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Introduction
The colony-stimulating factor (CSF-1) receptor is a protein-

tyrosine kinase expressed on monocytes and macrophages. Binding 
of CSF-1 to its receptor results in receptor dimerization, cross-
phosphorylation, and recruitment of cellular signaling proteins. More 
recently, we discovered that the CSF-1 receptor is subject to regulated 
intramembrane proteolysis or RIPping. RIPping involves ectodomain 
shedding and release of the cytoplasmic region into the interior of the 
cell. It is carried out by tumor necrosis factor α-converting enzyme 
(TACE) and γ-secretase, following the encounter of macrophages with 
molecules that are derived from microbial pathogens. CSF-1 receptor 
RIPping is likely to play a role in macrophage activation in response to 
microbial infection.

The CSF-1 receptor uses tyrosine phosphorylation sites to recruit 
and activate cellular signaling proteins. CSF-1 is a cytokine that acts as 
a key regulator for growth, survival, differentiation, and activation of 
monocytes, macrophages, and other cell types [1,2]. It acts by 
binding to a receptor that is present on the surface of a variety of 
cell types, including primitive multipotent hematopoietic stem cells, 
B cells, neurons, placental trophoblasts, osteoclasts, monocytes and 
macrophages [3]. The CSF-1 receptor is a protein-tyrosine kinase, 
composed of an extracellular ligand-binding region, a transmembrane 
region, and a cytoplasmic region [4-6]. The cytoplasmic portion of the 
receptor is divided into a juxta membrane region, a kinase domain that 
is separated into two parts by a kinase insert, and a carboxy-terminal 
tail [2]. It is well established that ligand binding results in receptor 
dimerization and autophosphorylation on a number of tyrosine 
residues (Figure 1). Phosphorylation at tyrosine 807 in the activation 
loop increases kinase activity [7]. Additional phosphorylation sites 
have been characterized as binding sites for intracellular signaling 
proteins (Figure 1). These signaling proteins are activated directly or 
indirectly as a consequence of their interaction with the receptor and 
they relay information along intracellular signal transduction pathways 
[1,2]. Thus, like other receptor protein-tyrosine kinases, the CSF-1 
receptor uses phosphotyrosine-containing protein-binding sites to 
recruit cytoplasmic signaling proteins. Upon binding to the receptor, 
these proteins activate signal transduction pathways that cause the 
biochemical changes that make it possible for the cell to respond to the 
presence of CSF-1.

Regulated intramembrane proteolysis

Regulated intramembrane proteolysis is a process that involves 
two cleavage events and that results in the release of the cytoplasmic 
region of an integral membrane protein into the interior of the cell [8]. 
Proteins that are present on the cell surface as well as proteins present 
in intracellular membranes have been shown to undergo RIPping 
[8]. Cell surface proteins are first cleaved in their extracellular region 
within 5-20 residues of the plasma membrane. This first cleavage event, 
which is usually regulated, results in release of the extracellular domain 
and the production of an integral membrane protein with a very short 
section extending from surface the cell and a longer cytoplasmic region 
that contains one or more functional domains. This cleavage product, 

in turn, is recognized by a second protease, resulting in cleavage within 
the transmembrane region, followed by release of a soluble protein 
product into the cytoplasm. Following its release from the membrane 
this protein can travel to other locations within the cell to carry out a 
particular function [8,9].

RIPping was first observed in the context of sterol-regulated gene 
transcription. During this process, the expression of proteins that 
participate in the uptake or biosynthesis of cholesterol is turned on in 
response to the absence of sterols [10]. Regulation of sterol sensitive 
gene transcription is mediated by sterol-regulatory element binding 
proteins or SREBPs. SREBPs are produced as integral membrane 
protein precursors that are localized in the endoplasmic reticulum in 
the presence of cholesterol. These precursor proteins are composed 
of an amino-terminal region that can function as a transcription 
factor and that project into the cytoplasm, a transmembrane region, a 
short loop projecting into the lumen of the endoplasmic reticulum, a 
second transmembrane region, and a regulatory region that is present 
in the cytoplasm [11]. In the absence of sterols, these proteins move 
from the endoplasmic reticulum to the Golgi apparatus where they 
are proteolytically cleaved, resulting in the release of their amino- 
terminal transcription factors [12]. Maturation of the SREBP precursor 
proteins involves two distinct cleavage events. The precursor protein 
is first cleaved within its luminal loop by the site 1 protease [13]. The 
amino-terminal half is subsequently recognized and cleaved within 
its transmembrane region by the site 2 protease [14]. This results 
in the release of the mature SREBP into the cytosol, followed by its 
translocation into the nucleus. Like many transcription factors, 
SREBPs are short lived; they are poly-ubiquitinated and degraded in 
the proteasome [15]. We recently discovered that the CSF-1 receptor 
is processed in a similar fashion during macrophage activation [16-20].

Regulated intramembrane proteolysis of the CSF-1 receptor

 We followed up experiments showing that treatment of 
macrophages with 12-O-tetradecanoylphorbol-13-acetate (TPA), 
an activator of protein kinase C, or lipopolysaccharides (LPS), a 
component of bacterial cell walls caused the disappearance of CSF-1 
receptors from the cell surface [21,22]. To investigate the dynamics 
of this process, P388D1 macrophages were incubated with TPA for 
various amounts of time before the cells were lysed and analyzed 
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for the presence of CSF-1 receptors by immunoblotting. Following 
addition of TPA it takes 5 to 10 minutes before receptors start to 
disappear. Receptor downregulation reaches maximal levels after 1.5 
hours [23]. As receptors disappear, a 55 kDa protein that represents the 
carboxy-terminal half of the receptor emerges [23]. Separation of the 
cells into particulate and soluble fractions showed that the formation 
of this CSF-1 receptor fragment involves two steps. First, the receptor is 
cleaved amino-terminally to the membrane, resulting in the formation 
of a 55 kDa membrane-associated fragment (Figure 2). The membrane-
bound cleavage product is often referred to as the carboxy-terminal 
fragment or CTF. The CSF-1 receptor CTF is cleaved again, resulting 
in the release of a slightly smaller fragment into the cytoplasm (Figure 
2). This soluble product is often referred to as the intracellular domain 
or ICD. The first cleavage can be blocked using inhibitors of TACE, 
a metalloprotease composed of an extracellular catalytic domain, a 
single transmembrane domain and a short cytoplasmic tail [21,24]. 
The second cleavage can be blocked using pharmacological inhibitors 
of γ-secretase or dominant interfering mutants [23].

γ-Secretase is a complex of several integral membrane proteins 
that cleaves proteins within their transmembrane region [25]. 
γ-Secretase has been implicated in the production of Ab, which is a 
major constituent of amyloid plagues, and the onset of Alzheimer’s 

disease [25]. Our results suggest that the CSF-1 receptor is cleaved 
in its extracellular region by TACE, followed by cleavage in the 
transmembrane region by γ-secretase.

Identification of the TACE and γ-secretase cleavage sites in 
the CSF-1 receptor

While we had good evidence showing that the CSF-1 receptor 
undergoes proteolytic processing, the exact location of the cleavage 
sites has remained unknown. Identification of the cleavage sites 
involves purification of the cleavage products followed by amino-
terminal sequencing. To facilitate purification, we engineered CSF-1 
receptors containing several affinity tags at their carboxy-terminus. 
Tagged receptors were stably expressed in 293A cells, cells were 
stimulated to initiate receptor processing, and cleavage products were 
purified using affinity chromatography [26]. The TPA-inducible TACE 
cleavage site was identified following pretreatment of cells with the 
γ-secretase inhibitor, L-685,458, for 1 hour, followed by stimulation 
with TPA for 20 minutes. The γ-secretase inhibitor was included to 
prevent the second cleavage. Edman degradation yielded the following 
amino-terminal sequence, SKQLPDES, indicating that the receptor is 
cleaved 12 amino acid residues before the start of the transmembrane 
domain (Figure 3). The γ-secretase cleavage site was identified from 
cells that were stimulated for 20 minutes with TPA in the presence 
of H

2
O

2
; H

2
O

2 was included because in our experiments it appears 
to inhibit degradation of the soluble product in the proteasome [27]. 
Amino-terminal sequencing yielded a major and a minor sequence, 
LLLYKYKQKP and YKYKQKP respectively, thus identifying a major 
and minor cleavage site within the transmembrane region (Figure 3). 
Identification of the cleavage sites will provide insight into substrate 
recognition by both TACE and γ-secretase. Analysis of cleavage site 
mutants will help elucidate the role of CSF-1 receptor RIPping in 
macrophage activation.

Nuclear localization of the CSF-1 receptor ICD

In most cases studied, RIPping results in the transient appearance 
of cleavage products that move to the nucleus where they regulate 
gene expression, followed by their degradation in the proteasome. 
For example, the Notch ICD transiently translocates to the nucleus 
where it interacts with members of the CSL family of transcription 
factors before it is degraded [28,29]. Because the cytoplasmic cleavage 
products are usually instable, it has remained difficult to document 
their presence in the nucleus. Immunofluorescence data suggested 
that the CSF-1 receptor ICD, following its release from the plasma 
membrane, localizes in part to the nucleus [23]. The interpretation 
of these experiments is complicated by the fact that the CSF-1 
receptor ICD becomes ubiquitinated followed by its degradation in 
the proteasome [23,27]. To further investigate the localization of the 
ICD following its release from the membrane, we have generated an 
amino-terminally tagged version of the cleavage product. Preliminary 
data suggest that this protein may be present in the nucleus. Together 
these observations suggest that the CSF-1 receptor ICD travels to the 
nucleus where it may be involved in regulation of gene transcription. 
It remains unclear, however, exactly how the CSF-1 receptor ICD is 
marked for translocation to the nucleus. Because a well-recognized 
nuclear localization signal is absent from the ICD, we propose that 
the ICD associates with an unidentified binding partner, which directs 
the ICD towards the nucleus. Alternatively, it is possible that the ICD 
contains an unusual nuclear localization signal. Expression of stable 
ICD mutants, which are currently being constructed, would make it 
possible to initiate a more thorough investigation of the localization of 
the ICD, following its release into the cytoplasm.

 

!

Figure 1: The CSF-1 receptor uses tyrosine phosphorylation sites to recruit 
and activate cellular signaling proteins. The CSF-1 receptor is a protein-
tyrosine kinase expressed on the cell surface of a variety of cells. It contains 
an extracellular ligand binding domain (light purple) and a cytoplasmic 
kinase domain (dark purple). CSF-1 (yellow) is a dimer that contains two 
receptor-binding sites. Binding of CSF-1 to its receptor results in receptor 
dimerization (arrow A) making it possible for receptors to phosphorylate 
each other on tyrosine residues (tyrosine residues are indicated with the 
letter Y and phosphate groups are shown as an encircled p). A number of 
autophosphorylation sites have been identified in the CSF-1 receptor, 
including tyrosines 559, 697, 706, 721, 807 and 973 [42-46]. Phosphorylation 
on tyrosine 807 contributes to activation of the catalytic domain [7,47]. 
Other tyrosine phosphorylation sites act as binding sites for Src-homology 
domain-containing signaling proteins (red and orange globular structures 
in the cytoplasm). Upon autophosphorylation of the receptor, these proteins 
move from the cytoplasm to their docking sites on the receptor (arrow B). 
Cytoplasmic proteins known to bind to the activated CSF-1 receptor include: 
the protein-tyrosine kinase Src, growth factor receptor binding protein 2 
(Grb2), signal transducer and activator of transcription 1 and 3 (STAT 1 and 
3), phosphatidyl-inositol 3-kinase, the monocytic adaptor protein Mona, 
phospholipase Cγ, and the ubiquitin protein ligase c-Cbl [42,45,46,48-52]. 
Upon binding to the receptor, these proteins are activated resulting in the 
relay of information along cellular signal transduction cascades.
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the presence of pathogen-associated molecular patterns, such as LPS 
or double stranded RNA [32]. It initiates the anti-microbial response 
and helps to recruit and activate the adaptive immune system. The 
adaptive immune system generates responses against specific antigens 
associated with the intruder and solicits the help of the innate immune 
system to terminate the infection [33]. Macrophages, which are found 
in most tissues, form the first line of defense by recognizing invading 
microorganisms using pattern recognition receptors, initiating the 
anti-microbial response, and alerting the rest of the immune system 
by producing proinflammatory cytokines, including IL-1β, IL-6 and 
TNF [30]. Toll-like receptors (TLRs) are one of several families of 
pattern recognition receptors that are expressed on macrophages 
[34,35]. They recognize molecules that are associated specifically with 
microorganisms, including lipopolysaccharide, a major component 
of gram-negative bacterial cell walls (which binds to TLR4), bacterial 
lipoproteins (TLR2), double-stranded RNA (TLR3), and CpG islands 
in bacterial DNA (TLR9) [36-39]. Upon ligand binding, TLRs recruit 
death domain-containing adaptor proteins that relay information 
along signal transduction cascades, which leads to the activation of the 
stress activated protein kinases p38 and JNK, Tank-binding kinase 1, 
an IκB kinase, and the extracellular signal regulated kinases Erk-1 and 
Erk-2, ultimately resulting in macrophage activation [40,41].

Interestingly, we observed that LPS induces RIPping of the CSF-1 
receptor in a dose and time dependent manner [21]. Other Toll-like 
receptor ligands such as Lipid A, Lipoteichoic acid, poly I: poly C, and 
bacterial DNA also stimulated proteolytic processing of the CSF-1 
receptor [21]. These observations lend support to the idea that CSF-1 
receptor RIPping and release of the ICD from the plasma membrane 
into the cytoplasm plays a role in macrophage activation during the 
response to a microbial infection. While this remains to be proven, 
it seems likely that the CSF-1 receptor ICD moves to the nucleus to 
contribute to the activation of pro-inflammatory gene transcription.
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