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In the fall of 2001, several envelopes containing spores of Bacillus 
anthracis (the causative agent of anthrax) were sent through the U.S. 
mail to locations in New York, New Jersey, Florida, and Washington 
D.C. As a result, numerous government and private buildings were
contaminated to varying degrees [1]. Full remediation of these facilities
cost over $650 million, and took more than three years to complete
[1,2]. This relatively small incident underscores the need for bioterror
preparedness, as a biological attack on a much larger spatial scale which
would require significantly more time and resources for recovery [3-5].

Under the National Response Framework, the U.S. Environmental 
Protection Agency (EPA) is tasked as the lead agency for the federal 
response to a hazardous substance release [6]. In addition, Homeland 
Security Presidential Directive 10 tasks EPA to take the federal lead for 
developing specific standards, protocols, and capabilities to address the 
risks of contamination following a biological weapons attack; and to 
develop strategies, guidelines, and plans for decontamination of persons, 
equipment, and facilities following such an attack [7]. To address 
these emerging needs, the EPA increased its investment in homeland 
security preparedness, response capability, expertise, and research. One 
such investment, the National Homeland Security Research Center 
(NHSRC) within EPA’s Office of Research and Development (ORD), 
was created in 2002 and currently leads EPA’s Homeland Security 
Research Program (HSRP). A critical mission of the HSRP is to develop 
products and knowledge, through applied research, that enhance 
our nation’s ability to respond to and recover from biological attacks 
affecting indoor and outdoor environments. HSRP research is designed 
to aid incident responders at 1) effectively detecting, identifying, and 
characterizing contamination; 2) rapidly containing contamination 
and mitigating the effects of contamination spread; and 3) efficiently 
remediating and recovering (decontaminate, treat, and dispose of 
contaminated material) after contamination incidents [8]. 

EPA’s HSRP has made numerous advancements to the areas of 
sampling, detection, and decontamination [9-19]. However, several 
significant gaps and challenges remain. Specifically, numerous 
challenges related to determining the extent and magnitude of 
biological contamination following an incident need to be adequately 
addressed. One of the major issues relates to the strategies used for 
selecting how and where to collect samples following a contamination 
incident [20-22]. Potential sampling strategies may incorporate targeted 
(or judgmental) sampling, statistical sampling, or a combination 
of sampling strategies to ensure representativeness of the area and 
certainty of the sampling results [23]. Additionally, new methodologies 
are needed to rapidly detect B. anthracis spores in contaminated sites 
during and after remediation. 

Improvements in surface sampling and recovery efficiencies, as well 
as enhanced methods for concentration of agents during dislodgement 
and extraction procedures, would lower limits of detection and increase 
confidence in sampling results. The HSRP has recently developed 
rapid viability polymerase chain reaction (RV-PCR) which provides a 

faster, more cost-effective, and more sensitive method to detect viable 
B. anthracis spores within environmental samples [19,24,25]. With
estimated daily samples processing loads in the hundreds to thousands
following a large-scale biological release, innovative technologies are
needed to increase laboratory throughput and improve turnaround
times. Traditional technologies are labor- and time-intensive, causing
laboratory throughput issues and sample backlogs, making rapid sample
turnaround, and therefore, responsiveness, challenging [4]. Specifically,
using such technologies with the current nation-wide laboratory
capacity will require many months to years to analyze the large number
of samples that will be generated during response and recovery to a
wide area incident. Development of sampling techniques that reduce
laboratory burden, yet provide robust data on the spatial extent and
magnitude of contamination would expedite recovery operations.
Other sampling and detection challenges include a lack of method
specificity for B. anthracis (especially amongst a high background
of other microorganisms), difficulty detecting and/or recovering B.
anthracis from complex material surfaces, lack of validation for all
available sampling methodologies (surface and air), and uncertainties in
correlating surface contamination levels with risk of exposure. Closing
these sampling gaps, through systematic research and subsequent
knowledge transition to responders, will increase our ability to detect
and characterize the magnitude and extent of contamination before and
after remediation. This capability also improves the ability to select and
implement optimum remediation methods appropriate for the level of
contamination and types of materials contaminated.

Currently, there is a paucity of empirical data characterizing agent 
resuspension from surfaces in the time following an incident. In the 
wide-area scenario, understanding the degree to which spores resuspend 
from outdoor surfaces would allow development of informed response 
and recovery operations. Without such data, it is impossible to estimate 
the risk of chronic and/or acute exposure within the affected areas. 
Accordingly, further research into agent resuspension is warranted, in 
order to inform decisions to reduce risk. 

Other challenges are logistical in nature, including how to best 
decontaminate structures and the most effective response to a wide-
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area release. Past experience from the 2001 incident highlighted the 
extensive time and costs associated with building decontamination 
efforts [1,2]. Remediation was also complicated by the many different 
types of materials requiring decontamination, and the lack of products 
and technologies that were proven to be effective against B. anthracis 
spores [1] on such complex materials [22]. Wide-area biological 
releases present unique and significant challenges with respect to scale, 
availability of resources, and the time required to remediate a large 
outdoor area [4,21]. While volumetric (fumigation) decontamination 
using chlorine dioxide, hydrogen peroxide vapor, and formaldehyde 
have shown to be very effective for specific applications in facilities 
[1,2,26], in a wide-area incident, the number of available fumigant 
generators may be insufficient to rapidly decontaminate all affected 
buildings [4,27]. In addition, outdoor areas and items (streets, vehicles, 
etc.) would likely require surface treatment, as volumetric methods may 
not be feasible for most open areas [4]. Accordingly, lower tech methods 
such as liquid-based decontamination approaches may be deployed 
in order to ease application over wide areas, and therefore increase 
decontamination capacity [4,27]. While liquid-based sporicides are 
promising for some material types, other more complex materials are 
difficult to decontaminate using these methods [15,18,28]. Thus, more 
research is needed to identify and evaluate novel liquid- and foam-
based sporicides, application methods, and scalability; as increasing 
our options for decontamination will greatly enhance our ability to 
rapidly recover from a large-scale incident.

Disposal of contaminated waste during a remediation is a topic often 
overlooked. Waste disposal can greatly influence cost-effectiveness of a 
particular decontamination option, as the amount of waste generated 
varies greatly between decontamination approaches. As such, options 
and methods for waste disposal should be considered from the 
beginning of any response [5,29]. Current on-going research is aimed at 
improving the understanding of the effectiveness of currently-available 
waste treatment technologies, lowering the cost of waste disposal 
operations, reducing the amount of waste requiring stringent treatment 
before disposal, and informing incident responders of ways to optimize 
waste handling/segregation procedures while minimizing waste 
generation. Additional research in this area could yield information or 
technologies that significantly enhance waste management. 

A crucial final issue is the confirmation, following decontamination, 
of the effectiveness of methods employed and how best to determine 
when to proclaim a building or outdoor area clear for re-occupancy 
or reuse [30]. The current precedent for clearance standards following 
decontamination state that there be “no detection of viable spores” 
from any environmental sample where decontamination methods have 
been used [23]. Notably, differences in material surface types sampled, 
sampling and analysis methods utilized, the number of samples 
collected, and other factors can affect the confidence in sampling 
results. An additional issue is whether the previously-used clearance 
standard is achievable, and therefore appropriate, for outdoor areas or 
over wide-areas. Innovative sampling strategies and methodologies are 
needed to address these challenges. 

Ongoing research within EPA’s HSRP seeks to address current 
sampling (strategies and methods), decontamination, and waste 
management gaps in order to enhance our preparedness to respond to 
and recover from a biological contamination incident, from a small-
scale structure to a wide-area biological terror incident. Filling these 
significant research gaps requires the continuation of innovative 
lab- and field-scale research efforts, further improving effective 
communication between researchers and incident responders (end 

users) to get the information to the field (technology transfer), and 
advancing coordination between the various federal agencies within 
the homeland security mission space.	
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