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Abstract

Sleep is a period of relaxation and repair. During sleep, waste products of brain metabolism are removed. It plays
central role in maintenance of physiological homeostasis and psychological balance. Sufficient sleep helps us think
more clearly, complete complex tasks better and more consistently. One of the important function of sleep is to
promote synaptic plasticity and neuronal recovery for proper brain functioning. Memory consolidation, brain growth
and repair are other functions proposed for sleep. Problems related to sleep deprivation are being increased in
today's modern society. Every day there seems to be twice as much work and half as much time to complete it, this
results in a decrease in sleep or extended periods of wakefulness. Sleep deprived individuals may not have difficulty
of verbal disturbances but research studies have shown that individuals have more difficulty in reacting well, to
taking biological discussion and implementing the task with efficiency of action. Although day time performance due
to sleep loss is experienced universally but in professionals such as paramilitary forces, army personals, who work
under stressful conditions are more vulnerable to the sleep deprivation. These conditions become more stressful
during emergencies and war because, after periods of extended wakefulness neurons may begin to malfunction,
visibly affecting person's behavior. Rapid eye movement (REM) sleep plays a role in learning due to an activation of
the hippocampus involved in encoding new memories. Many experiments have shown that the day after a good
night's sleep, one may retain newly acquired knowledge or a newly learned skill more effectively. An enriched
environment (EE) which is a complex combination of social, cognitive, and physical stimulation, improves learning
and memory. Many changes such as increased brain weight, synaptic plasticity, gliogenesis, growth of dendritic
spine as well as change in neurotransmitter content, up regulation of neuronal signaling molecules, neurotrophin
levels and adult hippocampal neurogenesis have been reported.
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Introduction
In this fast moving world, money is earned by sacrificing the basic

needs of the body i.e. sleep. Sleep is one of the important needs like
oxygen for survival and nutrition for health. Sufficient sleep helps us
think more clearly, complete complex tasks better, more consistently. It
is a state characterized by absence of consciousness, deferred sensory
activity, and inactivity of voluntary muscles. In other words, it is a
heightened anabolic state, accentuating the growth and rejuvenation of
the immune, nervous, skeletal and muscular systems [1]. Sleep
depends on two major factors: A circadian regulator and a homeostatic
regulator. Homeostatic regulation means that sleep is delayed and
often become more intense after extended waking, thus also called
recovery sleep [2]. Xie et al. reported that during sleep, waste products
of brain metabolism are removed; this is due to change in milieu of the
brain’s extracellular space between sleep and waking states [3]. Besides,
sleep plays important role to promote synaptic plasticity and neuronal
recovery for proper brain functioning [4]. Memory consolidation,
brain growth and repair are other functions proposed for sleep [5].

The timing of sleep is organized by the circadian clock and sleep-
wake homeostasis. The circadian clock works in association with the
neurotransmitter adenosine, that inhibits wakefulness associated
processes and cause sleepiness [6].                           

According to National sleep foundation and National Institutes of
Health (NIH), National Center on Sleep Disorders Research and Office
of Prevention, Education, and Control, USA 7-9 hours’ sleep is
necessary for adults or elderly.

Although sleep occupies approximately a one third of the human
lifespan, the amount of time humans spend awake has increased over
the years. Problems of sleep deprivation (SD) are being increased in
today's modern society. SD results in either extended periods of
wakefulness or a decrease in sleep over an extended period of time.
Sleep deprived individuals though do not have difficulty of verbal
disturbances but research studies have shown more difficulty in
reacting well, to taking biological discussion and implementing them
as well with efficiency of action. Day time effects due to sleep loss are
experienced universally but in professionals belonging to paramilitary
forces, army personals etc. who work under stressful conditions are
more vulnerable to the sleep deprivation as conditions become more
stressful during emergencies and war. After periods of extended
wakefulness or reduced sleep, neurons may begin to malfunction,
visibly affecting a person's behavior [7]. Sleep deprivation ensue
mental fatigue, impaired learning, decision-making, epileptic attacks
and heightened risk of migraine. Chronic or complete insomnia, which
may ultimately, results in death [8].

It has been also evident that sleep deprivation is responsible for the
induction and worsening of various neurological disorders. Sleep
disorders include the circadian rhythm sleep disorders, narcolepsy,
periodic limb movement disorder (PLMD), restless leg syndrome
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(RLS), obstructive sleep apnea in which major pauses in breathing
occur during sleep. Anxiety is also one of the most important
neurobehavioral consequences of rapid eye movement (REM) sleep
deprivation and total Sleep deprivation (both REM+NREM) [9,10]. SD
also impairs cognition either by adversely affecting the encoding or
initial learning of memories (referred to as acquisition) or by affecting
memory consolidation. Studies in human subjects, suggested that
insomnia markers are possible biomarkers for depression [11].

Recovery Sleep: The Potential Role of Enriched
Environment
The old assumption that connections in the adult brain are rigid and

no longer modifiable is luckily not true. Indeed, the brain is capable to
adapt to new demands the whole life long, which is essential for
learning processes and to adapt to our environment as a result of active
training, passive exposure or if we suffer from a brain injury. That is
what we call neuronal plasticity- the ability of the brain to adapt in
response to modified inputs from the environment both structurally
and functionally.

Environmental enrichment involves changes to an animal's home
cage or secondary exploratory area which provide enhanced sensory,
motor, cognitive and potentially social opportunities [12]. Rosenzweig
et al. established EE (Environment enrichment) as a scientific concept
(Figure 1) [13].

The purpose of EE is to provide possibilities for enhanced voluntary
physical exercise, social interactions, multi-sensory and cognitive
stimulation. Wakefulness and sleep deprivation are both characterized
by increased activity of neuronal cells and increased consumption of
ATP while in recovery sleep neuronal activity reduced and decrease
consumption of ATP [14].

EE has profound effects on the developing and the adult brain,
spanning from the molecular to the anatomical and behavioral level
[15,16]. EE increases adult hippocampal neurogenesis by means of
survival of new cells in the Dentate gyrus (DG) and involves cortical
restructuring and affect different phases of the neurogenic process in
distinct ways which improve spatial learning ability [16].

In adult animals, EE leads to better performance in various learning
and memory tasks like the Morris-water-maze, the novel object
recognition task and fear-conditioning task [17].

EE is also capable of delaying the progression and reducing
provoked deficits of various neurological pathologies, including
neurodegenerative diseases and stroke [18]. This is possibly due to
increased levels of BDNF [19,20] and insulin-like growth factor 1
(IGF-1) [21], enhanced maturation of the inhibitory GABAergic
system and accelerated CRE/CREB (cAMP response element-binding
protein)-mediated gene expression [19].

In the adult rodent visual cortex, EE increase levels of BDNF (Brain
derived neurotrophic factor) [22] and serotonin. Decrease GABA
(Gamma amino butyric acid) levels and release [23] and number of
GAD67+ interneurons [22,24].

Moreover, EE also increase levels of histone acetylation in the
hippocampus and neocortex [25]. Rather, EE exposure actually
converses already established long term potentiation (LTP) thus affects
dendritic spine density, synaptic proteins receptors expression as well
as expression of neurotrophins [26].

Figure 1: Effect of environmental enrichment on enhanced learning
and memory & neurogenesis.

Sleep Deprivation and Rehabilitation (Recovery Sleep)
Recovery sleep induce by EE also induces various molecular and

structural changes in the brain, contributing to the changes in
neuronal functions and ultimate, in behavior. These mechanisms are
thought to trigger EE-induced neural plasticity. Social contact and play
behavior is important for normal development. The enriched social
housing condition has compensated for the adverse effects of SD.
Recovery sleep or rehabilitation by an enriched environment helps in
removal of toxic by-products of wakefulness and redirects the
regenerative power of sleep [27,28].

Effect of Recovery Sleep on Sleep Deprivation Induced
Neurodegeneration
The harmful cellular consequences of prolonged waking may result

from excitotoxicity and oxidative mechanisms which sensitize the
brain to neurodegeneration [29,30]. Morrisey et al. (2003) reported
that SD led to decreased brain mass, an increase in expression of
apoptotic proteins in the cerebral cortex and, subsequently changes in
behavior of adults [31]. EE induced recovery sleep improves neuronal
survival, enhances neurogenesis and decreases apoptotic cell death.
The survival-promoting effect of enrichment is expressed
independently of the cell lineage, resulting in a net increase in both
neuronal and glial cells in the dentate gyrus, although proportionally
most of these new cells are neurons [32]. Shehata and Rizk reported
that the recovery sleep led to ameliorative effects on cognition
especially on memory and learning in 3 days sleep deprived rats. This
might be due to the regenerative effects of sleep [28]. Wu et al. (2008)
showed that the 24 hours of sleep could not reversed the deterioration
caused by SD in the pre-frontal cortex, BAX (Bcl-2-associated X
protein or a proapoptotic protein), Bcl-2 and the Bcl-2/BAX ratio not
returning to basal levels. A possible explanation of this result is that
effects of SD on the prefrontal cortex are long-lasting and more time is
required for complete recovery [33].

Montes-Rodrı´guez et al. reported that the Bcl-2/BAX ratio
increases during recovery sleep following SD and showed that the
hippocampus seems to benefit from sleep [34]. An earlier study on p53
and Bcl-2 protein levels (pro- and anti-apoptosis proteins, respectively)
after 6 hours of sleep deprivation and 2 hours of post-deprivation sleep
(PDS) in the rat hypothalamus revealed an increase in Bcl-2 and p53
after SD and after PDS, the high levels of p53 and Bcl-2 being
preserved [35].
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Effect of Recovery Sleep on Neurogenesis
Sleep loss is reported to inhibit neurogenesis and cell proliferation

in hippocampus, processes involved in learning and memory [36].
Mirescu et al. (2006) found that SD reduces adult neurogenesis and cell
proliferation in the hippocampus by elevations in Glucocorticoid level.

The survival of the newborn cells and their neuronal differentiation,
appear to be stronger stimulated by environmental enrichment [37,38].
In support of this explanation, previous studies showed that
environmental enrichment promote hippocampal neurogenesis and
may even decrease or reverse earlier brain deficits [18,39]. Study also
suggested that 4 weeks of sleep restriction did not appear to affect the
differentiation of new cells into neurons as double cortin (DCX)
labeling in the outer granule cell layer (GCL) and subgranular zone
(SGZ) of the DG did not differ between the control and sleep restricted
groups. However, data showed that recovery sleep caused a significant
increment in cell proliferation in the SGZ [40]. Exposure of animals to
an EE led to enhanced neurogenesis specifically in the hippocampus
and showed improvement in performance of several learning tasks
[32]. One study concluded that in addition to increased neurogenesis
by enrichment, enhanced synaptogenesis has also been observed in the
CA3 and CA1 areas of the dentate gyrus in hippocampus. Hence it is
proved that EE enhances proliferation, survival and maturation of
neuronal cells, leading to improved cognition [33,34].

EE further modifies the expression of several enzymes, growth
factors and transcription factors that are involved in the stimulation of
neural stem cells (NSCs). Enhanced neurogenesis associates with
improved synaptic plasticity and memory [41]. Hence, approaches
aimed towards a better understanding of the modulation and control
of neurogenesis, e.g. using peripheral or environmental factors, could
have important clinical benefits in sleep disorders.

Effect of Recovery Sleep on Nitrergic Neurotransmitter
Level

Sleep homeostasis is the process by which recovery sleep is spawned
by prolonged wakefulness. Sleep loss, induced by prolonged
wakefulness, produces a decline in cognitive and motor performance,
mood disturbances, memory deficits and effects on immune function
[42]. These effects are restored by recovery sleep, which is
characterized by extension and intensification of both non-rapid eye
movement (NREM) and rapid eye movement (REM) components. The
possible role of nitric oxide (NO) in the regulation of behavioral state
and specifically in the induction of recovery sleep suggesting that NO
may have a role as a sleep facilitating agent. Neuronal NO
neurotransmitter produced by inducible nitric oxide synthase (iNOS)
is an important homeostatic factor in promoting recovery sleep after
SD [43]. nNOS is co-localized with acetylcholine (ACh) in most of the
basal forebrain (BF) nuclei, as well as in the laterodorsal tegmental
(LDT) and pedunculopontine tegmental (PPT) nuclei that project to
the BF and is involved in the regulation of the sleep–wake cycle. Study
conducted in male rats assigned to EE for 1 year, showed that NO
production decreased by 47% in hippocampal submitochondrial
membranes of EE rats as compared with control animals [44]. The EE-
induced structural and functional changes which include increase cell
proliferation, and enhance the number and stability of synapses, occur
through molecular cascades that include neurotransmitter levels,
improved expression of regulatory proteins and increases in
neurotrophic factor that promote neurotransmitter release, [45].

Effect of Recovery Sleep on Cholinergic
Neurotransmitter Level
The neurodegeneration caused by SD may spread throughout the

brain or affect prevalently specific types of neurons such as the
cholinergic neurons. EE also reduces the effects of stress on
acetylcholine concentrations. Studies suggested that EE increases the
acetylcholine level thus reduces the reactivity of the cholinergic system
to stress in the prefrontal cortex [46]. Levels of other neurotransmitters
also increase following EE which are associated with synaptic plasticity
[47]. EE-induced changes in neurotransmitter levels and excitatory
activity also shifts following EE housing, due to an enhanced
expression of AMPA and NMDA receptors with increase in
hippocampal extracellular glutamate levels [46]. The effects of EE on
the increase of acetylcholine in the pre-frontal cortex (PFC) could lead
to differences in behavioral parameters such as consolidation of
aversive memories and working memory [48].

Effect of Recovery Sleep on Sleep Deprivation Induced
Behavioral Changes

Adults with chronic sleep loss report excess mental distress,
depressive symptoms, anxiety, and alcohol use [49]. SD is being
considered a trait marker for predicting anxiety. Anxiety has been
recognized as one of the most important neurobehavioral
consequences of rapid eye movement (REM) in sleep deprivation and
in total SD (both REM+NREM) [50]. The mechanistic approach to SD
induced anxiety is oxidative stress, nitric oxide (NO) stress,
neuroinflammation as well as cholinergic signaling.

ROS production and clearance by endogenous antioxidant defense
system [51]. The mechanism by which SD induces anxiety may be
hypothesized as being linked with elevated oxidative stress in sleep-
deprived subjects. Early studies in animals showed that the enhanced
stimulation of recovery sleep induces by enriched environment
produces many extraordinary benefits at anatomical, molecular as well
as at behavioral levels. Exposure to an enriched environment,
providing more opportunity for learning and social interaction than
standard laboratory living conditions, has been shown to enhance
behavioural performance in various learning tasks [52]. One study
concluded that the EE mice showed decreased anxiety-like behavior
and higher activity, revealed by the increased number of entries and by
a greater percentage of time spent into the open arms of the elevated
plus maze in comparison to standard animals. EE reduces fearfulness,
as suggested by reduction of defecation in open field tests [53]. At the
neurochemical level, earlier study Brenes et al., showed that overall 1
month exposure of EE was enough to produce strong behavioral and
neurochemical effects. Social isolation increase 5-HT or serotonin
turnover without affecting the tissue levels of 5-HT and
norepinephrine (NE), a stress hormone in rats [54]. Nitric oxide
synthase (NOS) enzyme is also involved in the regulation of anxiety,
sleep and aggressive behavior.

Effect of Recovery Sleep on Cognitive Performance
Many studies have shown that acute sleep deprivation affects

cognitive performance and emotionality. Previous experimental
studies in healthy human subjects showed that successive nights of
restricted sleep resulted in a gradually accruing decline in cognitive
function [55]. Another study conducted by Franzen et al. compared a
group of 15 healthy, young human adults following one night of sleep
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deprivation with 14 who had normal sleep and concluded that sleep
deprivation led to performance and mood deficits [56]. Study by Lim
and Dinges suggested that sleep deprivation leads to a general slowing
in response time, an increase in incorrect responses, and time-on task
effect. Sustained attention deficits are responsible for many of the
performance deficits in memory and executive functioning tasks
following sleep deprivation [57].

The recovery processes of cognitive deficits after sleep loss are still
obscure. Recovery sleep is different from normal sleep. Evidence
suggested that one sleep period (at least eight hours) can reverse the
adverse effects of total SD on cognition [58]. After chronic partial sleep
restriction, it seems to take longer the recovery process of cognitive
functioning than after acute total SD. One study observed that after
one week of sleep restriction, three 8 h recovery nights were not
enough to restore performance even in the group that spent 7 hrs in
bed [59]. Thus concluded that the brain adapted to a stressful
condition, during mild and moderate chronic partial SD, yet at a
reduced level to maintain performance in humans. This adaptation
process was obviously so challenging that it postponed the restoration
of normal functioning. One recovery night is enough to restore
cognitive performance and daytime sleepiness deficits induced by
acute or chronic sleep deprivation [60]. A study investigating recovery
after a period of chronic sleep restriction suggested that a single
recovery night of up to 10 hrs time in bed is insufficient for some
behavioral functions to return to prerestriction levels and deficits were
reversed by repeated nights of recovery sleep [61]. Rehabilitation in
traumatic brain injury (TBI) patients based on EE principles results in
improved cognitive and motor skills [62]. A number of studies have
also shown that by increasing the duration and intensity of exposure to
rehabilitative therapy results in improved recovery times.

Conclusion
“Sleep is in essential, food for the brain. Insufficient sleep can be

harmful, even life threatening. Sleep is thus an essential element, in
learning and memory which allows us to perform critical daily
functions at peak optimization when obtaining the correct amount.
Sleep is important because it has a determining role in mental and
physical health of individual, along with quality of life. In conclusion,
sleep deprivation is a biological stress condition for the brain. All
physiological and neurological changes due to SD ultimately lead to
physical/cellular stress or oxidative stress, a condition which is a major
cause of neurodegeneration [63]. SD cause hippocampal volume to be
reduced because of neuronal cell death, diminished arborization in
dendrites, slowed neurogenesis and a decreased number of glial cells.

An enriched environment (EE) which is a complex combination of
social, cognitive, and physical stimulation has shown improvement in
learning and memory in rodents housing in an EE. In particular,
changes in neurotransmitter content, gliogenesis, synaptic plasticity
and dendritic spine growth, increased brain weight, as well as up
regulation of neurotransmitters, neurotrophin levels and adult
hippocampal neurogenesis have been associated with cognitive
enhancement.

By providing the environment necessary for neuronal maintenance
and repair, it has been proposed that recovery sleep with novel and
complex multisensory environments should result in enhancement in
neural plasticity as well as various neurological and behavioral changes
also occur. Current body of literature on the effects of rehabilitation by
means of recovery sleep in neurological disease indicates that

Environmental Enrichment represents significant therapeutic
potential, on its own and in combination with pharmacological
treatments. This is by inducing neuroprotective mechanisms and
behavioral outcomes underlying molecular mechanisms of experience-
induced plasticity that possibly can be used to identify new therapeutic
targets.
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