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Abstract
Despite numerous reports on immune checkpoint inhibitor for the treatment of non-small cell lung cancer (NSCLC), 

the response rate remains low but durable. Thus cisplatin still plays a major role in the treatment of NSCLC. While 
there are many mechanisms involved in cisplatin resistance, alteration in metabolic phenotypes with elevated levels 
of reactive oxygen species (ROS) are found in several cisplatin resistant tumors. These resistant cells become more 
reliant on mitochondria oxidative metabolism instead of glucose. Consequently, high ROS and metabolic alteration 
contributed to epithelial-mesenchymal transition (EMT). Importantly, recent findings indicated that EMT has a crucial 
role in upregulating PD-L1 expression in cancer cells. Thus, it is very likely that cisplatin resistance will lead to 
high expression of PD-L1/PD-1 which makes them vulnerable to anti PD-1 or anti PD-L1 antibody treatment. An 
understanding of the interactions between cancer cells metabolic reprogramming and immune checkpoints is critical 
for combining metabolism targeted therapies with immunotherapies.
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Introduction
Treatment for early stage lung cancer is surgery but most patients 

already have locally advanced or metastatic disease at the time 
of diagnosis. Chemotherapy combined with radiation therapy or 
chemotherapy alone remains the primary modality of treatment for 
stage 3 and 4 disease. Targeted agents such as erlotinib or gefitinib 
(EGFR inhibitor) or crizotinib or ceritinib (ALK inhibitors) have shown 
activity in NSCLC (non-small cell lung cancer) which possess these 
putative types of mutation. However, both EGFR mutation and ALK 
mutation are rare (only 5-20%) and usually occur in women and non-
smokers. Immunotherapy with checkpoint inhibitors has received much 
attention lately. They offer a longer duration of response; however, the 
response rate is still very low in lung cancer. In fact, a recent report on 
PD1 inhibitor (programmed death-1) did not show improved efficacy 
over standard chemotherapy as first line treatment in lung cancer and 
did not receive FDA approval as first line therapy for NSCLC. Another 
checkpoint inhibitor pembrolizumab has received FDA approval for 
first line treatment but only in tumors which express PD-L1 (program 
death receptor ligand-1). Therefore, platinum containing regimen 
remains the first line treatment in patient with NSCLC. Despite a 50% 
initial response rate to platinum-based chemotherapy, the majority of 
lung cancer patients develop resistance to treatment. Thus, cisplatin 
resistance remains the major impediment for the treatment of lung 
cancer.

Accumulating evidence suggests that tumor metabolism is in fact 
interconnected to drug resistance and it has proven to be one of the most 
important challenges in cancer treatment [1-3]. The observations of 
metabolic differences in cancer cells were first reported by Otto Warburg 
[4,5]. He showed that cancer cells prefer to utilize glucose even in the 
presence of oxygen; hence this led to the term “aerobic glycolysis”. This 
difference in energy metabolism between tumor and normal tissue has 
been utilized successfully in the development of a diagnostic imaging 
technique, fluoro-deoxy-glucose positron emission tomography (FDG-
PET) for cancer detection. However, what is not known is why certain 
tumors are PET-negative (not taking up FDG), and why PET negativity 
does not always correlate with tumor response. Thus, it is conceivable 

that PET negative’s tumors have undergone metabolic reprogramming 
after chemotherapy and are no longer addicted to glucose. To further 
support this notion, it has been shown that therapy-resistant tumors 
have altered metabolic phenotypes relative to treatment-naive tumors, 
with increased reliance on mitochondrial metabolism in the resistant 
cancers [6-9]. Increased mitochondrial metabolic activity can lead to 
high levels of reactive oxygen species (ROS) [10]. In fact, many have 
discovered that elevated reactive oxygen species (ROS) are found in 
cisplatin resistant (CR) cell lines including those derived from patients 
who failed cisplatin [11-14].

ROS, a harmful by-product of metabolism played an important 
role in signaling pathways. ROS is known to facilitate the activation 
of receptor tyrosine kinase signaling as well as PI3K/AKT which plays 
a vital role in cell growth/proliferation, survival, and motility [15,16]. 
Moreover, during the past decade, elevate ROS level in tumor cells have 
been implicated in epithelial-mesenchymal transition (EMT) [17-19]. 
Importantly, recent reports have shown that EMT played an essential 
role in upregulating PD-L1 (programmed death ligand-1) expression 
[20]. 

In this review, we provide a possible link between metabolic 
alteration and PD-L1 expression in cisplatin resistant lung cancer 
(Figure 1). Understanding these complex interrelationships will 
provide a new approach in overcoming the cisplatin resistance in 
lung cancer. 
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Cancer cells and their carbon sources

It is known that most if not all tumors utilize glycolysis instead 
of oxidative phosphorylation (OXPHOS) (4, 5). This is due to up-
regulation of glycolytic enzymes and glucose transporters [21,22]. In 
fact, increased glucose uptake is one of the hallmarks for malignant 
transformation [23,24]. Recently, it has been shown that up-regulation 
of pyruvate kinase-M2 (PKM2), an enzyme in the glycolytic pathway 
which converts phosphoenolpyruvate (PEP) to pyruvate, could be an 
answer for the aerobic glycolysis observed in Warburg’s theory. PKM2 
is a key protein in directing tumor cells toward glycolysis [25]. PKM2 
increases the DNA binding of HIF1α. Consequently, increases in 
HIF1α target gene expression. Cells expressing high levels of PKM2 
are known to consume less oxygen and produce more lactate [25]. 
On the other hand, reduced PKM2 activity allows accumulation of 
glucose-6-phosphate and thus shifts glucose flux toward the pentose 
phosphate pathway (PPP) to generate reduced NADPH. Consistent 
with this notion, acute increases in intracellular concentrations of ROS 
caused inhibition of the glycolytic enzyme pyruvate kinase M2 (PKM2) 
through oxidation of Cys358 in lung cancer cells [26].

Although increased glucose metabolism in cancer cell has been 
recognized as the main carbon skeleton source of energy, we and 
others [27] have shown that cisplatin resistant (CR) cells are no longer 
addicted to the glycolytic pathway [11,28]. CR cells use other carbon 
sources to replenish TCA cycle intermediates (anaplerosis) for their 
energy demand and biosynthesis. In this regard, reports have shown 
that certain tumor types are highly addicted to glutamine [29,30]. The 
cellular demand in these tumors outstrips its glutamine supply; hence 
glutamine becomes the conditionally essential amino acid. Moreover, 
studies have shown that reduction in lactate dehydrogenase A (LDHA) 

expression in cancer cells either by genetic knock down (shRNA) or 
inhibitor (FX11) resulted in the shift to oxidative phosphorylation 
(OXPHOS) and increased intracellular ROS [31,32]. Therefore, there 
is no doubt that alteration in metabolism has gained its status as a core 
hallmark of cancer. 

Redox and oxidative metabolism (OXMET)

A number of investigators have shown that cisplatin can inhibit 
thioredoxin reductase (TrxR) which leads to increased ROS. As a result, 
DNA damage occurs which can lead to cell death [33,34]. In order to 
adapt and survive at higher ROS levels and to evade cell death caused 
by cisplatin, CR cells use less thioredoxin-1 ( TRX1) and employ other 
antioxidant systems to compensate for the lack of TRX1 [35,37]. In fact, 
many reports showed that CR cells have higher level of glutathione 
(GSH) proteins [12,38,39]. Lower intracellular TRX1 also was not 
due to the protein degradation caused by cathepsin-D [40], but as a 
consequence of increased TRX1 secretion. TRX1 is secreted via special 
secretory pathway called “leaderless pathway”. This pathway is known 
to secrete low molecular weight proteins which lack signal peptide [41-
43]. The mechanism of how this pathway functions remains poorly 
understood. Nevertheless, increased TRX1 secretion usually occurs 
when cells are under stress [44-46] and is found in patients who 
received cisplatin treatment [47,48]. In fact, many investigators have 
reported that higher serum TRX1 resulted in bad prognosis and drug 
resistance [49,51]. Decreased intracellular TRX1 has also been shown 
to reprogram lung cancer cells to become more reliant on oxidative 
metabolism (OXMET) [11] and overexpression of Txnip, an inhibitor 
of TRX1, can lead to adipogensis [52]. Thus, these findings could have 
future implication for drug development to selectively kill CR cells that 
have high ROS and low TRX1 levels. 

ROS triggers epithelial-mesenchymal transition (EMT) in 
cancer cells

One of the first studies that established a direct connection between 
ROS and EMT was reported in the cross-talk signaling between ROS 
and TGF-β [53]. TGF-β stimulated ROS production was responsible 
for E-cadherin repression [53]. EMT related molecular events can also 
be stimulated by H2O2 treatment. It was noteworthy that the crucial 
event in EMT is represented by the disassembly of the epithelial 
structure and thus, E-cadherin down regulation was the most relevant 
step [19,54]. Several transcription factors contributed to this event for 
allowing E-cadherin repression. One of the important factors was the 
two zinc fingers E-box binding homeobox transcription factor ZEB1 
and ZEB2 [55]. While ZEB1 is known to repress T lymphocytes IL2 
gene expression, ZEB2 (previously known as SMADIP1, SIP1) can 
activate TGFβ. These repressors collaborate with histone deacetylases 
and histone demethylases, ensuring the maintenance of the silenced 
state of the E-cadherin gene [56].

The relationship between EMT and PD-L1 regulations

EMT is known as a driving force for metastasis and drug 
resistance. The presence of EMT signifies poor prognosis in many 
tumors including NSCLC [57]. Another factor which dictates tumor 
cells behavior is the immune cells in the tumor microenvironment. 
Studies have been carried out in lung adenocarcinoma which showed 
an increase in inflammatory signal cytokines such as IFN gamma and 
immune checkpoints markers including PD-L1/2, PD1, TIM3, B7H3, 
BTLA, LAG3 and CTLA4 [57]. Correlation between EMT and PD-L1 
expression [58-60] is illustrated in Table 1. Furthermore, induction 
of EMT increased immunosuppressive cytokines and increased 
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Figure 1: Acquired resistance to cisplatin results in accumulation of cellular 
ROS. Increased ROS levels involved in metabolic reprogramming by 
switching cisplatin resistant cells from glycolysis toward oxidative metabolism 
and triggers epithelial-mesenchymal transition (EMT). Furthermore, induction 
of EMT may lead to increase in PD-L1 expression in tumor cells.
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immunosuppressive CD8+ tumor infiltrating lymphocytes in preclinical 
models of lung, melanoma, pancreatic cancer, and breast cancer [61-
63]. Importantly, microRNA200 and ZEB1 axis, which is known to 
control cancer cell migration/invasion and EMT, can also regulate 
PD-L1 expression. Decrease in PD-L1 expressions was reported as a 
consequence of ectopic microRNA 200 expression or ZEB1 knockdown 
models [20]. In fact, low microRNA200 with high ZEB1 and PD-L1 
expressions in mesenchymal tumors created a microenvironment of 
decreased CD8+ T-cells populations [20]. 

PD-L1, a ligand of PD1 is an immune regulatory protein deriving 
from B7 family of T-cell co-regulatory molecules [64]. Their interaction 
prevents T-cell activation and proliferation including cell apoptosis 
and creates cancer resistance. So far, PD-L1 was found in many solid 
neoplasms such as cancer of the breast, colon, esophagus, stomach, 
ovaries, pancreas and lung [64]. As a prognostic marker, PD-L1 
expression is a poor prognostic factor for gastric cancer, liver cancer, 
esophageal cancer, ovarian cancer, bladder cancer, but served as a 
better prognostic factor for breast and merkel cell carcinoma [65], 
while remains controversial in melanoma and lung cancer. Many 
reports suggest that EGFR and KRAS mutations contribute to increase 
in PD-L1 expression; however, the molecular mechanism behind this 
important biochemical event remains to be elucidated [66,67]. 

Drug resistance and PD-L1 expression

Recent studies have shown that treatment with cisplatin, carboplatin, 
paclitaxel, and 5-FU contribute to acquired PD-L1 expression in many 
solid tumors including small cell lung cancer (SCLC) and NSCLC 
[64,68,69]. Knocking-down PD-L1 was able to overcome cisplatin 
resistance. Further investigations also supported PD-L1 as the main 
resistance mechanism against cisplatin in SCLC via the over expression 
of DNMT1 or KIT. Down-regulation of these two proteins showed 
less PD-L1 expression and could overcome cisplatin resistance in H60 
and H82 cell lines [69]. Thus, targeting the cellular PD-L1 may hyper-
sensitize aggressive lung cancer to standard chemotherapy.

Concluding Remarks
Immunotherapy with checkpoint inhibitors has received much 

attention lately. This type of therapy offers a longer duration of 
response; however, the response rate is still low in lung cancer. In fact, 
a recent report on immunotherapy did not show improved efficacy 
over standard chemotherapy and failed as first line treatment in lung 
cancer. Therefore, the majority of lung cancer patients still require the 
traditional chemotherapeutic agents such as cisplatin or carboplatin 
to control their disease. We have found that the major biochemical 
alterations in cisplatin resistance are increasing ROS and metabolic 
reprograming which can be used to kill cisplatin resistant cells. 
Furthermore, the tumor microenvironment may also be modified in 
these resistant tumors by multiple factors including immune cells such as 
tumor-infiltrating lymphocyte. These resistant cells undergo epithelial-

mesenchymal transition to enable invasion/metastasis as well as escape 
immune surveillance by expressing PD-L1/PD1. Combination of ROS 
inducing agent with immunomodulation approach may ultimately lead 
to cisplatin resistant cell death (Figure 2). 
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