

Relevance of *HLA-KIR* Genes in Chronic Hepatitis C Virus Infection Outcome

Ileana Constantinescu^{1,2*}, Larisa Denisa Ursu²

¹Carol Davila University of Medicine and Pharmacy, Bucharest, Romania

²Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Bucharest, Romania

*Corresponding author: Ileana Constantinescu, Department for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania

Received date: July 02, 2018; Accepted date: July 06, 2018; Published date: July 11, 2018

Copyright: ©2018 Constantinescu I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Editorial

Hepatitis C Virus (HCV) is responsible for over 170 million chronically infected worldwide people, most patients develop a lifetime chronic infection that can lead to severe liver pathology [1].

Substantial research evidences suggest that the innate immune response significantly contributes to HCV outcome [2,3]. Natural Killer (NK) cells have efficient anti-viral functions including direct cytotoxicity of infected cells and production of inflammatory cytokines [4]. Killer cell immunoglobulin-like receptors (KIRs) play a major role in regulating the activity of NK cells involved against viral infections, autoimmune diseases, cancers or post-transplantation [5-7].

Many recent studies have reviewed the importance of NK cells in chronic HCV infection outcome and the interactions between the *KIR* and *HLA* genes. Both molecules have structural polymorphisms which could be referred to a particular clinical condition [5-11].

Interaction between KIR and HLA-C molecules is the dominant control mechanism of the host NK cells. Genetic studies reveal that, in the early phase of HCV infection, specific KIR and HLA-C pairs are associated with the spontaneous resolution of HCV infection [8,9].

KIR2DL1 receptors recognize HLA-C group 2 antigens (lysine in position 80), KIR2DL2/3 receptors recognizes HLA-C group 1 antigens (asparagine in position 80) and KIR3DL1 is the receptor for HLA Bw4 molecules [10,11].

KIR2DL3-mediated inhibition of NK cells protects from HCV persistence, since KIR2DL3 has a lower affinity for its HLA-C ligand than other KIRs [12]. KIR2DL3 binds HLA-C1 with a weaker affinity compared with KIR2DL2 binding of HLA-C1. NK cells in HCV carriers with this combination of receptors and ligands could be more easily activated during HCV infection resulting in a better outcome [8,11].

Activatory *KIR2DS3* gene interaction with *HLA-C2* is significantly increased in HCV patients having a role in the development of chronic viral infection [12]. The authors of this study identify a strong influence of KIR B haplotype (and HLA-C2) for the activation of NK cells. In other previous study, a beneficial effect of a KIR A haplotype (with *HLA-C1*) was observed [8,13].

The role of *KIR* genes in susceptibility to chronic HCV infection and viral load level variations were revealed in different *KIR2DS3-KIR2DS5* genotypes combinations.

Kusnierczyk et al. have found that in patients with KIR2DS3+/ KIR2DS5- the HCV viremia levels was 2.6 times lower than in patients with other KIR genotypes [14]. In contrast, a study conducted by Podhorzer et al. has shown that KIR2DS3 expression was correlated with high viral load levels [15].

Our unpublished data, show on HCV Romanian infected patients, that in *KIR2DS3+/KIR2DS5-* genotype HCV viremia mean values were 2.2 times lower than in other genotypes.

All these evidence-based results underline that the immune response against HCV is complex. Interactions between NK activatoryinhibitory *KIR* genes and HLA alleles are important and challenging. These insights could offer more information related to different outcomes in HCV chronically infected individuals. Variable interactions between KIRs and HLA class I and class II molecules have a relevant influence on immunopathogenesis of HCV and have a significant impact on NK cells function.

Understanding HCV immunopathogenesis for an improved clinical management of chronic hepatitis C is further required.

References

- 1. World Health Organization (2017) New hepatitis data highlight need for urgent global response. WHO.
- Horner SM, Gale M Jr (2013) Regulation of hepatic innate immunity by hepatitis C virus. Nature Med 19: 879-888.
- 3. Bowen DG, Walker CM (2005) Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 436: 946-952.
- Fallahi P, Ferri C, Ferrari SM, Corrado A, Sansonno D, et al. (2012) Cytokines and HCV-related disorders. Clin Developmental Immunol 2012: 468107.
- Gardiner CM (2015) NK cell function and receptor diversity in the context of HCV infection. Front Microbiol 6: 1061.
- Moretta L, Moretta A (2004) Killer immunoglobulin-like receptors. Curr Opin Immunol 16: 626-633.
- 7. Constantinescu I, Nedelcu FD, Toader MA, Vasile D, Zaharia M (2006) Evaluation of KIR genotypes and cytokine gene polymorphism in Romanian kidney transplant recipients: Impact on acute and chronic allograft rejection. Tissue Antigens 67: 505.
- Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X (2004) HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305: 872-874.
- 9. Cheent K, Khakoo SI (2011) Natural killer cells and hepatitis C: action and reaction. Gut 60: 268-278.
- Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, et al. (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331: 44-49.
- Guethlein LA, Norman PJ, Hilton HG, Parham P (2015) Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev 267: 259-282.

 Romero V, Azocar J, Zuniga J, Clavijo OP, Terreros D, et al. (2008) Interaction of NK inhibitory receptor genes with HLA-C and MHC class II alleles in Hepatitis C virus infection outcome. Mol Immunol 45: 2429-2436.

 Dring MM, Morrison MH, McSharry BP, Guinan KJ, Hagan R, et al. (2011). Innate immune genes synergize to predict increased risk of chronic disease in hepatitis C virus infection. Proc Natl Acad Sci USA 108: 5736-5741.

14. Kusnierczyk P, Mozer-Lisewska I, Zwolinska K, Kowala-Piaskowska AE, Bura MI, et al. (2015) Contribution of genes for killer cell immunoglobulinlike receptors (KIR) to the susceptibility to chronic hepatitis C virus infection and to viremia. Hum Immunol 76: 102-108.

15. Podhorzer A, Dirchwolf M, Machicote A, Belen S, Montal S, et al. (2017) The clinical features of patients with chronic hepatitis C virus infections are associated with killer cell immunoglobulin-like receptor genes and their expression on the surface of natural killer cells. Front Immunol 8: 1912.