑

To the end, the candidate gene list was filtered, keeping only 
candidates with the combined scores not below a given threshold (θ).

Data sources

In this research, we focused on using MeGaFiller to fill metabolic 
gaps in the reconstructed metabolic network of A. oryzae iWV1314 [3]. 
However, we have also run MeGafiller on the other four networks, those 

for S. cerevisiae iIN800 [2], A. niger iMA871 [5], A. nidulans iHD666 
[4], as well as S. coelicolor iIB711 [6]. These metabolic networks were 
obtained from BioMet Toolbox [29] website (http://biomet-toolbox.
org/)

Each of these metabolic networks contains two datasets: the known 
dataset (NK) and the metabolic gap dataset (NG). NK is a list of known 
pairs of metabolic reaction associated between EC numbers and 
gene. The NK was used to tune the parameters of MeGaFiller and its 
component gap fillers. NG is a list of metabolic gaps associated between 
EC numbers and gap reactions. From each metabolic network of the 
five species, we extracted NK and NG and the statistics are shown in the 
Tables 1 and 2.

Concerning on the genome sequences of these five species, we 
retrieved them from reference databases S. cerevisiae S288c-SGD 
(http://www.yeastgenome.org/) [30], A. oryzae RIB40-DOGAN 
(http://www.bio.nite.go.jp/dogan/top) [31], A. niger ATCC1015 and 
A. nidulans FGSC A4-AspGD (http://www.aspgd.org/) [32] and S.
coelicolor (http://www.sanger.ac.uk/resources/downloads/bacteria/
streptomyces-coelicolor.html) [33]. We used these genomes to extract
the list of protein sequences to serve as input to MeGaFiller (and to the 
individual metabolic gap fillers).

Performance metrics

To tune the parameters of MeGaFiller and its component gap 
fillers, we ran them on the known datasets NK of the five species and 
measured the following performance metrics: precision, recall, and F2 
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Figure 2: Ensemble scheme for MeGaFiller. A big circle denotes an EC 
number, while a small circle presents a candidate gene. Scores of predictions 
made by each predictor were normalized. Then, the predictions were combined 
by the weight wi of each predictor. Finally, MeGaFiller applied a threshold θ to 
filter the final prediction list.

Network 
name

Species Strain Release Reference Genome 
Source

 iIN800 Saccharomyces 
cerevisiae

 S288c  2008 Nookaew et al. [2] SGD1

 iWV1314 Aspergillus  
oryzae

 RIB40  2008 Vongsangnak et al. [3] DOGAN2

 iHD666 Aspergillus 
nidulans 

 FGSC A4  2008 David et al. [4] AspGD3

 iMA871 Aspergillus  
niger

 ATCC1015  2008 Andersen et al. [5] AspGD3

 iIB711 Streptomyces 
coelicolor

 A3(2)  2005 Borodina et al. [6] S. coelicolor
genome4

Metabolic networks were retrieved from BioMet Toolbox website (http://biomet-
toolbox.org/). The corresponding genome sequence was downloaded from 
sources listed in last column.
1http://www.yeastgenome.org/
2http://www.bio.nite.go.jp/dogan/top
3http://www.aspgd.org/
4http://www.sanger.ac.uk/resources/downloads/bacteria/streptomyces-coelicolor.
html

Table 1: Metabolic networks used in our study.

Network characteristics iIN800 iWV1314 iHD666 iMA871 iIB711
Number of gene-EC number pairs 573 1,329 847 818 694
Number of unique EC numbers 481 711 455 482 407
Number of metabolic reaction without 
genes

83 65 29 112 72

Number of unique EC numbers 
without genes (number of gaps)

52 61 28 90 68

Percentage of metabolic gaps 11% 9% 6% 19% 17%

This table shows detailed content of the five metabolic networks. Unique EC 
numbers are accounted for the set of EC numbers appeared in the network. 
Number of metabolic gaps is the number of unique metabolic reactions that have 
no genes annotated. Percentage of gaps is calculated as ratio of gaps over unique 
EC numbers.

Table 2: Metabolic network contents.



Citation: Nguyen NN, Vongsangnak W, Shen B, Nguyen PV, Leong HW (2014) Megafiller: A Retrofitted Protein Function Predictor for Filling Gaps in 
Metabolic Networks. J Proteomics Bioinform S9: 003. doi:10.4172/0974-276X.S9-003

Page 5 of 11

Computational Intelligence in 
Bioinformatics

J Proteomics Bioinform ISSN: 0974-276X JPB, an open access journal 

score, calculated as follows: Suppose that a gap filler method proposes a 
candidate gene p for an input EC number e. Then the predicted pair (e, 
p) is said to be a true positive if (e, p) is in the NK; otherwise it is called as 
a false positive. A pair (e, p) is called a false negative if it is in the NK, but 
is not predicted by the gap filler. Let TP, FP and FN denote the number 
of true positive, false positive and false negative, respectively. Then the
performance metrics are calculated as the following:

recall=TP/(TP+FN)

precision=TP/(TP+FP)

F2=5*precision*recall/(4*precision+recall)

We used F2 score to put more weight (double the importance) on 
the prediction coverage (recall), which is more important than the 
prediction precision for the purpose of finding missing gene candidates. 

The aim of MeGaFiller is to find candidate genes to fill gaps that 
existing direct gap filling methods have already failed. So, MeGaFiller is 
biased towards higher true positives and finding new candidate genes, 
at the expense of an increase in the number of false positives. In other 
words, it is more important to be able to find the candidate genes while 
incorrect predictions may be ruled out later by manual curation with 
the help of additional independent data sources. 

Parameter tuning for MeGaFiller 

MeGaFiller has several parameters, the weights wi for the 
component gap fillers and the threshold (θ). We tuned parameters 
using the known datasets as follows: Consider a species with genome G 
and reconstructed metabolic network N as NK (G). Let R (G) is the list 
of metabolic reactions (given by their EC numbers) in NK(G). For any 
given values of the parameters wi and θ, we ran MeGaFiller using the 
genome G and the R (G) to predict pair (e, p), namely to predict gene 
p in G for the EC number e in R(G). Let P(wi, θ, G) denotes this list of 
predicted pair obtained by MeGaFiller with parameters wi and θ. We 
then matched the predicted pair with NK (G) to compute F2 (P (wi, θ, G) 
| NK (G)), the F2 score for this parameter setting. These parameters are 
tuned by optimizing the F2 score:

(wi, θ)G=argmax {F2(P(wi, θ, G) | NK(G))}

All parameters were searched in the range (0,1) with step-size of 
0.01. 

Manual curation of candidate genes for metabolic gaps 

For new predictions made by MeGaFiller (and others methods) to 
fill the metabolic gaps in various networks, there is no ground truths. To 
evaluate, hence the reliability of these new predictions by MeGaFiller, 
we manually curated some of them to provide independent supporting 
evidences. For each predicted pair (e, p), we used the protein sequences 
of the candidate gene p to search against several annotation databases, 
such as NR (http://www.ncbi.nlm.nih.gov/refseq/), UniProt [34], Pfam 
[35], CDD [36] and KEGG [37] databases to look for significant hits with 
annotation of the function e. We also looked at the updated function 
annotation of the candidate p if such annotation exists in genome 
databases of the species. All the relevant supporting information for 
the candidate gene p was collated for further manual curation.

Results 
We now present our extensive results which are organized as 

follows: We first show an evaluation of individual retrofitted gap fillers 
using the known datasets from the five species studied. We show how 
these results supported our use of an ensemble scheme in MeGaFiller. 

Next, we provide results on parameter tuning of MeGaFiller. We show 
that MeGaFiller (with default optimal parameters) outperformed the 
individual component gap fillers with the highest recall and F2 score.

We then describe the main result of this study, namely using 
MeGaFiller for gap filling and the ability of MeGaFiller to fill critical 
gaps in the A. oryzae network. Besides, we then show comparison of 
our method, MeGaFiller with two other existing methods: GFAOP 
[3], a homology-based method and ADOMETA [38], a context-based 
method. Finally, we discuss how to use MeGaFiller to predict novel 
candidate genes for existing reactions and/or predict novel putative 
reactions in the metabolic network for a given species.

Evaluation of the individual retrofitted gap fillers 

To evaluate the relative performance of the retrofitted gap 
fillers (PFP-GF, B2G-GF, EFICAz-GF), we ran each of them on the 
same known datasets of the different species. A completely uniform 
comparison was not possible since each method relies on its own 
(different) reference data that were retrieved at different timestamps. 
To do a fairer comparison, we restricted the comparison to only those 
reactions that found in all three methods. We also excluded those EC 
numbers that were too general and focused on those that were specified 
in all 4 digits. We noted that, across the 5 genomes, between 1.0-8.3% 
of the pairs, were excluded by this process (and overall of only 4.7%).  

After this pre-processing, the known dataset for metabolic network 
iIN800 contains 573 known gene-EC number pairs, while the known 
dataset for network iWV1314 contains 1,329 known pairs. (The 
numbers of gene-EC number pairs in known datasets for iMA871, 
iHD666 and iIB711 are 818, 847 and 694 pairs, respectively). 

Figure 3 shows the prediction results of PFP-GF, B2G-GF, and 
EFICAz-GF on the known datasets for iIN800 and iWV1314 datasets. 
For the well-studied yeast iIN800 dataset, PFP-GF gave the largest 
number of true positive predictions, 520 out of 573. This was followed 
by EFICAz-GF with 445 true positive predictions while B2G-GF gave 
402 true positives. However, PFP-GF also predicted more false positives 
(1,438) compared to B2G-GF (164) and EFICAz-GF (119).

For the relatively less well-studied filamentous fungus iWV1314 
dataset, PFP-GF and B2G-GF gave many more true positive results 
(833 and 844 out of 1,329) than EFICAz-GF (445). PFP-GF also had 
the highest false positives (2137), while the enzyme-specific EFICAz-
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Figure 3: Performance evaluation of gap fillers. The dot plots show the 
number of true positives and false positives on iIN800 (S. cerevisiae) dataset 
(left), and iWV1314 (A. oryzae) dataset (right) by component gap fillers and 
the MeGaFiller. 
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GF had the lowest (119), and B2G-GF was in between (682), but closer 
to EFICAz-GF. The results for the other three genomes (also less well-
studied and annotated) were similar to that for iWV1314 and are not 
shown in Figure 3.  

We combined the results for all five genomes and observed that 
the retrofitted general protein function predictors gave higher average 
recall (PFP-GF: 67.5%, B2G-GF: 57.2%) compared to retrofitted 
enzyme-specific function predictors (EFICAz-GF: 46.4%). EFICAz-
GF has higher precision (77.5%) than B2G-GF (62.4%) and PFP-GF 
(27.4%).

This can be explained by the fact that, enzyme-specific function 
predictors like EFICAz focuses on accurately classifying only enzymatic 
functions. Hence, they tend to make fewer predictions that are more 
accurate (higher precision) and they may lose in prediction coverage 
(lower recall), especially on datasets of less well-studied species. On the 
other hand, PFP, being a general protein function predictor gave more 
predictions than either EFICAz or Blast2GO, but suffered from lower 
precision. 

Evidence to support an ensemble approach 

We compared the actual predictions made by PFP-GF, B2G-GF, 
and EFICAz-GF for the iIN800 and iWV1314 datasets. The Venn 
diagram is shown in Figure 4. For each species, we observed that the 
number of true positive predictions in the 3-way common intersection 
is quite small, and each of gap filler produced its own unique true 
positive predictions. We also observed that PFP-GF gave the most 
unique true positive predictions, but with a high false positive rate. 
Thus, combining the prediction results of PFP-GF with that of B2G-GF 
or EFICAz-GF will increase the precision. 

More generally, this suggests that we need to leverage on the results 
of all the gap fillers. Our method, MeGaFiller used a weighted ensemble 
scheme to combine the results of all three gap fillers to leverage on 
the high recall of PFP-GF and the high precision of the B2G-GF and 
EFICAz-GF. 

Parameter tuning for MeGaFiller

To tune MeGaFiller, the known datasets of the five species 
for different parameter settings were used. The weights wi for the 
component gap fillers and the threshold θ were searched for the 
parameter setting in order to obtain the highest F2 score. As mentioned 

earlier, the parameters were searched in the range (0,1) with step-size 
of 0.01.

We found that the optimal parameter setting was species dependent. 
So, we optimized the parameters for each species (dataset) separately as 
shown in Table 3. These were used as default settings for MeGaFiller 
on corresponding dataset. As can be seen, the iIB711 dataset (the last 
one) gave different results from the other 4 datasets. So, we discuss 
results for the first 4 datasets. The optimal weights wi for PFP-GF and 
B2G-GF were high while the optimal weights for EFICAz-GF were the 
lowest (except for the iIB711 dataset). The optimal threshold θ ranged 
from 0.4 to 0.63. For each dataset, the optimal θ was quite close to the 
highest weight wi. This suggests that the score of the highest weight 
component gap filler (usually PFP-GF) must be very close to 1 or it is 
made by at least two component gap fillers (e.g. Recall that EFICAz-
GF scores are all 1.0, while PFG-GF scores range from 0.1 to 1). This 
result is consistent with our earlier stated objective of (a) leveraging 
the high recall of PFP-GF and (b) increasing the precision by having it 
“confirmed” by the other component gap filler. 

Evaluation of MeGaFiller on known datasets 

After parameter tuning, the optimized parameter settings were 
then used as default for MeGaFiller on the given dataset. The prediction 
results of MeGaFiller on known datasets for iIN800 and iWV1314 are 
shown in Figure 3. For both species, MeGaFiller produced more true 
positives than any one of its component gap fillers. In addition, the 
number false positive has improved drastically as compared to PFP-GF. 

For the yeast iIN800 dataset, the number of true positives from 
MeGaFiller was 524, compared to 520 for PFP-GF, 445 for B2G-GF 
and 402 for EFICAz-GF. Additionally, the number of false positive was 
154, drastically lower than 1,438 for PFP-GF, and comparable to those 
of EFICAz-GF (164) and B2G-GF (119). For the filamentous fungus 
iWV1314 dataset, the number of true positives for MeGaFiller was 
931, which was much better than 833 for PFP-GF, 844 for B2G-GF and 
489 for EFICAz-GF. While the number of false positive went down to 
979, compared with 2,137 for PFP-GF, 682 for EFICAz-GF and 119 for 
B2G-GF.

Figure 5 shows the F2 score of MeGaFiller and the individual gap 
fillers, (PFP-GF, B2G-GF, EFICAz-GF) on the known datasets of all 
five species.  Clearly, MeGaFiller was consistently better than all of its 
component gap fillers over all the five datasets. In particular, we noted 
that the iMA871 dataset, MeGaFiller had F2 score of almost 60%, even 
when all the component gap filler had F2 score below 50%. Summing 
over all the five species studied, MeGaFiller achieved average F2 score 
of 68%, with average recall of 73% and average precision of 55%.

Comparing MeGaFiller with other variants of ensemble 
scheme 

To further analyse the contribution of the weighted ensemble 
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Figure 4: Intersection of predictions made by different gap fillers on 
testing datasets. Common predictions made by different methods and the 
corresponding correctly predicted portion for iIN800 (left) and iWV1314 (right) 
datasets. There are 357 predictions made by all gap fillers on iIN800 dataset, 
in which 331 predictions are correct (93%). None of methods can cover all 
possible correct predictions.

Network
dataset

w1
(PFP-GF)

w2
(B2G-GF)

w3
(EFICAz-GF)

Θ

iIN800 0.60 0.10 0.30 0.63
iWV1314 0.43 0.47 0.10 0.40
iHD666 0.65 0.20 0.15 0.63
iMA871 0.40 0.50 0.10 0.40
iIB711 0.13 0.30 0.57 0.30

Values of parameters (wi, θ) optimized by maximizing F2 score on the known 
dataset NK for each network. These weights and thresholds were used for gap 
filling on corresponding metabolic network. 

Table 3: Optimal parameters for MeGaFiller.
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scheme used in MeGaFiller, we compared with two other ensemble 
variants. The first is a Non-Weighted ensemble in which the weights 
are equal (in this case, wi =1/3 for each of the 3 components). The 
second, called Common-2 ensemble, uses simple voting and keeps 
only predictions made by at least 2 component gap fillers (this version 
ignores all the weights and the scores in MeGaFiller).

We repeated the evaluation on these two ensemble variants and 
compared them with MeGaFiller. Table 4 shows the F2 score of the three 
ensemble variants. As expected, the three variants have very similar 
F2 scores. Table 4 also shows that MeGaFiller (the weighted version) 
achieved the highest F2 score over all five datasets. The non-weighted 
ensemble variant performed only slightly better than the Common-2 
ensemble variant. We suggest that if no parameter tuning can be done, 
then the Common-2 ensemble variant based on simple voting may also 
be a good strategy. 

Effectiveness of MeGaFiller in Filling Gaps in Metabolic 
Networks

We evaluated the effectiveness of MeGaFiller in filling the 
metabolic gaps in the metabolic gap dataset NG for the five metabolic 
networks. For each metabolic gap from the NG, MeGaFiller produced a 
list of candidate genes, if any, from the target genome that perform the 
function of the metabolic gap. We measured the number of gaps filled 
and the total number of candidate genes predicted for these gaps. 

Table 5 shows the results obtained by MeGaFiller. For each network, 
Table 5 shows the number of metabolic gaps, the number of gaps filled 
(putatively with at least one candidate gene), the total number of 
candidate genes predicted for these gaps, and the percentage of gaps 
putatively filled by MeGaFiller. For the iIN800 network, MeGaFiller 
putatively filled 15 out of 52 gaps (29%), and for iWV1314 network, 
it putatively filled 12 out of 61 gaps (20%). It obtained even better 
results for two of the less well-studied species which were 37% for 
iIB711 network and 61% for iHD666 network. On average, MeGaFiller 
putatively filled 35% of the metabolic gaps in the five networks. In 
following description, we highlight some results from MeGaFiller. 

Example 1: Consider the Fumarylacetoacetate hydrolase reaction 
(EC 3.7.1.2) in Phenylalanine, tyrosine, and tryptophan biosynthesis 
pathway in the S. cerevisiae iIN800 network. This is currently a 
metabolic gap in the S. cerevisiae iIN800 network. MeGaFiller predicted 
the candidate gene identifier YNL186C in S. cerevisiae for this reaction 
(EC 3.7.1.2). Through our manual curation, we found that YNL186C 
matches to the Pfam FAA_hydrolase family (PF01557) with an e-value 
of 1.1e-49, and significantly matches with InterPro entry IPR002529 
(Fumarylacetoacetase, EC 3.7.1.2). Hence, there is direct evidence to 
support this candidate gene, even though it is currently still unknown 
function in the SGD database.

Example 2: In A. nidulans iHD666 network, the reaction EC 
3.1.3.3 (Phosphoserine phosphatase) is a metabolic gap. MeGaFiller 
predicted AN10593 is a candidate gene for this reaction. Currently, in 
AspGD database, this gene is annotated as uncharacterized function. 
In fact, this candidate gene hits to HAD family in Pfam database with 
significant e-value of 2.6e-16. This family involves phosphoserine 
phosphatase activity. Besides, sequence similarity searching against 
Swiss-Prot database also gives supporting evidence for this candidate 
gene.

Example 3: In A. niger iMA871 network, the reaction EC 4.2.3.5 
(Chorismate synthase) is a metabolic gap. MeGaFiller found the gene 
ID 54235 as a candidate in A. niger genome. This candidate matches 
well with the chorismate synthase domain with e-value of 6.5e-130 in 
Pfam database.

Example 4: In S. coelicolor iIB711 network, the reaction EC 4.1.1.36 
(Phosphopantothenoylcysteine decarboxylase) is a metabolic gap. 
MeGaFiller predicted SCO1477 is a candidate gene. This candidate is 
annotated as putative flavoprotein homologue in Uniprot database. 
However, it matches well with DFP (with e-value of 1.6e-69) and 
Flavoprotein (with e-value of 8.6e-34) domains in Pfam database. 
Furthermore, KEGG database also confirms EC 4.1.1.36 activity for 
this candidate gene.

In addition, we further analysed which component gap fillers 
predicted the most gaps. As expected, within MeGaFiller, PFP-GF 
always produces the most number of candidate genes predictions. For 
examples, for the S. coelicolor iIB711 dataset, PFP-GF predicted 63 out 
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Figure 5: Relative performance of different gap fillers and MeGaFiller. F2 
score is shown for each method on 5 network datasets. MeGaFiller achieved 
the highest value, which outperformed all components.

Network dataset MeGaFiller Non-weighted Common-2
iIN800  88.27  86.71  86.40
iWV1314  62.67  60.48  59.86
iHD666  61.55  58.77  58.39
iMA871  58.86  54.53  53.64
iIB711  67.91  67.14  66.91

F2 score [%] of our weighted ensemble (MeGaFiller) is always better than that of 
non-weighted version and Common-2 voted version. The non-weighted version 
was run the same as weighted version, except that the weights were fixed equally. 
The common voted version was run by taking only predictions that were made by at 
least 2 component gap fillers (ignoring both weights and scores). The largest value 
for each row is shown in bold. The non-weighted version slightly performed better 
than the Common-2 voted version.

Table 4: Performance of different variants of our ensemble gap fillers.

Network dataset iIN800 iWV1314 iHD666 iMA871 iIB711
Number of metabolic gaps  52  61  28  89  68
Number of metabolic gaps putatively filled  15  12  17  23  25
Number of putative candidates  25  15  68  61  64
Number of percentage metabolic 
gap filled

 29%  20%  61%  26%  37%

For A. oryzae metabolic network (iWV1314), MeGaFiller predicted one or more 
candidate genes for 12 (out of 61 (20%)) metabolic gaps (and a total of 15 
candidates). 
Table 5: Number of putatively filled metabolic gaps for the five metabolic 
networks.
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of the 64 candidate genes from MeGaFiller, while B2G-GF predicted 60 
candidate genes and EFICAz-GF predicted 9 candidate genes. Overall, 
within MeGaFiller, the general gap fillers (PFP-GF and B2G-GF) 
always contribute more predictions than the enzyme-specific gap filler 
(EFICAz-GF). 

Filling Critical Gaps in the Metabolic Network of A. oryzae

A more detailed analysis of the metabolic network iWV1314 for A. 
oryzae shows that there are 61 metabolic gaps (EC numbers) involved 
in 65 reactions that are spread over 37 metabolic pathways. To judge 
whether a gap is critical, we manually examined its reference pathway 
map given by KEGG database. A reaction in a pathway is called critical 
if it is the only reaction that consumes/produces a metabolite that is 
specific to the pathway. In other words, without that transformation, 
this pathway will not be connected, and hence the reaction is critical. 

There are 28 critical gaps in the A. oryzae iWV1314 network, and 
33 non-critical gaps. Significantly, MeGaFiller predicted 12 candidate 
genes for 10 of these critical gaps. This means that MeGaFiller filled 
the gaps that are most likely to improve the connectivity of metabolic 
networks.

Example 5: Consider the Pantetheine-phosphate adenylyltransferase 
(PPAT) reaction (EC 2.7.7.3) which is currently a metabolic gap in 
the A. oryzae iWV1314 network. This reaction is a critical gap in the 
Coenzyme A and pantothenate biosynthesis pathway (Figure 6) as it is 
the only transformation that produces Dephospho-CoA, which is the 
substrate to produce Coenzyme A. Without this reaction, the pathway 
is not functional and the Coenzyme A cannot be synthesized by this 
pathway. 

This PPAT gap reaction by EC 2.7.7.3 was predicted by MeGaFiller 

(both PFP-GF and B2G-GF) to be catalysed by the candidate gene with 
identifier AO090023000706 in the A. oryzae genome. But, currently 
this gene shows un-annotated function in the DOGAN database. 

However, we found strong supporting evidence for this prediction. 
Firstly, the protein matches with PPAT_CoAS (Phosphopantetheine 
adenylyltransferase domain) in CDD database with an e-value of 
1.48e-36. It is also matches to Pfam’s cytidylyltransferase domain 
(which is more general than PPAT) with an e-value of 6.1e-05. Another 
matching CDD entry is PRK01170, which is provisionally annotated 
as phosphopantetheine adenylyltransferase/unknown domain fusion 
protein. In addition, the corresponding ortholog in yeast (assigned by 
Ortho-MCL database) is the gene YGR277C, which is annotated as a 
PPAT by SGD database. With these strongly supporting evidences, 
we believed that AO090023000706 is the missing gene for the reaction 
with EC 2.7.7.3. With the assignment of the gene AO090023000706 to 
this reaction, the pathway becomes complete function. The full list of 
novel candidate genes for the metabolic gaps in A. oryzae iWV1314 
network filled by MeGaFiller can be found in additional file 1. 

Comparison of MeGaFiller and GFAOP for gap filling

We compared MeGaFiller with an existing homology-based direct 
gap filling method, GFAOP [3]. A direct comparison with GFAOP was 
not possible since the first step of GFAOP with identifying the protein 
family given the EC number requires expert domain knowledge 
which is not easy to automate in software. Instead, we compared 
the predictions of MeGaFiller against the set of metabolic gaps in A. 
oryzae that were previously filled by the GFAOP method. While this 
comparison is not ideal, it is a reasonably close approximation. GFAOP 
used older datasets than MeGaFiller, but GFAOP have domain expert 
input while MeGaFiller does not. 

For this comparison, we first extracted the set of metabolic gaps 
from the A. oryzae iWV1314 metabolic network that were previously 
filled by GFAOP, together with the set of gene-EC number pairs 
predicted by GFAOP. This set represents the “difficult-to-fill” metabolic 
gaps that had remained in the network before applying GFAOP, but 
were then successfully filled by GFAOP. We called this the recently-
filled gaps dataset WV-RFG and it contains 162 gene-EC number pairs. 

We used MeGaFiller to fill these metabolic gaps in WV-RFG. 
MeGaFiller managed to predict 169 gene-EC number pairs. These 
predictions were compared with WV-RFG (the results obtained by 
GFAOP in [3]). MeGaFiller also predicted 102 (or 63%) of the 162 gene-
EC number pairs filled by GFAOP. We note that this is a reasonably 
good performance by MeGaFiller since GFAOP uses domain expert 
input while MeGaFiller does not.  

We then analysed the other 67 pairs predicted by MeGaFiller that 
were not in the WV-RFG. These predictions are either false predictions 
or additional gene-EC number pairs that were missed by GFAOP 
earlier. After our manual curation, we found that 38 (out of 67) pairs 
have strong supporting homology evidences over multiple annotation 
databases (e.g. CDD, Pfam, and UniProt databases), see additional 
file 2. Thus, it is likely that these 38 pairs predicted by MeGaFiller are 
actually additional gene-EC number pairs for the A. oryzae metabolic 
network, but they were missed by GFAOP.  In the following, we give 
two illustrative examples. 

Example 6: Consider the Endo-1,4-beta-xylanase reaction (EC  
3.2.1.8) which is a metabolic gap in WV-RFG and is in the Polysaccharide 
metabolism. GFAOP predicted 6 gene-EC number pairs. For this 
reaction (EC 3.2.1.8), MeGaFiller gave a total of 8 gene-EC number 

Figure 6: Filling gap for Pantothenate and CoA biosynthesis pathway 
in A. oryzae. The picture was modified from KEGG Pantothenate and CoA 
biosynthesis pathway (aor00770). Green-filled boxes are reactions with 
already identified genes in A. oryzae. White boxes are reactions without genes 
identified in A. oryzae. The EC 2.7.7.3 reaction (thick red-border box) is the 
“bottle-neck” for producing Dephospho-CoA, the substrate metabolite for CoA 
synthesis. MeGaFiller predicted AO090023000706 is the protein that catalyses 
for this reaction in A. oryzae.
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pairs (including the 6 pairs predicted by GFAOP). The two additional 
pairs involve candidate genes with identifier AO090026000103 and 
AO090103000141 in A. oryzae. But, both these genes are currently un-
annotated in the A. oryzae genome. 

Through our manual curation, we found that both these candidates 
AO090026000103 and AO090103000141 matches (with e-value 2.3e-
44 and 2.5e-44, respectively) to Glycoside hydrolase (Glyco_hydro_11) 
domain in Pfam (PF00457) database. The family 11 of this domain 
comprises enzymes with only one known activity of xylanase (EC 
3.2.1.8). 

The previous method GFAOP missed both candidates. We found 
that there are two protein families (PF00457 and PF00331) that can 
perform this metabolic activity. We conjecture that GFAOP probably 
took only one family (PF00331) as its input and hence missed these 
predictions. 

Example 7: Consider the A. oryzae gene with identifier 
AO090009000675, which is currently annotated in DOGAN database as 
a putative sugar kinase, and assigned in the A. oryzae iWV1314 network 
as a NADH kinase (EC 2.7.1.86, in NAD and NADP Conversion 
pathway). MeGaFiller predicted (by all component gap fillers) this 
gene for another metabolic reaction NAD(+) kinase (EC 2.7.1.23). The 
Pfam homology confirms that it is a member of NAD(+) kinase family 
(PF01513) with an e-value (1.3e-47). This kinase family (PF01513) 
includes both EC 2.7.1.23 and EC 2.7.1.86 enzymatic functions. GFAOP 
found one of these, namely the EC 2.7.1.86 enzymatic function, while 
MeGaFiller found both of them.  In this instance, MeGaFiller filled a 
gap and at the same time, found an additional metabolic reaction for 
an existing enzyme. 

This example shows that MeGaFiller can also supplement protein 
function predictions, and in this case, it improves the network for the 
NAD and NADP Conversion co-factor pathway. The full list of 67 
gene-EC number pairs predicted by MeGaFiller, together with their 
homology evidences can be found in additional file 2.

Explaining why GFAOP missed the remaining 61 metabolic 
gaps: We analyzed why the GFAOP missed the 61 metabolic gaps in 
the iWV1314 network. To fill a gap (given by EC number), GFAOP 
firstly needs to find specific protein family for the given EC number. 
Examining the 61 EC numbers of the gaps in the iWV1314 dataset, 
we found that only 9 EC numbers (of the 61) have corresponding 
Pfam protein family translation. However, GFAOP could not find 
any protein encoding in the genome of A. oryzae that matches with 
these 9 protein families. The remaining 52 EC numbers cannot map 
into specific Pfam protein family (as already explained in Background 
section). Some of these are too general, some are mapped to many Pfam 
families, and some are grouped under complicated Pfam sub-domain 
structures. Thus, there is no single specific protein family that can be 
used by GFAOP for those gaps. In contrast, MeGaFiller was able to fill 
12 of these 52 gaps in this category, as explained earlier.

Comparison of MeGaFiller with ADOMETA

We also carried out a comparison of MeGaFiller with ADOMETA 
[38] which is a context-based method for gap filling. ADOMETA
leverages gene association data [38-40] and can be used to predict new 
gaps as well as filling existing and predicting gaps. For comparison of 
MeGaFiller with ADOMETA, the published results of ADOMETA 
were used. The dataset used in ADOMETA was the metabolic network 
iFF708 of yeast S. cerevisiae from a year 2003. This dataset has 513 
genes, 386 EC numbers, and 541 pairs. It was reported that during 

self-testing for ADOMETA with this iFF708 dataset and combined 
with gene association data, achieved 60% recall based on their top-50 
predicted candidates [38]. It is noted that the precision of ADOMETA 
was not reported. 

We ran MeGaFiller on the same iFF708 dataset, and achieved a 
recall of 87% with a precision of 77%. These are significantly better 
results, in both recall and precision. Of course, this is not a completely 
fair comparison-part of the improvement could be due to the more 
up-to-date reference information used by the component protein 
function predictors. However, we believe that homology evidence 
(where they exist) is stronger than association evidence in predicting 
these candidate genes. By relying on homology evidence to make its 
prediction, we believe that the candidate genes predicted by MeGaFiller 
are more reliable.

This result also suggests that one reason MeGaFiller worked well 
for less-characterized genomes is that the homology reference for 
them, in other existing genomes, was richly available and these could 
help MeGaFiller and other homology based methods like GFAOP to 
find the correct candidate genes. 

Using MeGaFiller to make putative enhancement of metabolic 
networks

While MeGaFiller was designed primarily to fill metabolic gaps, we 
can also use it as a method to make putative enhancement to current 
metabolic networks. This enhancement is in the form of (a) putative 
candidate genes for existing reactions in the network, and (b) novel 
putative reactions for the current metabolic network. Here, we give 
some results.

Novel candidate genes: To do this for any target species, we 
ran MeGaFiller on the genome of the target species using the list of 
all EC numbers from the metabolic network of the species. We then 
filtered out the predictions that were already found in the networks. 
The remaining predictions contain novel candidate genes for existing 
reactions in the network. 

We ran this for all the five networks and the results are shown in 
Table 6. For the A. oryzae iWV1314 network, MeGaFiller predicted 587 
novel candidate genes (for 215 EC numbers). The numbers of novel 
candidate genes for S. cerevisiae iIN800, A. nidulans iHD666, A. niger 
iMA871 and S. coelicolor iIB711 networks were 231, 384, 289 and 280, 
respectively (see Additional file 3). These predicted candidate genes 
need to be further curated and validated, but they give a valuable 
supplement of candidate genes for enhancement of these metabolic 
networks. 

Novel putative metabolic reactions: To use MeGaFiller to predict 
novel metabolic reaction for current networks, we first retrieved all 
the EC numbers in the reference metabolic pathway (with identifier 
ec01100) from KEGG database. In all, there were 1,464 EC numbers 
relevant to metabolism. We filtered all EC numbers that were already 
found in the A. oryzae network (iWV1314). The remaining 753 EC 
numbers were used as input for MeGaFiller. Of these, MeGaFiller 

Network dataset  iIN800  WV1314  iHD666  MA871  iIB711
 Number of genes in current network  707  1346  674  831  711
 Number of novel candidate genes  231  587  384  289  280
The number of novel candidate genes predicted by MeGaFiller for the five metabolic 
networks. These candidates need to be further curated, but they represent big 
potential enhancement in the gene coverage of these metabolic networks. 
Table 6: Novel candidate genes predicted by MeGaFiller for the five metabolic 
networks.
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predicted 369 candidate genes for 119 new EC numbers with 
corresponding novel putative metabolic reactions for A. oryzae. These 
novel putative reactions also need to be further curated and validated. 
Potentially they can further enhance the metabolic network.

Discussion 
Metabolic gaps that exist after network reconstruction are usually 

“difficult-to-fill”, since earlier gap filling methods have already failed to 
find them. While previous homology methods for gap filling that are 
based on protein family profile have been successfully used to enhance 
the reconstructed networks [3,19], they may fail if the protein family 
is poorly defined. Our approach based on retrofitting protein function 
prediction has indeed overcome the issue, since it does not require the 
concrete protein family. In this case, any individual protein in reference 
databases could help. The fact that MeGaFiller was able to fill 12 gaps 
(missed by previous method GFAOP for A. oryzae network), which 
have no specific protein family interpretation, has confirmed our idea. 
Furthermore, MeGaFiller is able to predict many additional candidate 
genes for existing reactions, as well as novel putative metabolic 
reactions throughout the metabolic network.

Conclusions 
In this work, we demonstrated that retrofitting state-of-the-art 

protein function predictors can help to find candidates for “difficult-
to-fill” local metabolic gaps that missed by previous direct gap filling 
methods. We implemented and tested an ensemble MeGaFiller 
method, which rationally combined three retrofitted gap fillers. We 
also performed gap filling and manual curation for A. oryzae network, 
and putative enhancement for the other four reconstructed metabolic 
networks.

Re-validation on filled gaps in A. oryzae network and manual 
inspection showed that our method was able to reliably propose 
more candidate genes that were missed by previous methods. There 
were strong supporting evidences found for these candidate genes in 
A. oryzae metabolic network, which suggests that our methodology
is reliable. Thus, our method can serve as an effective bioinformatics
tool for filling metabolic gaps and enhancing reconstructed metabolic
networks.

We gave results on the use of MeGaFiller in tackling the related 
problem of detection and filling of gaps in metabolic network [14,15]. 
We also gave results on using MeGaFiller to predict novel candidate 
genes for existing reactions and novel putative reactions for the 
reconstructed metabolic network. This suggests that MeGaFiller may 
also be a powerful tool for investigating metabolism from metagenomics 
data, possibly with augmentation of context-based (association data) 
used in [38-42].

We next discuss some future work in this area: the first is to 
integrate more tools into MeGaFiller. Prediction power of MeGaFiller 
comes from its component tools, thus, if the retrofitted tools are 
capable of predicting globally missing genes, the integrated metabolic 
gap filler will have that capability as well. Recently, there are a number 
of annotation tools that make use of association data (network-based 
function annotation) such as GeneMANIA [43], and FS-weight [28]. 
These tools and data allow inferring functional associations between 
genes/proteins without sequence similarity reference. Thus, retrofitting 
and integrating gap fillers based on these tools will give MeGaFiller the 
capability of finding globally missing genes.

Recently, problem of finding globally missing metabolic gaps 

(orphan enzymes [17]) has been emerged [16,17]. Currently, there are 
6,320 enzymatic reactions are known in Enzyme database (December 
2013). However, only 4,534 enzymes (72%) have been annotated (as 
stored in Swiss-Prot database, December 2013). This means that, about 
28% of the known metabolic activities remain orphan. Several attempts 
have been made to tackle this problem, using context association 
data [38-42], integration of genomics, interactomics [44,45], and 
metagenomics data [1,42]. Nonetheless, this missing metabolic 
knowledge [16,17,46] still remains as a challenging problem.
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 Appendix A

Parameters for running the protein function predictors

PFP: no specific parameter was required. No threshold was applied. The PFP 
software and relevant data (August, 2008) was obtained from its authors [21].

Blast2GO: The web-service at (http://www.blast2go.com/b2glaunch) was run 
in January 2013 with reference database chosen as NR; other parameters were 
set by default (Blast with the best hits: top 20, E-value for annotation hit filter: 1e-6, 
Annotation cut-off: 55, GO weight: 5). 

EFICAz: It was run with CHIEFc (Conservation-controlled HMM Iterative 
procedure for Enzyme Family classification) option. The data was retrieved for 
EFICAz (http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.html) 
at January, 2011.
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