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The capability to reprogram cellular metabolism in order to most 
effectively support proliferating cancer cells has been emerging as a 
hallmark of cancer. As a result, there has been a resurgence of interest 
in the field of tumour metabolism. Additionally, this reappearance in 
interest may partly be attributed to the tremendous capability of the 
recent technological advancement to explore the relationship between 
cellular metabolism and cancer to an extent which was not possible 
before. The most fundamental trait of cancer cells involves their ability 
to sustain cell proliferation in an uncontrolled manner. Uncontrolled 
cell growth also require intracellular metabolic adjustment to meet the 
continual demand of energy and macromolecules by the proliferating 
cells [1]. This necessity is well known to be served by increased glucose 
uptake and anaerobic glycolysis by cancer cells, also known as the 
Warburg effect [2]. This shift in tumour metabolism is critical for 
supporting cancer cells as increased glycolysis allows the diversion of 
glycolytic intermediates into various biosynthetic pathways, including 
those generating nucleosides and amino acids. This, in turn, facilitates 
the biosynthesis of the macromolecules and organelles required for 
assembling new cells [3]. Moreover, the Warburg-like metabolism seems 
to be present in many rapidly dividing embryonic tissues, once again 
suggesting a role in supporting the large-scale biosynthetic programs 
that are required for active cell proliferation [1,4]. Biochemical and 
molecular studies suggest several possible mechanisms by which 
this metabolic alteration may evolve during cancer development. 
These mechanisms include mitochondrial defects and malfunction, 
adaptation to hypoxic tumour microenvironment, oncogenic signaling, 
and an abnormal expression of metabolic enzymes [5]. However, 
it is not known that such shift in metabolism also payback to cancer 
promoting proteins in a way which further facilitates their function or 
prevents their downregulation, thereby constituting a vicious circle in 
favour of cancer cells. One such potential mechanism may involve the 
hexosamine biosynthetic pathway (HBP) and the post-translational 
modification of protein by b-N-acetylglcosamine (O-GlcNAc); as 
changes in glucose uptake and metabolism also alter nutrient signaling 
pathways, including HBP [6,7]. The final product of HBP is uridine 
diphosphate N-acetylglucosamine (UDP-GlcNAc) [8]. The UDP-
GlcNAc is a donor substrate for the post-translational modification 
at serine and threonine residues of a wide range of proteins including 
proteins known to be involved in the pathogenesis and progression of 
cancer (e.g. proteins enhancing glucose uptake, tumour suppressors, 
oncogenes, metabolic enzymes and mitochondrial proteins) [9]. For 
example, the constitutive activation of phosphatidylinositol 3 kinase/
protein kinase B (PI3K/Akt) pathway is known to upregulates glucose 
uptake in cancer cells, and various components involved in this process 
are known to undergo O-GlcNAc modification [9,10]. Therefore, a 
potential exists for a positive feedback role of O-GlcNAc modification 
in facilitating reprogrammed metabolism in cancer cells. Currently 
our knowledge of O-GlcNAc modification of proteins and their role in 
the maintenance of cancer cell phenotype is very limited. This lack of 
knowledge may be due to the insufficient tools and techniques in the 
past for the identification and quantification of O-GlcNAc modification 
in proteins. With recent development in mass spectrometry and other 
associated technology it appears to be getting feasible to perform such 
analysis [11,12].

The O-GlcNAc modification is catalysed by the enzyme 
O-linked N-acetylglucosamine transferase (OGT), which transfers

N-acetylglucosamine from UDP-GlcNAc to protein substrates;
whereas the enzyme N-acetyl-b-glucosaminidase (OGA), removes the
O-GlcNAc modification from the modified protein [13]. Together,
OGT and OGA dynamically alter the post-translational state and
function of proteins in response to cellular signals [9]. O-GlcNAc
modification is involved in extensive crosstalk with other post-
translational modifications, such as phosphorylation including
tyrosine phosphorylation and virtually all O-GlcNAc modified
proteins are phosphoproteins [9,14,15]. As many of the processes that
are perturbed in the pathogenesis and progression of cancer involved
altered protein phosphorylation, changes in O-GlcNAc modification
are likely to have effect on them. Such effects may also be mediated by
altering the crosstalk between the multiple pathways diverging from
growth factor receptors or by disruption of self-attenuating negative
feedback thus facilitating their constitutive activation.

The redirection of energy metabolism in cancer cell is largely 
orchestrated by proteins that are involved in one way or another 
in programming the core hallmarks of cancer [1]. However, their 
interconnection with tumour metabolism and eventual integration 
into the hallmarks of cancer remain elusive. O-GlcNAc modification 
may allow cells to couple reprogrammed cell metabolism to factors/
pathways known to support various hallmarks of cancer. For example, 
glycolytic fuelling has been shown to be associated with activated 
oncogenes (e.g., RAS, MYC) and mutant tumour suppressors (e.g., 
TP53) [16,17]. Moreover, hypoxic conditions that operates within 
many tumours, the hypoxia response system acts pleiotropically to 
upregulate glucose transporters and multiple enzymes of the glycolytic 
pathway [16-18]. Thus, both the Ras oncoprotein and hypoxia can 
independently increase the levels of the hypoxia-inducible factor (HIF) 
1a and HIF2a transcription factors, which in turn upregulate glycolysis 
[18-20]. Interestingly a number of these proteins have been identified 
as O-GlcNAc modified proteins [21]. It is possible that O-GlcNAc 
modification alter their function in a way which further supports cancer 
cells. Furthermore, tumour suppressor protein Rb and P53 operate as 
integration nodes for larger network that govern the decisions of cells to 
proliferate or alternatively activate senescence and apoptotic programs 
[1]. Tumour cells evolve a variety of strategies to limit or circumvent 
apoptosis, most commonly through the loss of P53 tumour suppressor 
function which is known to be linked with increased glycolysis 
[22,23]. The stability of P53 in cell is regulated by phosphorylation at 
multiple residues. Phosphorylation at Ser18 and Ser23 promotes P53 
stability whereas phosphorylation at Thr155 promotes P53 degradation 
[24]. The P53 has been identified as an O-GlcNAc modified protein. 
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Furthermore, it has been shown that O-GlcNAc modification of P53 
at Ser149 inversely correlates with Thr155 phosphorylation [25]. Thus, 
altered O-GlcNAc modification of P53 may contribute to the stability 
and function in cancer cells including its role in glycolysis. Similar 
reciprocal relationship between site specific phosphorylation and 
O-GlcNAc modification has been identified in the case of oncoprotein 
Myc [26,27]. Furthermore, oncogenes such as MYC, NF-kB, AKT, 
tyrosine kinases and tumour suppressor genes including TP53 and 
PTEN that have been linked to increased glycolysis, have also been 
implicated in the upregulation of glutamine [28]. Glutamine function 
as a source of both nitrogen and carbon and contains amino and amido 
nitrogens, which are transferred to metabolic intermediates in the 
synthesis of nucleic acids, proteins, and hexosamines making it a crucial 
nutrient during cell proliferation [29,30]. It is not surprising that novel 
imaging strategies focusing on glutamine that could provide a valuable 
complement to 18F-FDG PET, because glutamine complements glucose 
in the metabolic platforms that support tumour growth at the cellular 
level [29]. It should be noted that hexosamine biosynthesis integrates 
glucose and glutamine metabolism because the rate limiting step is 
the addition of the ã-amido group of glutamine to a hexose sugar by 
the enzyme glutamine fructose-6-phosphate amidotransferase [8]. 
Thus, tumour metabolism provides a favourable condition for the 
upregulation of O-GlcNAc levels in cancer and high GlcNAc levels 
have been shown to play a role in glutamine-dependent cell growth 
and proliferation [31]. Abnormal levels of O-GlcNAc in cancer cells 
may payback by altering post-translational control of protein function 
linked to oncogenic phenotypes. 

A developmental regulatory program, referred to as the epithelial-
mesenchymal transition (EMT), has become prominently implicated 
as a means by which transformed epithelial cells can acquire the 
abilities to invade, to resist apoptosis, and to disseminate [32-36]. This 
multifaceted EMT program can be activated transiently or stably, and to 
differing degrees, by carcinoma cells during the course of invasion and 
metastasis. An upregulation of O-GlcNAc levels have been implicated in 
EMT through the regulation of phosphorylation and ubiquitination of 
transcription repressor SNAIL1 that target E-cadherin [37]. Moreover, 
as UDP-GlcNAc, the product of HBP is not only required for OGT 
mediated O-GlcNAc modification of cytosolic and nuclear proteins but 
also in the glycosylation of membrane proteins, it is possible that high 
GlcNAc levels may contribute in EMT by changing the topology of cell 
surface proteins. Alternatively, O-GlcNAc effect could be mediated 
through altered O-GlcNAc modification of transcription factors that 
have been implicated in EMT [38].

Given an emerging role of O-GlcNAc modification as a 
fundamental regulatory mechanism involved in the various cellular 
processes it is highly unlikely that global approaches such as RNAi 
mediated knockdown of OGT and OGA or their overexpression, 
inhibiting OGT and OGA activity by small molecule inhibitors would 
provide a definite answer regarding protein specific role of O-GlcNAc 
modification in cancer cell metabolism or cancer phenotype. It would 
be very challenging to distinguish the target specific effect from non-
target effect of such global approaches. Although it has been proposed 
that increased glucose uptake/glycolysis in cancer cells may lead to 
increased glucose flux through HBP and subsequently increased 
O-GlcNAc modification in a number of proteins [7,30]. However, to 
the best of my knowledge no attempt has been made to study the effect 
of inhibitors of glycolysis on HBP, O-GlcNAc level and O-GlcNAc 
protein modification in cancer cells. Furthermore, such hypothesis is 
not tenable to explain the simultaneous downregulation of O-GlcNAc 
modification in a number of proteins in cancer cells [30]. Although not 

well understood, such findings are not surprising, keeping in mind that 
O-GlcNAc modification in protein is a highly regulated process and 
involved not only O-GlcNAc level, O-GlcNAc cycling enzymes OGT 
and OGA but also their interacting proteins and various modification 
status of the substrate itself [9,15]. Delineating the role of O-GlcNAc 
modification in relation cancer cell metabolism and function would 
require not only protein specific but also modification site specific 
approaches, as proteins are often subjected to a number of post-
translational modifications, often with very different and even opposite 
functional consequences. A better understanding of the underlying 
mechanisms could provide opportunities for the development of i) 
novel therapeutic agents to disrupt the vicious cycle of metabolism and 
cell signaling pathways which is critical for cancer phenotype, and ii) a 
rationale for simultaneous targeting of reprogrammed metabolism and 
cell signaling pathways.
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