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Commentary
This commentary aims to discuss the findings of our recently

published articles in which we identified the Smurf family of HECT-
domain containing E3 ubiquitin ligases and the Cul4-DDB1-Gb
ubiquitin ligase complex as new regulators of Smoothened (Smo)
trafficking and cell surface expression [1,2]. These findings provide
novel insights into how Hedgehog (Hh) signaling is regulated. Cell-cell
communication mediated by the Hh family of secreted proteins plays
central roles in embryonic development and adult tissue homeostasis
[3,4]. Deregulation of Hh signaling has been implicated in a wide
range of human disorders including birth defects and cancers [3,5]. Hh
signaling regulates cell growth and proliferation, cell fate
determination, and pattern formation through a conserved signal
transduction cascade that culminates in the activation of latent
transcription factors Cubitus interruptus (Ci) and Gli proteins [3,6].
The core signal reception system of the Hh pathway constitutes two
multi-span transmembrane proteins: a twelve-transmembrane protein
Patched (Ptc), which functions as the Hh receptor, and a seven-
transmembrane protein Smo, which is a member of the G protein
coupled receptor (GPCR) family and functions as the obligated Hh
signal transducer. Binding of Hh to Ptc releases its inhibition of Smo,
leading to phosphorylation and activation of Smo [7]. Smo is regulated
through two paralleled mechanisms: 1) change of its conformation,
and 2) change in its subcellular localization. In Drosophila, Ptc inhibits
Smo phosphorylation, which keeps Smo in an inactive conformation
and prevents Smo cell surface accumulation. Upon Hh stimulation,
Smo is phosphorylated by protein kinase A (PKA) and casein kinase 1
(CK1), which promotes Smo cell surface accumulation and triggers a
conformational change of Smo into an open and active conformation
[8-10]. In addition, Hh binding to Ptc facilitates internalization of the
Hh-Ptc protein complex, a process required for restricting Hh
signaling range [11,12]. Recent studies have revealed that
ubiquitination and subsequent degradation of Smo via both
proteasome and lysosome-dependent mechanisms are responsible for
preventing Smo cell surface accumulation, and that Hh-induced
phosphorylation of Smo inhibits its ubiquitination and degradation
[13,14]. However, the mechanism by which phosphorylation inhibits
Smo ubiquitination has remained a mystery due to the lack of
information on E3 ubiquitin ligase (s) that targets Smo. Previous
genetic screen as well as cell-based RNAi screen failed to identify any
E3 that targets Smo for ubiquitination. A likely reason is that multiple
E3 ligases could be involved in the regulation of Smo ubiquitination
and their functional redundancy could have masked any Hh-related
phenotypes when individual E3s were inactivated. In addition, Smo
E3s might not be dedicated for the Hh pathway so that their
inactivation could cause pleiotropic defects due to dysregulation of
multiple protein substrates. We decided to carry out a cell-based RNAi
screen using Smo ubiquitination as a sensitive readout [1]. We initially

focused on the HECT family of E3 ubiquitin ligases because members
in this family have been implicated in the regulation of GPCR
trafficking [15]. From this screen, we identified the Smurf subfamily of
HECT-domain containing E3s including Smurf, Nedd4, and Su (dx) as
Smo ubiquitin ligases [1]. Knockdown of Smurf by RNAi decreased
Smo ubiquitination and increased its cell surface abundance in S2 cells,
a phenotype enhanced by simultaneous knockdown of Nedd4 and Su
(dx) in conjunction with Smurf knockdown. On the other hand,
overexpression of Smurf, Nedd4, or Su (dx) promoted Smo
ubiquitination and prevented its cell surface accumulation. Co-
immunoprecipitation experiments showed that Smurf binds Smo C-
terminal tail (Smo-CT) through its HECT domain in the absence of
Hh; however, in response to Hh stimulation, PKA/CK1-mediated
phosphorylation of Smo dissociates Smurf from Smo-CT, thereby
inhibiting Smo ubiquitination (Figure 1) [1].

Figure 1: Regulation of Smo trafficking and cell surface expression
by multiple E3 ubiquitin ligases.

Interestingly, we found that the N-terminal region of Smurf binds to
its C-terminally localized HECT domain to prevent Smurf from
binding to Smo, and that G protein coupled receptor kinase 2 (Gprk2)-
mediated phosphorylation of the N-terminal region alleviates this
auto-inhibition and frees the HECT domain for Smo binding [1]. Loss
of Gprk2 compromised the recruitment of Smurf to Smo-CT and as a
consequence, the ubiquitination of Smo [1]. This explains the previous
observation that Smo was upregulated in Gprk2 mutant wing imaginal
discs [10,16]. A previous study revealed that Smurf also regulates Ptc
ubiquitination and internalization [17]. Interestingly, we found that Ptc
and Smo compete for the same pool of Smurf family of E3s, and that
Hh promotes Ptc ubiquitination by releasing Smurf family members
from Smo and further stimulating their binding to Ptc in a manner
depending on Hh/Ptc interaction (Figure 1) [1]. Hence, by employing
the same set of E3 ubiquitin ligases to reciprocally regulate the
trafficking of Ptc and Smo, Hh can effectively coordinate the activities
of its receptor and signal transducer. Knockdown of Smurf in cultured
S2 cells or Drosophila wing imaginal discs only resulted in a mild
increase of Smo cell surface expression [1]. Aside from the redundant
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function of Need4 and Su (dx), additional E3 (s) could participate in
the regulation of Smo cell surface abundance. Indeed, in a paralleled
RNAi screen in wing imaginal discs using Smo immunostaining as a
readout, we identified the Cullin family member Cullin4 (Cul4) as
another regulator of Smo cell surface abundance [2]. Cul4 forms multi-
subunit E3 ubiquitin ligase complexes called CRL4s, which contain
Cul4, DNA damage-binding protein 1 (DDB1), one of the DDB1-
binding WD40 family proteins (DWD) that recognize protein
substrates of CRL4s [18]. We found that knockdown of Cul4-DDB1 by
RNAi resulted in cell surface accumulation of Smo in anterior
compartment cells of the wing imaginal discs as well as in S2 cells [2].
Knockdown of Cul4-DDB1 reduced whereas overexpression of Cul4
promoted Smo ubiquitination in S2 cells. We found that Cul4-DDB1 is
recruited to Smo-CT through multiple G protein b subunits (Gb)
including Gb13F and Gb76C, which are DWD proteins, and that Hh
inhibits Cul4-mediated ubiquitination of Smo by recruiting PKA to
phosphorylate DDB1, leading to the dissociation of Cul4-DDB1 from
Smo-Gb (Figure 1) [2,19]. Simultaneous inactivation of Smurf and
Cul4-DDB1-Gb resulted in a more dramatic accumulation of Smo on
the surface of S2 cells than inactivation of either Smurf or Cul4-DDB1-
Gb alone [1,2], suggesting that Cul4-DDB1-Gb acts in parallel with the
Smurf family of E3s to regulate Smo trafficking and abundance (Figure
1). A previous study has revealed that Cul4-DDB1-Gb regulates GPCR
signaling by binding to and targeting Gprk2 for ubiquitination [20].
Taken together, these observations suggest that the Cul4-DDB1-Gb E3
ubiquitin ligase may play a broad role in the regulation of membrane
receptor trafficking and signaling, a possibility that should be further
explored in the future.

Regulation of E3 recruitment by phosphorylation may only account
for part of the mechanisms that regulate Smo trafficking and cell
surface abundance. Indeed, our recent study has revealed that
sumoylation of Smo recruits a deubiquitinase UBPY/USP8 to inhibit
Smo ubiquitination, thereby promoting its cell surface accumulation
[21]. Taken together, our studies have raised a question of why Smo is
regulated by so many paralleled mechanisms. We speculate that the
involvement of multiple parallel regulatory mechanisms that control
Smo trafficking and cell surface expression may allow graded Hh
signals to fine-tune the subcellular localization and abundance of Smo
to generate precise signaling outputs. Therefore, it would be interesting
to determine whether different mechanisms respond differentially to
different levels of Hh signal. It would be also interesting to determine
whether different mechanisms are employed in tissue- or context-
dependent manners. Finally, we provided evidence that Sonic
Hedgehog (Shh) also stimulates sumoylation of mammalian Smo
(mSmo) to facilitate its ciliary accumulation [21]; however, the
underlying mechanism has remained unexplored. It would be
interesting in the future to determine whether Smurf or Cul4 family of
E3s regulates mSmo ubiquitination and ciliary trafficking, and whether
sumoylation of mSmo promotes its ciliary accumulation by
antagonizing ubiquitination.
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