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Currently, the  discovery  of Compounds induced Pluripotent 
Stem Cells (CiPSCs) and the  Stimulus-Triggered  Acquisition  of 
Pluripotency (STAP) cells are rocking the field of stem cells [1].

In 1981, the first embryonic stem cells (ESCs) were first derived 
from mouse embryos by two groups respectively [2,3]. In 1998, 
a breakthrough occurred when Thomson group first developed a 
technique to isolate and grow human ESCs in cell culture [4]. The 
finding of ESCs, especially the human ESCs, brought the hope for 
the regeneration medicine. However, because of the ethic issues and 
potential xenograft rejection problems of human ESCs, it is very hard 
for the derivatives of human ESCs to go directly towards clinical 
application. 

In 2006, Yamanaka group first showed a way of reprogramming 
mouse skin cells into pluripotent stem cells (induced Pluripotent 
Stem Cells, iPSCs) via defined transcription factors, which is a ground 
breakthrough in the stem cell field [5]. One year later, Yamanaka 
group and Thomson group successfully reprogrammed human tissues 
into iPSCs [6,7]. With the concept of reprogramming, more and 
more human somatic tissues were reprogrammed into iPSCs and 
adult stem cells, including Neural Stem Cells (NSCs). The somatic 
cell reprogrammed stem cells may potentially solve the ethic issues 
and the xenograft rejection problems caused by human ESCs derived 
cells for cell therapy, however, the traditional way of introducing 
reprogramming factors into somatic cells via lentivirus or retrovirus 
may bring another risk---tumor formation [8]. In order to overcome 
this problem, researchers developed several optimized approaches 
to reduce the risk of mutating genome, which include using plasmid 
DNA, RNA, RNA virus, and proteins [9-12]. In theory, after long-term 
passage or cellular metabolism, the induced exogenous factors could 
be completely removed from the cells; however, these methods are still 
not the best way to guarantee the safety of the introduced factors.

In front of us, it seems the better way is to find a method which 
could induce reprogramming without introducing any exogenous 
factors. In 2013, Deng group used a combination of several compounds 
to reprogram mouse somatic cells (both neonatal and adult) into 
iPSCs [3]. Right after the discovery, Obokata et al. reported a unique 
cellular reprogramming phenomenon, called Stilulus-Triggered 
Acquisition of Pluripotency (STAP), which requires neither nuclear 
transfer nor the introduction of transcription factors (Obokata et al., 

2014). Unfortunately, it looks this method has a hard time to convert 
adult somatic cells. Although neither of these two factor-free methods 
showed any successful case in human tissues, we can believe it is a 
fundamental step and great advance towards the clinical use of these 
reprogrammed cells.
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