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Nomenclature

Latin symbols

total heat transfer surface area ( )

specific heat at constant pressure ( )
relative error estimate (− )

overall heat transfer coefficient ( )

length of storage unit ( )

mass ( )
mass rate of fluid flow ( )
period time length ( ) 
effective convergence rate (− )

dimensionless temperature (− )
temperature ( , )
axial coordinate ( )

Greek symbols

 nondimensional time coordinate (− )
 thermal ratio (− )

	 reduced length (− )
grid refinement ratio (− )

 nondimensional position coordinate (− )

reduced period (− )
time ( )

Subscripts
	 coarse

fluid, fine

	 inlet
medium
solid (storage) material

	 initial

Superscripts

Hot period

Cold period

Space average

Introduction
Heat recovery is a topical issue, as it has a major effect on buildings’ 

energy efficiency. A typical heat recovery application is a ventilation 
system, in which intake air is heated by warm outlet air. This article 
focuses on regenerative heat exchanger computational modelling, in 
which mass is alternately heated and cooled by changing the direction 
of the air flow.

Classic one-dimensional counter flow regenerator analysis demands 
normally the use of numerical methods. In this article, the analysis is 
performed in a new way by applying the finite element method. This 
approach has certain advantages from the coding effort and accuracy 
perspectives. We are not aware of the use of the finite element method 
as a pure boundary value problem in this connection.

We have based our presentation strongly on the theory and 
arguments given in Schmidt and Willmott [1]. The same theme has 
been treated, for example, in a rather recent text on regenerative heat 
transfer in Willmott [2]. However, this latter reference contains no 
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Abstract
 The classic one-dimensional regenerator problem has been solved numerically in a new way. Instead of marching 

in time, the hot and cold periods are treated as boundary value problems in rectangular domains. To solve the boundary 
value problems, a space-time finite element method using the commercial package COMSOL 4.3 with MATLAB with 
a Galerkin formulation has been applied. This approach minimizes the coding effort. The code solves a problem 
automatically with three consecutive meshes of increasing densities. We present results of three example cases in 
some detail.
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formulations are listed below.

Formulation I the weak form is

( )f f s s d 0T R T R
Ω

δ δ Ω+ =∫                                                (5)

Formulation II The weak form is

( )s f f s d 0T R T R
Ω

δ δ Ω+ =∫
                                              (6)

Formulation III The weak form is

sf
s f f f s s d 0TT T T R T T R

Ω

δδ δ δ δ δ Ω
ξ η

    ∂ ∂
− + + − + =    ∂ ∂    

∫   (7)

The integrals are over domain Ω= (0,Λ) × (0,Π) in Figure 1b. The 
Galerkin method is normally defined as one in which the same basis 
functions used in the approximations of the unknowns are employed as 
weighting functions. This can also be interpreted so that the weighting 
functions (before discretization) are variations (δTf, δTs ) of the 
unknown functions (Tf,Ts ). The two options for choosing the weighting 
functions are seen in Formulations I and II. The least-squares version is 
based on the functional 

( ) ( ) ( )2 2
f s f s

1, d
2

T T R R
Ω

Π Ω = + ∫
                            (8)

Requiring the functional to have a stationary value produces the 
weak form (7).

The use of the finite element method may be justified by the fact 
that certain general shelf software – especially COMSOL Multi-physics 
with the finite element method – allows the applier to feed his/her 
problem directly as a weak form. We used this option. Obviously, this 
results in the required coding effort becoming rather small.

Because of the simple rectangular solution domain, uniform meshes 
consisting of four-node rectangular Lagrangian elements were used for 
both unknowns Tf and Ts. 

Figure 2 shows crude meshes for two geometries considered below. 
It should be noted, however, that the elements are not quite standard, as 
they are actually space-time elements. Boundary conditions (3) and (4) 
are satisfied by giving the corresponding nodal values.

In the generated MATLAB-code used in connection with COMSOL 
Multi-physics, care was taken to gain confidence in the accuracy of the 
numerical results. We more or less followed the recommendations of 
references Roache [4]. Sinclair et al. [5] in every calculation case, we 
used three meshes of increasing densities: coarse, medium and fine, 

essential changes with respect to the theme of the present article. We 
have preferred mostly the notations of Schmidt and Willmott [1].

Basic Equation
As mentioned, we will follow the theory given in Schmidt and 

Willmot  [1]. We first consider the basic equations in the single blow 
case. The regenerator case – to be described in Section 3 – can then be 
seen as consisting of more or less of consecutive single blow cases. 

The setting is briefly illustrated in Figure 1a. The fluid and solid 
temperatures to be determined tf and ts depend on device axial position 
x and time τ. As the initial condition, ts is given on boundary τ = 0 and 
as the boundary condition, tf is given on fluid inflow boundary x = 0.

Schmidt and Willmott [1] describes the governing energy balance 
equations and the procedures for transforming the equations into 
dimensionless forms, as indicated in Figure 1b. The dimensionless 
fluid and solid temperatures are Tf and Ts and these depend on the 
dimensionless position coordinate ξ and dimensionless time  ƞ. The 
dimensionless length measures corresponding to L and P in Figure 1a 
are ٨ and ∏. The mathematical treatment of the problem takes place 
most conveniently in the dimensionless form.

The governing field equations are 
f

f s f 0TR T T
ξ

∂
≡ − + =
∂

                                                                (1)

s
s f s 0TR T T

η
∂

≡ − + =
∂

                                                             (2)

Notations R refer to field equation residuals. This terminology is 
common in the finite element method literature – e.g. (Zienkiewicz 
and Taylor [3] – and here means that certain formulas to follow can be 
written in a short form.

The initial and boundary conditions become, respectively:

Ts (ξ, 0) = 0                                                                                          (3)

Tf (0, ƞ) = 1                                                                                          (4)

The standard numerical approach used in e.g. (Schmidt and 
Willmott [1] is based on the finite difference method. Furthermore, the 
time coordinate is also taken into account in Schmidt and Willmott [1] 
in the standard way by “marching” in the time direction in a stepwise 
manner.

The numerical approach employed in this article is based on the 
finite element method. In addition, the space and time coordinates 
are treated equally. Considering the very similar roles of ξ and η in 
equations (1) and (2), this seems appropriate. So no marching in time 
is performed. The case shown in Figure 1b is considered as just as a 
boundary value problem, with boundary conditions (3) and (4) on the 
two boundary parts η = 0 and ξ = 0, respectively. Thus, we now also 
alternatively call (3) a boundary condition.

As is well known, the finite element method is based on integral 
type presentations with the method of weighted residuals. The most 
common versions of the method of weighted residuals are the Galerkin 
method and the least-squares method. We experimented with two 
Galerkin type versions (Formulations I and II) and with a least-squares 

version (Formulation III). The weak forms corresponding to these 
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Figure 1: (a) Solution domain in the dimensional  -space and (b) in the corresponding dimensionless  -space.

 
Figure 2: (a) Crude  finite element mesh, , . (b) Crude  finite element mesh, , .

and we use the corresponding subscripts c, m and f respectively when 
referring to the appropriate values. If hc is the typical mesh size of a 
coarse mesh, the corresponding mesh sizes for the medium and the 
fine meshes are hm = hc⁄λ and hf = hc⁄λ

2 , respectively, where λ is the 
refinement ratio or the scale factor [5]. We employ the value λ=2.

The effective convergence rate r for quantity f is obtained from 

f m
r

f

11.25
2 1r

f fe
f
−

=
−

                                                            (9)

Following (Roache, 2009), the relative error estimate expression er 

for result f with the finest mesh is 

f m
r

f

11.25
2 1r

f fe
f
−

=
−

                                                    T   (10)
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where the multiplier 1.25 is a “factor of safety”. Use of the Richardson 
extrapolation was not considered necessary.

The case sketched in Figure 2a is taken from Example 2.1 in Schmidt 
and Willmott [1] and the case in Figure 2b is the same as the first case 
but with the domain measures switched. The crude meshes shown in 
the figures are selected so that the elements are roughly square-shaped. 
The meshes used in the first case are thus 4×8, 8×16 and 16×32, and in 
the second case 8×4, 16×8 and 32×16.

As mentioned above, the single blow case was considered first, as 
the situation closely resemble a typical regenerator case period, and 
even more so because an analytical solution is available that making use 
of the zero order modified Bessel function of the first kind [6], so that 
here, the actual errors of the numerical solutions could be determined.

We recorded solid temperature results at point A (Figure 2), 
the fluid and solid temperatures at point B and the average solid 
temperature on line AB for the three formulations described above. 
All three formulations worked very well. However, Formulation I 
generally seemed to provide the most consistent results. The magnitude 
of its actual maximum relative (percentage) error with the fine meshes, 
calculated using the analytical solution, was 0.07%. In addition, error 
estimate er bounded from above the actual error. Based on the results 
obtained, only Formulation I was selected for use in the regenerator 
calculations below.

Regenerator
Basic equation

In a counter flow regenerator, hot and cold periods follow cyclically. 
As in [1], we used a single prime to signify the hot period, and double 
primes for the cold period. As the names indicate, inflow temperature 
tfi

' of the fluid during the hot period is higher than inflow temperature 
tfi

'' of the fluid during the cold period. The periods here had fixed time 
lengths P' and P'', so that the length of one total cycle was P'+P''. We 
considered only the simplest case, in which mass flow rates  and 

 were constants in time, similarly to tfi
' and tfi

''. We approached the 
periodic solution by going through enough cycles beginning with an 
arbitrary given distribution ts (x,0). 

In the terminology of Schmidt and Willmott [1], this approach is 
an open method, as opposed to the closed method. The process began 
with the hot period taking the flow direction in the positive x-axis 
direction, so that the flow inflow boundary condition was given at x=0. 
The temperature distribution in solid material ts

' (x, P’), obtained at the 
end of the hot period, was used as the initial (or boundary) condition 
for the cold period. In reality, there is a short filling period between the 
hot and cold period (as well as between the cold and hot period) until 
the governing equations are valid once more. We ignored the filling 
period and started the cold period analysis immediately after τ=P'. 
Using dimensionless formulations, the computational situation is thus 
described schematically in Figure 3.

For a hot period, the governing dimensionless field equations are 
(see (1) and (2))

f
s f 0T T T

ξ
′∂ ′ ′− + =

∂ ′
                                                                            (11)

f
s

s 0T TT
η
∂ ′ ′− +

′
=

∂
′                                                                       (12)

with the boundary condition

( )f 0, 1T η′ ′ =                                                 (13)

Similarly, for a cold period the field equations are

f
s f 0T T T

ξ
′′∂ ′′ ′′+ − =
′′∂

                                                                (14)

s
f s 0T T T

η

′′∂ ′′ ′′− + =
′′∂

                                                               (15)

with the boundary condition

( )f , 0T Λ η′′ ′′ ′′ =                                                                        (16)

Equation (14) shows a change of signs. Here ξ' and ξ'' are taken to 
grow in the same direction (Figure 3). However, mass flow rate mf

'' is 
considered positive even when the flow direction is from right to left in 
the cold period. This is the reason for the change of signs in (14).

Using the dimensionless formulation, the initial (or boundary) 
conditions at the start of the hot and cold periods took the following 
forms, respectively,

( )s s,0 ,T T Λξ ξ Π
Λ
′ ′′ ′′′ ′′ ′′=  ′′ 

                                              (17)

( )s s,0 ,T T Λξ ξ Π
Λ
′ ′′ ′′′ ′′ ′′=  ′′ 

                                           (18)

The solution for each period was obtained by Formulation I, 
naturally taking into account the changes in signs in (14) and the right-
hand side boundary condition (16).

The code proceeded by solving the equations consecutively in hot 
and cold periods until error limit |δ' ⋀|δ'' |<0.001 was reached. The 
error was checked at each period with previous ' '

,
ˆ ( )s oldT ∏  and 

" "
,

ˆ ( )s oldT ∏ and present value using ' '
,new

ˆ ( )sT ∏   and " "
,new

ˆ ( )sT ∏  
values using expression

s,old s,new

s,old

ˆ ˆ
ˆ

T T
T

δ ′
′ ′−

=
′

                                                                     (19)

s,old s,new

s,old

ˆ ˆ
ˆ

T T
T

δ
′′ ′′−

′′ =
′′

                                                                   (20)

The regenerator thermal ratios η’
REG and η''

REG described in [1] are 
of considerable final importance  are of considerable final importance. 
Schmidt and Willmott [1] have described the thermal ratios as follows: 
“The effectiveness of regenerator behavior is measured in terms of the 
thermal ratio  ηREG. This is defined to be the ratio of the actual heat 
transfer rate to the thermodynamically limited maximum obtainable 
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Λ      , Π       . 

 
Figure 3: Consecutive solution domains.Figure 3: Consecutive solution domains.

heat transfer rate in a counterflow regenerator of infinite heat transfer 
area. Could this maximum rate be achieved, the temperature of the 
gas leaving the regenerator in hot/cold period would be equal to the 
entrance temperature.”

Expression

( ) ( )REG s s
ˆ ˆ 0T TΛη Π

Π
 ′′
′

′′ ′= −
                                            (21)

( ) ( )REG s s
ˆ ˆ0T TΛη Π

Π
′′  ′′ ′′′′ ′′= −
 ′′

                                  (22)

can be derived. Here iT


 is the mean dimensionless temperature 
(with respect to position) of the solid:   

  ( ) ( )s s
0

1 ,ˆ dT T
Λ

η ξ η ξ
Λ

= ∫
                                                    (23)

We describe three example cases. For each case, we record similar 
calculation results.

The first example is a symmetrical case with the measures

10, 20,
10, 20.

Λ Π
Λ Π

= =
′′ ′′= =

′ ′
                                                             (24)

The coarse, medium and fine meshes consisted of 4×8, 8×16 

and 16×32 elements, respectively. Three total cycles were needed for 
“convergence” for each mesh density. The calculation results for the 
thermal ratios are given in Table 1.

It should be noted that the results from Schmidt and Willmott [1] 
(Table 5) were also obtained numerically. Temperature distributions in 
Ω are shown in Figure 4 and dimensional temperature distributions at 
τ=P' in Figure 5.

Effective convergence rate r and relative (percentage) error estimate 
er calculated for η’

REG and η”
REG are given in Table 2.

The second example case is also taken from Schmidt and Willmott 
[1]; Example 5.5. The dimensionless measures are

10.0, 1.26,
10.0, 1.88.

Λ Π
Λ Π

= =
′′ ′′= =

′ ′
                                                     (25)

The coarse, medium and fine meshes consisted of 8×4, 16×8 and 
32×16 elements, respectively. Twenty five total cycles were needed for 
each mesh density. The calculation results for the thermal ratios are 
given in Table 3.

Again, it should be noted that the results from (Schmidt and 
Willmott,  (1981) were obtained numerically.

Temperature distributions in Ω are shown in Figure 6 and 
dimensional temperature distributions at τ=P' in Figure 7.

Effective convergence rate r and relative (percentage) error estimate 
er calculated for η’

REG and η”
REG are given in Table 4.

For the third example case, we slightly modified the first case so 
that the ratio was:

Λ'⁄Λ''=   Π'⁄ Π''= 0.83333 and
1.6, 3.4,
1.92, 4.08.

Λ Π
Λ Π

= =
′′ ′′= =

′ ′

           (26)

The coarse, medium and fine meshes consisted of 4×8, 8×16 
and 16×32 elements, respectively. Four total cycles were needed for 
each mesh density. The calculation results for the thermal ratios are 
presented in Table 5.

Theory demands here that η'
REG = η''

REG, which is seen to be satisfied 
by the numerical results. Temperature distributions in Ω are shown in 
Figure 8 and dimensional temperature distributions at τ=P' in Figure 9.

Effective convergence rate r and relative (percentage) error estimate 
er calculated for η’

REG and η”
REG are given in Table 6.

As a general observation concerning Figures 4, 6 and 8, we may 
see the following. The dimensionless geometries in Figures 4 and 
8 are rather similar and so are also the dimensionless temperature 
distributions. However, in the time direction narrow geometries of 
Figure 6 the temperature during the hot period “has not enough time” 
to penetrate far into the regenerator.

Conclusions
The results obtained in the three example cases presented above 

indicate that very good accuracy can be achieved with the finest 
meshes. The approach minimizes the effort of coding. It should not 
be difficult to extend the analysis to cases in which the inflow fluid 
temperature depends on time. This is achieved by simply changing 
the boundary conditions in the time direction appropriately. A more 
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Numerical solution in reference [1] Numerical solution ( ) Numerical solution ( )
Numerical solution  

( )

0.494 0.49268 0.49332 0.49350

0.494 0.49268 0.49332 0.49350

Table 1: Thermal ratio  and .

(a) (b)  

(c) (d)  
Figure 4: Fluid and solid dimensionless temperature distributions  and  (hot period on top line and cold period on bottom line,  coarse mesh).

(a) (b)  
�

Figure 5: (a) Dimensional fluid  and (b) solid material  temperature at  with coarse, medium and fine meshes. Fluid hot inflow temperature 
 and cold inflow temperature .
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Hot period, Cold period, 

1.79863 1.79862

0.01874% 0.01874%

Table 2: Effective convergence rate for thermal ratios and relative (percentage) error estimates.

Numerical solution in referencea Numerical solution (25 × 4) Numerical solution (50 × 8) Numerical solution (100 × 16)

0.947 0.96111 0.94956 0.94760

0.635 0.64519 0.63746 0.63616

aSchmidt and Willmott (1981)

Table 3: Thermal ratio  and .

(a) (b)  

(c) (d)  

Figure 6: Fluid and solid dimensionless temperature distributions  and  (hot period on top line and cold period on bottom line,  coarse mesh).
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(a) (b)  
�

Figure 7: (a) Dimensional fluid  and (b) solid material  temperature at  with coarse, medium and fine meshes. Fluid hot inflow temperature  
and cold inflow temperature .

2.55493 2.57525

0.05317% 0.05138%

Table 4: Effective convergence rate for thermal ratios and relative (percentage) error estimates.

Numerical solution (4 × 8) Numerical solution (8 × 16) Numerical solution (16 × 32)

0.36210 0.36271 0.36279

0.36210 0.36271 0.36279

Table 5: Thermal ratio  and .

detailed presentation concerning the themes of the present article is 
given in Holopainen and Salonen [7].

The developed model can be applied to regenerators of both 
fixed and rotary heat storage mass. The model can be used as a tool 
in the design and optimization of heat exchangers when, for example, 

studying the effect of different hot and cold period lengths on outlet air 
temperatures and on thermal ratios.
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(a) (b)

(c) (d)

Figure 8: Fluid and solid dimensionless temperature distributions  and  (hot period on top line and cold period on bottom line,  coarse mesh).

(a) (b)  

P� �
Figure 9: (a) Dimensional fluid  and (b) solid material  temperature at Pτ =  with coarse, medium and fine meshes. Fluid hot inflow temperature 

 and cold inflow temperature .
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2.84466 2.84835

0.00469% 0.00466%

Table 6: Effective convergence rate for thermal ratios and relative (percentage) 
error estimates.
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