
Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Wang et al. J Inform Tech Soft Engg 2011, 1:2
DOI; 10.4172/2165-7866.1000104

Review Article Open Access

Recurrent Neural Networks: Associative Memory and Optimization
Hui Wang1, Yue Wu1, Biaobiao Zhang1 and K. -L. Du1,2*
1Enjoyor Labs, Enjoyor Inc., Hangzhou, China, 310030
2Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada, H3G 1M8

Abstract
Due to feedback connections, recurrent neural networks (RNNs) are dynamic models. RNNs can provide more

compact structure for approximating dynamic systems compared to feedforward neural networks (FNNs). For some
RNN models such as the Hopfield model and the Boltzmann machine, the fixed-point property of the dynamic systems
can be used for optimization and associative memory. The Hopfield model is the most important RNN model, and
the Boltzmann machine as well as some other stochastic dynamic models are proposed as its generalization. These
models are especially useful for dealing with combinatorial optimization problems (COPs), which are notorious NP-
complete problems. In this paper, we provide a state-of-the-art introduction to these RNN models, their learning
algorithms as well as their analog implementations. Associative memory, COPs, simulated annealing (SA), chaotic
neural networks and multilevel Hopfield models are also important topics treated in this paper.

*Corresponding author: K. -L. Du, Department of Electrical and Computer
Engineering, Concordia University, Montreal, Canada, H3G 1M8; E-mail: kldu@
ece.concordia.ca

Received November 03, 2011; Accepted November 22, 2011; Published
November 24, 2011

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks:
Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Copyright: © 2011 Wang H, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

I. Introduction
In 1943, McCulloch and Pitts found that the neuron can be

modeled as a simple threshold device to perform logic function [85]. In
the late 1950s, Rosenblatt [102,103] proposed the first neural network
model---the perceptron model as well as its learning algorithm called
the Perceptron learning algorithm. Interest in neural networks waned
rapidly after Minsky and Papert proved mathematically that the
Rosenblatt’s simple perceptron model cannot be used for complex
logic function [89]. The simple perceptron model cannot correctly
classify linearly inseparable patterns.

The modern era of neural network research is commonly deemed
to have started with the publication of the Hopfield network in 1982
[50,51,53]. The Hopfield model works at the system level rather than
at a single neuron level. It is an RNN working with the Hebbian rule
[47]. As a dynamically stable network, the fixed points of this network
can be used as associative memories for information storage as well
as solutions to optimization problems. The Boltzmann machine
was introduced in 1985 as an extension to the Hopfield network by
incorporating stochastic neurons [4]. The Boltzmann learning is based
on a method called simulated annealing (SA) [62]. SA is a stochastic
search method for the global optimum of any objective function. The
chaotic neural network was introduced by adding a negative self-
coupling term, termed chaotic dynamics, to the Hopfield network [5].
The operation of the chaotic neural network is similar to that of SA, but
in a deterministically chaotic way rather than in a stochastic way, hence
called chaotic SA (CSA).

Memory is important for transforming a static system into a
dynamic one. Memories can be long-term or short-term. A long-term
memory is used to store stable system information, while a short-term
memory is useful for simulating a dynamic system with a temporal
dimension. Feedforward neural networks (FNNs) can become
dynamic by embedding memory into the network using time-delay
[31]. RNNs are dynamic models due to the feedback connections in
the architecture.

The combinatorial optimization problem (COP) and associative
memory are the two major applications of the Hopfield network and the
Boltzmann machine. In this paper, in addition to the Hopfield network
and the Boltzmann machine, the topics of associative memory and COPs
are also developed. Some other models for associative memory such
as the multilayer perceptron (MLP)-based autoassociative memories
and the Hamming network [79] are introduced. SA, a general-purpose
global optimization method, is also described. This paper is organized
as follows. In Section II, we briefly mention a class of RNNs with the

universal approximation capability for dynamic systems. The Hopfield
model is introduced in Section III, and its analog implementation is
described in Section IV. Various associative memory models and their
storage/retrieval algorithms are described in Section V. In Section VI,
we deal with SA. Combinatorial optimization problems are treated in
Section VII. Chaotic neural networks are introduced in Section VIII.
In Section IX, we also mention the application of the Hopfield model
to some other optimization and signal processing problems. Multilevel
Hopfield networks are described in Section X. Section XI is dedicated
to the Boltzmann machine and its learning. A discussion is given in
Section XII. Finally, in Section XIII, a brief summary of the paper is
drawn, and the cellular neural network model is also mentioned in this
section.

II. Recurrent Neural Networks
RNNs are inspired by ideas from statistical physics. There is at least

one feedback connection in RNNs. RNNs are dynamical systems with
temporal state representations. They are computationally powerful, and
can be used in many temporal processing models and applications. The
Hopfield model can store information in a dynamically stable structure
[50]. The Boltzmann machine [4], which relies on a stochastic algorithm
of statistical thermodynamics called SA [62], is a generalization of the
Hopfield model.

For a fully-connected RNN of J McCulloch-Pitts neurons,
the dynamics of the network with sound biological and electronic
motivations are given in [35,43]. The output of a sufficiently large such
continuous-time model can approximate any continuous state-space
trajectory to any desired degree of accuracy [35]. In other words, the
RNN is a universal approximator of dynamical systems. The universal
approximation capability of RNNs have also been investigated in
a number of papers [75,76]. In [75], a fully-connected discrete-time

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 2 of 15

RNN using McCulloch-Pitts neurons has been proved to be a universal
approximator of discrete- or continuous-time trajectories on compact
time intervals. A continuous-time RNN McCulloch-Pitts neurons
and external input is shown to be able to approximate any finite-time
trajectory of a dynamical time-variant system [76].

When used for approximation of dynamic systems, an RNN is
more powerful in representing complex dynamics than an FNN. Given
the same approximation capability, an RNN has a compact network
size considerably smaller than that of an FNN. RNNs can also be used
as associative memories to build attractors py

 from input-output
association { },p px y

. The recurrent backpropagation (BP) [97,8] and
the RTRL [121] are usually used for RNN training.

III. The Hopfield Model
The Hopfield model [52] is the most popular dynamic model. It

is a fully-interconnected RNN with J McCulloch-Pitts neurons [85],
and is usually represented by using a J - J layered architecture, as
illustrated in Figure 1. The input layer only collects and distributes
feedback signals from the output layer. The network has a symmetric
architecture with a symmetric zero-diagonal real weight matrix, that is,

=ij jiw w and = 0iiw . The Hopfield network is biologically plausible
since it functions like the human retina [68].

Architecture of the Hopfield network. Note that = 0iiw is
represented by a dashed-line connection. ()ϕ ⋅

 and θ

 are respectively
a vector comprising the activation functions of all the neurons and a
vector comprising the biases of all the neurons.

The Hopfield model operates in an unsupervised manner. The
dynamics of the network are described by a system of nonlinear
ordinary differential equations (ODE). The discrete form of the
dynamics is defined by

=1

(1) = () ,
J

i ji j i
j

net t w x t θ+ +∑ (1)

(1) = ((1)),i ix t net tϕ+ + (2)

where inet is the weighted net input of the ith neuron, ()ix t is the
output of the ith neuron, iθ is a bias to the neuron, and ()ϕ ⋅ is the
sigmoidal function. The discrete time variable t in (1) and (2) takes
values 0,1,2, .

Correspondingly, the continuous Hopfield model is given by

=1

d () = () ,
d

J
i

ji j i
j

net t w x t
t

θ+∑ (3)

() = (()).i ix t net tϕ (4)

Notice that t in (3) and (4) denotes the continuous time variable.

In order to characterize the performance of the network, the
concept of energy is introduced and the following energy function
defined [50]:

=1 =1 =1

1=
2

J J J

ij i j i i
i j i

E w x x xθ− −∑∑ ∑
1= ,
2

T Tx x x θ− −W

 (5)

where ()1 2= , , , T
Jx x x x

 is the input and state vector, and

()1 2= , , , T
Jθ θ θ θ

 is the bias vector.

1. Stability of the Hopfield model

The stability of the Hopfield network is asserted by Lyapunov’s

second theorem [31]. The dynamic equations of the Hopfield network
actually implement a gradient-descent algorithm based on the cost
function E [51]. The Hopfield model is asymptotically stable when
running in asynchronous or serial update mode. In asynchronous or
serial mode, only one neuron at a time updates itself in the output
layer, and the energy function either decreases or stays the same
after each iteration. However, if the Hopfield memory is running in
the synchronous or parallel update mode, that is, all neurons update
themselves at the same time, it may not converge to a fixed point, but
may instead become oscillatory between two states [80,15,19]. The
Hopfield network with the signum activation has a smaller degree of
freedom compared to that using the sigmoidal activation, since it is
constrained to changing the states along the the edges of a J -dimensional
hypercube = { 1,1}J∂ − . The use of sigmoidal functions helps in
smoothing out some of the local minima.

2. Applications of the Hopfield model

The Hopfield network can be used for converting analog signals
into the digital format, for associative memory, and for solving COPs.
The Hopfield network can be used as an effective interface between
analog and digital devices, where the input signals to the network are
analog and the output signals are discrete values. The neural-based
analog-to-digital (A/D) converter [113] adapts to compensate for
initial device mismatches or long-term drifts. Associative memory is
a major application of the Hopfield network. The fixed points in the
network energy function are used to store feature patterns. When a
noisy or incomplete pattern is presented to the trained network, a
pattern in the memory is retrieved. This property is most useful for
pattern recognition or pattern completion. The energy minimization
ability of the Hopfield network is used to solve optimization problems.
A large class of COPs can be expressed in this form of QP optimization
problems, and thus can be solved using the Hopfield network. Signal
estimation can also be formulated as QP problems. In this approach,
the weights and biases are trained such that the global minimum state
of the network energy corresponds to the optimum solution of the
optimization problem.

IV. Analog Implementation of Hopfield Networks
The Hopfield network is especially suitable for analog VLSI

implementation. The convergence time of the network dynamics

t+1()

t+1()

t+1()Wt

z

z

()

t

t

θ

()

()

()x

x

x

xJ

x

x11

2

J

2

Σ

Σ

z 1

1

1

Σ

φ

Figure: 1 Architecture of the Hopfield network. Note that 0=w ji is represented

by a dashed-line connection. (.)φ

 and θ

 are respectively a vector comprising
the activation functions of all the neurons and a vector comprising the biases of
all the neurons.

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 3 of 15

is decided by a circuit time constant, which is of the order of a few
nanoseconds [51]. The Hopfield network can be implemented
by interconnecting an array of resistors, nonlinear operational
amplifiers with symmetrical outputs, capacitors, and external bias
current sources. Each neuron can be implemented by a capacitor, a
resistor, and a nonlinear amplifier. A current source is necessary for
representing the bias. The circuit structure of the neuron is shown in
Figure 2. A drawback of the Hopfield network is the necessity to update
the complete set of network coefficients caused by the signal change,
and this causes difficulties in its circuit implementation.

By applying Ohm’s law and Kirchhoff’s current law to the ith
neuron, we obtain

=1

d =
d

J
i

i i i ji j i
j

u u w x
t

τ α θ

 − + +

∑

 ,T
i i i ia u w x θ= − + +

 (6)

where ()= =i i ix v uϕ is the input signal, ()ϕ ⋅ being the sigmoidal
function, =i i irCτ is the circuit time constant, ir is a scaling resistance,

= i
i

i

r
R

α is a damping coefficient, 0 =1

1 =
J

i ijji
G G

R
+∑ and ijG is the

conductance corresponding to ijR , = =i
ji i ij

ij

rw rG
R

 is the synaptic

weight, =i i ir Iθ is the external bias signal, and 1 2(, ,....,)=
 T

i i i Jiw w w w

is the weight vector feeding neuron i . In Figure 2, the inverting output
of each neuron is used to generate negative weights since ijG is always
positive.

The dynamics of the whole network can be written as

d = ,
d

Tu u x
t

τ α θ− + +W

 (7)

where the circuit time constant matrix ()1 2= diag , , , Jτ τ τ τ

 , the

interconnect-point voltage vector ()1 2= , , , T
Ju u u u

 , the damping
coefficient matrix ()1 2= diag , , , Jα α α α

 , the input and state vector
()1 2= , , , T

Jx x x x

 , the bias vector ()1 2= , , , T
Jθ θ θ θ

 , and the

J J× weight matrix 1 2= Jw w w W

 .

At the equilibrium of the system, d = 0
d
u
t

, thus

 = .Tu xα θ+W

 (8)

The dynamics of the network are controlled by iC and ijR . A

sufficient condition for the Hopfield network to be stable is that W is
a symmetric matrix with zero diagonal elements [51]. The stable states
correspond to the local minima of the Liapunov function [51]

1

0=1

1() = ()d ,
2

J xiT T
i

i

E x x x x θ α ϕ ξ ξ−− − +∑ ∫W

 (9)

where 1()ϕ− ⋅ is the inverse of ()ϕ ⋅ . Equation (9) is a special case of the
Cohen-Grossberg model [24].

An inspection of (6) and (3) shows that α is zero in the basic
Hopfield model. This term corresponds to the integral related to

1()ϕ− ⋅ in (9). When the gain of the sigmoidal function β →∞ , that
is, when the sigmoidal function is selected as the hard-limiter function
and the nonlinear amplifiers function as switches, the integral terms
are insignificant. In this case, the circuit model approaches the basic
Hopfield model. The stable states of the basic Hopfield network are
the corners of the hypercube, namely, the local minima of (5) are in
{ 1, 1}J− + [51]. For large but finite gains, the sigmoidal function leads
to a large positive contribution near the hypercube boundaries, but to a
negligible contribution far from the boundaries. This leads to an energy
surface that still has its maxima at the corners, but the minima slightly
move inward from the corners of the hypercube. As β decreases, each
minimum moves further inward and disappears one at a time. When
β gets small enough, the energy minima start to disappear.

For the neuron given in Figure 2, the network parameters cannot
be independently adjusted, since the coefficient iα is nonlinearly
related to all the weights ijw . Many other circuit implementations
of the Hopfield model have been proposed, among which the work in
[74] deserves mentioning. In [74], iα are removed by replacing the
integrators and nonlinear amplifiers in the previous model by ideal
integrators with saturation. This model is referred to as a linear system
in a saturated mode (LSSM), which retains the basic structure of the
Hopfield model and is easier to analyze, synthesize and implement
than the Hopfield model. The energy function of the model is exactly
the same as (5).

The Hopfield model is a network model which is most suitable
for hardware implementation. Numerous circuits for the Hopfield
model have been proposed, including analog VLSI and optical [33]
implementations.

V. Associative Memory Models
Association is a salient feature of human memory. Associative

memory is known as content-addressable memory (CAM). A pattern
can be stored in memory through a learning process. For an imperfect
input pattern, associative memory has the capability to recall the
stored pattern correctly by performing a collective relaxation search.
Associative memories can be either heteroassociative or autoassociative,
where the input and output vectors range over different vector spaces
or over the same vector space. Numerous associative memory models
are available in the literature, among which linear associative memories
[10,64,11], the brain-states-in-a-box (BSB) [12], and bidirectional
associative memories [66,14] can be used as both autoassociative
and heteroassociative memories, while the Hopfield model [50], the
Hamming network [79], the Boltzmann machine [4] can only be used
as autoassociative models.

The Hopfield model is a continuous-time, continuous-state
dynamic associative memory model. Information retrieval is realized
as an evolution of the system state. The binary Hopfield network is a
well-known model for nonlinear associative memories. This is done by
mapping a fundamental memory x onto a stable point of a dynamical

I

()

v

v vu
φ

1

i

C

i

i

v

iJ

2

i

i

Ri 0

i1

2

vJ

R

R

R

i

Figure 2: A circuit for neuron i in the Hopfield model. 0=w ji is the output
voltage of neuron (.)φ

 is the external bias current source for neuron θ

 is the
voltage at the interconnection point, Ci is a capacitor, and , 0,1, ...,=R k Jik are
resistors. The sigmoidal function (.)φ

is used as the transfer function of the

amplifiers.

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 4 of 15

system. The states of the neurons can be considered as short-term
memories (STMs) while the synaptic weights can be treated as long-
term memories (LTMs).

A. Hopfield Model: Storage and Retrieval

As an associative memory, the Hopfield network operates in two
phases, namely storage and retrieval. Bipolar coding is often used for
associative memory since bipolar vectors have a greater probability of
being orthogonal than binary vectors. Given a set, { }px

, of N bipolar

patterns, where (),1 ,2 ,= , , ,
T

p p p p Jx x x x

 , , = 1p ix ± , which are to

be stored in the network. These patterns are called the fundamental
memories. Storage is performed by using a learning algorithm, while
retrieval is based on the dynamics of the network.

1. Generalized Hebbian Rule: Conventional algorithms for
associative storage are typically local algorithms based on the Hebbian
rule [47], known as the outer product rule of storage in connection
with associative learning. A generalized Hebbian rule for training the
Hopfield network is defined by [50]

, ,
=1

1= , ,
N

ij p i p j
p

w x x i j
J

∀ ≠∑ (10)

and = 0iiw . In matrix form

=1

1= ,
N

T
p p J

p

x x N
J

 −

∑W I

 (11)

where JI denotes the J J× identity matrix. Equation (10) can be
written in an incremental form

, ,
1() = (1) , , = 1, , ,ij ij t i t jw t w t x x i j t N
J

− + ∀ ≠ (12)

where (0) = 0ijw . As such, the learning is completed after each pattern
tx in the pattern set is presented exactly once.

The generalized Hebbian rule is both local and incremental. It

has an absolute storage capability of max =
2ln

JN
J

 [86], where the

storage capability of an associative memory network is defined by
the maximum number of fundamental memories, maxN , that can be
stored and retrieved reliably. For reliable retrieval, maxN is dropped

to approximately
4ln

J
J

 [86]. The generalized Hebbian rule, however,

suffers severe degradation and maxN decreases significantly, if the
training patterns are correlated. For example, time series usually
include significant correlations in the measurements of adjacent
samples. Some variants of the Hebbian rule, such as the weighted
Hebbian rule [10] and the Hebbian rule with decay [65], can improve
the storage capabilities. When training associative memory networks
using the classical Hebbian learning, an additional term called crosstalk
may arise. When crosstalk becomes too large, spurious states other
than the negative stored patterns appear [99]. The number of negative
stored patterns is always equivalent to the number of stored patterns.
Hebbian learning produces good results when the stored patterns
are nearly orthogonal. This is the case when N bipolar vectors are
randomly selected from JR , and N J . In practice, patterns are
usually correlated and the incurred crosstalk may reduce the capacity
of the network. The storage capability of the network is expected to
decrease if the Hamming distance between the fundamental memories
becomes smaller.

2. Pseudoinverse Rule: The pseudoinverse solution targets
at minimizing the crosstalk between the stored patterns. The

pseudoinverse rule uses the pseudoinverse of the pattern matrix, while
classical Hebbian learning uses the correlation matrix of the patterns
[94,61,60,99].

Denoting 1 2= , , , Nx x x X

 , the autoassociative memory is
defined as

= .T TX W X (13)

The pseudoinverse solution for the weight matrix is thus given as

()†
= .T TW X X (14)

The pseudoinverse rule, also called the projection learning rule, is
neither incremental nor local. It involves inverting an N N× matrix,
thus the training is very slow and impractical. However, there are
iterative procedures consisting of successive local corrections [30] and
incremental procedures for the calculation of the pseudoinverse [40].

The pseudoinverse solution performs better than the Hebbian
learning when the patterns are correlated. Both the Hebbian and
pseudoinverse rules are general-purpose methods for training

associative memory networks that can be represented as =
TTX W X ,

where X and X are respectively the stored and associated pattern
matrices. For an autoassociated pattern ix , the weights generated from
the Hebbian learning projects the whole input space into the linear
subspace spanned by ix . The projection, however, is not orthogonal.
Instead, the pseudoinverse solution provides orthogonal projection to
the linear subspace spanned by the stored patterns [99]. Theoretically,
for <N J and uncorrelated patterns, the pseudoinverse solution has a
zero error, and the storage capability in this case is max = 1N J − [60],
[99].

The pseudoinverse rule is also adapted to sorting sequences of
prototypes, where an input ix leads to an output 1ix +

. The MLP with
BP learning can be used to compute the pseudoinverse solution when
the dimension J is large [60,99].

3. Improved Hebbian Learning Rule: An alternative local and
incremental learning rule based on the Hebbian rule is given by [108],
[109]

, , , ,
1() = (1) () () ,ij ij t i t j ji t i ij t jw t w t x x h t x h t x
J
 − + − − (15)

 () (1) ,
1, ,

= −∑
= ≠

J
h t w t xt uij iuu u i j

 (16)

for = 1,2, ,t N , where (0) = 0ijw for all i and j, and ijh is a form of
local field at neuron i.

The improved Hebbian rule given by (15) and (16) has an absolute

capacity of
2ln

J
J

 for uncorrelated patterns. It also performs better

than the generalized Hebbian rule for correlated patterns [108]. It
does not suffer significant capacity loss when patterns with medium
correlation are stored. It is shown in [109] that the Hebbian rule is the
zeroth-order expansion of the pseudoinverse rule, and the improved
Hebbian rule given by (15) and (16) is one form of the first-order
expansion of the pseudo-inverse rule.

4. Perceptron-type Learning Rule: Training of the above rules
can be completed in a single epoch. A learning problem in a Hopfield
network with J units can be transformed into a learning problem for

a perceptron of dimension (1)
2

J J + [99], and thus every learning

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 5 of 15

algorithm for perceptrons can be transformed into a learning algorithm
for Hopfield networks. Perceptron learning-based learning algorithms
for storing bipolar patterns in Hopfield networks are discussed in [60].
They are simple, online, local algorithms. Perceptron learning-based
algorithms work over multiple epochs and often reduce the error
nonmonotonically over the epochs. The perceptron-type learning
algorithm is given by [56,60]

, , , , , ,
1() (1) () ,
2

 = − + − +
wij ij t i t j t i t j t j t it w t x x y x y xη (17)

where ()= sgnt ty xW

, = 1, ,t N , the learning rate η is a small
positive number, and (0)jiw ’s are small random numbers or zero.
From now on, the signum function sgn (x) takes 1 for 0x ≥ and –1
for < 0x . If all (0)jiw ’s are selected as zero, η can be selected as any
positive number; otherwise, η can be selected as a number of the same
order-of-magnitude or larger than the weights. This accelerates the
convergence process. Note that () = ()ji ijw t w t .

However, when the signum vector is not realizable, the perceptron-
type algorithm does not converge but oscillates indefinitely. The
perceptron-type rule can be viewed as a supervised extension of the
Hebbian rule by incorporating a term for correcting unstable bits. For
an RNN, the storage capability of the perceptron-type algorithm can
reach the upper bound max =N J , for uncorrelated patterns. In [92],
a complex perceptron learning algorithm has also been studied for
associative memory by using complex weights and a decision circle in
the complex plane for the output function.

An extensive experimental comparison between a perceptron-
type learning rule [60] and the generalized Hebbian rule [50] has been
made in [56] on a wide range of conditions on the library patterns:
the number of patterns N, the pattern-density p, and the amount
of correlation of the bits in a pattern, decided by block size B. The
perceptron-type rule is found to be perfect in ensuring stability of the
stored library patterns under all the evaluated conditions. In many
cases, the perceptron-type rule works much better than the generalized
Hebbian rule in correcting pattern errors. The uniformly random case
(p = 0.5, B = 1) is the main exception, when the generalized Hebbian
rule systematically equals or outperforms the perceptron-type rule
in the error-correction experiments. An experimental comparison
between the storage capacities of generalized Hebbian learning,
improved Hebbian learning, and perceptron-type learning is given in
[31].

5. Retrieval Stage: After the bipolar words have been stored, the
network can be used for information retrieval. When a J -dimensional
vector (bipolar word) x , representing a corrupted or incomplete
memory of the network, is presented to the network as its state,
information retrieval is performed automatically according to the
network dynamics given by (1) and (2), or (3) and (4). For hard-
limiting activation function, the discrete form of the network dynamics
can be written as

=1

(1) = sgn () , = 1,2, , ,
J

i ji j i
j

x t w x t i Jθ

 + +

∑ (18)

 or in matrix form

(1) = sgn(()),x t x t θ+ +W

 (19)

where (0)x

 is the input corrupted memory, and ()x t

 represents the
retrieved memory at time t. The retrieval process continues until the
state vector x

 remains unchanged. The convergent x

 is a fixed point
or the retrieved memory.

B. Storage Capability

An upper bound on the storage capability of a class of RNNs with
zero-diagonal weight matrix is derived deterministically in [3].

Theorem 5.1 (Upper Bound): For any subset of N binary J -vectors,
in order to find a corresponding zero-diagonal weight matrix W and a
bias vector θ

 such that these vectors are fixed points of the network

= sgn(), = 1,2, , ,i ix x i Nθ+W

 (20)

 one needs to have N J≤ .

Thus, the upper bound on the storage capability is max =N J .
This bound is valid for any learning algorithm for RNNs with a zero-
diagonal weight matrix. The Hopfield network, having a symmetric
zero-diagonal weight matrix, is one such network, and as a result,
the Hopfield network can at most stably store J patterns. This upper
bound is too tight, since it requires that all the N-tuple subsets of bipolar
J -vectors are retrievable. It is also noted in [115] that any two datums
differing in precisely one component cannot be jointly stored as stable
states in the Hopfield network.

When permitting a small fraction ε of a set of N bipolar J -vectors
irretrievable, the upper bound approximates 2J when J →∞ . This
is given by a theorem derived from the function counting theorem
[27,37,115,60]. This theorem is more general than Theorem 5.1,
since there is no constraint on W. This RNN is sometimes referred
to as the generalized Hopfield network. Both the theorems hold true
irrespective of the updating mode, be it synchronous or asynchronous.
The generalized Hopfield network with a general, zero-diagonal weight
matrix has stable states in randomly asynchronous mode [82]. The
asymptotic storage capacity of such a network using the perceptron
learning scheme [103,83] gives a lower and an upper bound of the
asymptotic storage capacity as 1J − and 2J , respectively. In a special
case of the generalized Hopfield network with zero bias vector, some
spectral strategies are used for constructing W [115]. All the spectral
storage algorithms have a storage capacity of J for uncorrelated
patterns [115].

When the Hopfield network is used as associative memory,
there are cases where the fundamental memories are not stable.
In addition, spurious states, which are other stable states different
from the fundamental memories and their negative counterparts,
may arise [6,99]. The Hopfield network trained with the generalized
Hebbian rule can have a large number of spurious states, depending
exponentially on N, even in the case when these vectors are orthogonal
[16]. These spurious states are the corners of the unit hypercube that
lie on or near the subspace spanned by the N fundamental memories.
Presence of spurious states and limited storage capacity are the two
major restrictions for the Hopfield network being used as associative
memory. As long as N is small compared to the number of neurons J ,
the fundamental memories are proved to be stable in a probabilistic
sense [6].

The Gardner conditions [37] are often used as a measure of the
stability of the patterns. Associative learning can be designed to
enhance the basin of attraction for every pattern to be stored by
optimizing these conditions. The Gardner algorithm [37] combines
maximal storage with a pre-defined level of stability for the patterns.
Based on the Gardner conditions, the inverse Hebbian rule [26,25] is
given by

()1= ,ij ij
w −− C (21)

where the correlation matrix
=1

1=
N T

p pp
x x

N∑C

. Unlike the

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 6 of 15

generalized Hebbian rule, which can only store unbiased patterns,
the inverse-Hebbian rule is capable of storing N patterns, biased or
unbiased, in a Hopfield network of N neurons. The patterns have zero
basins of attraction, and C must be nonsingular. Matrix inversion can
be implemented using a local learning algorithm [57]. The inverse-
Hebbian rule provides ideal initial conditions for any algorithm capable
of increasing the pattern stability. The quadratic Oja algorithm is a non-
local generalization of the Oja’s algorithm [93], and can be applied to
adapt the weights so as to enhance the size of the basin of attraction of
a subset of the stored patterns until the storage of the pattern subset is
compromised. In [63], by using the Gardner algorithm for training the
weights [37] and using a nonmonotonic activation function, the storage
capacity of the network can be made to be always larger than 2 J and reach
its maximum value of 10.5J . In [90,127], a continuous nonmonotonic
activation function is used to greatly improve the storage capacity
of the Hopfield network to approximately 0.4J , and spurious states
can be totally eliminated. When it fails to recall a memory, a chaotic
behavior will occur.

The eigenstructure learning rule [74] is developed for continuous-
time Hopfield models in linear saturated mode. The design method
allows linear combinations of the prototype vectors to be stored as
asymptotically stable equilibrium points as well. The storage capacity is
better than those of the pseudoinverse solution [94] and the generalized
Hebbian rule [50]. The method has been extended to discrete-time
neural networks in [88]. A quantum computational learning algorithm
that combines quantum computation with the Hopfield network
is given in [116]. The quantum associative memory offers a storage
capacity of (2)JO . It employs simple spin-1/2 (two-state) quantum
systems and represents patterns as quantum operators.

C. Multilayer Perceptrons as Associative Memories

Most RNN-based associative memories have low storage capacity
as well as poor retrieval ability. RNNs exhibit asymptotic behavior and
as such are difficult to analyze. MLP-based autoassociative memories
with equal number of input and output nodes have been introduced to
overcome these limitations [19,122].

The recurrent correlation associative memory (RCAM) [19] is A
J - N - J MLP whose outputs are fed back to their respective inputs.
At each instant, the hidden layer computes an intermediate mapping,
while the output layer completes an association of the input pattern
to an approximate prototype pattern. The approximated pattern is
fed back to the network and the process continues until convergence
to a prototype is achieved. The weight matrix between the input and
hidden layers (1)W , a J N× matrix, is made up of the N J -bit bipolar

memory patterns , = 1,2, ,ix i N

 , that is, (1)
1 2= , , , Nx x x W

 . The

weight matrix between the hidden and output layers (2) (1)=
T

 W W .

The activation function for the ith neuron in the hidden layer is ()iϕ ⋅ ,

and the activation function at the output layer is the signum function.
At the presentation of pattern x , the network evolution is given by

()
=1

(1) = sgn () .
N

T
j j j

j

x t x x t xϕ

 + ⋅

∑

 (22)

 The correlation of two patterns, ()1 2 H 1 2= 2 ,Tx x J d x x−

, where
H ()d ⋅ is the Hamming distance between two binary vectors within,

which is the number of bits in the two vectors that do not match each
other.

When all () = ()i net netϕ ϕ , ()netϕ being any continuous,
monotonic nondecreasing weighting function over [,]J J− , the RCAM
(22) is proved to be asymptotically stable in both the synchronous
and asynchronous update modes [19]. This property is especially
suitable for hardware implementation, since there are faults in the
manufacture of any physical device. Based on this, a family of RCAMs
are proposed which possess the asympototical stability. When all

() =i net netϕ , the RCAM model is equivalent to the correlation-matrix
associative memory [64,11], that is, the connection can be written as

=1
=

N T
p pp

x x∑W

. By suitably selecting ()iϕ ⋅ , the model is reduced

to some existing associative memories, which have a storage capacity
that grows polynomially or exponentially with J [19]. In particular,
when all () = net

i net aϕ with radix > 1a , an exponential correlation
associative memory model (ECAM) [19] is obtained. The exponential
activation function stretches the ratios among the weights and makes
the largest weight more overwhelming. This significantly increases the
storage capacity. The ECAM model exhibits an asymptotic storage
capacity that scales exponentially with J [19]. Under the noise-free
condition, this storage capacity is 2J patterns [19]. A VLSI chip for the
ECAM model has been fabricated and tested [19]. The multi-valued
RCAM [20] can increase the error correction capability with large
storage capability and less interconnection complexity.

The local identical index (LII) [122] is an autoassociative memory
model that uses the J - N - J MLP architecture. The weight matrices

(1)W and (2)W are the same as those defined in the RCAM. It utilizes
the signum activation function and biases in both the hidden and
output layers. The LII model utilizes the local characteristics of the
fundamental memories through two metrics, namely, the global
identical index (GII) and the LII. Based on the minimum Hamming
distance as the underlying association principle, the scheme can be
viewed as an approximate Hamming decoder. The LII model exhibits
low structural as well as operational complexity. It is a one-shot
associative memory, and can accommodate up to 2J prototype patterns.
The LII model outperforms the LSSM [74] and its discrete version [88]
in recognition accuracy at the presentation of the corrupted patterns,
controlled by using the Hamming distance. It can successfully associate
input patterns that are even loosely correlated with the corresponding
prototype pattern.

For a J - J2- J MLP-based autoassociative memory, the hidden
layer is a bottleneck layer with less nodes, 2 <J J . This bottleneck layer
is used to discover a limited set of unique prototypes that cluster the
training set. When a linear activation function is employed, the MLP-
based autoassociative memory has a serious limitation, namely, it does
not allow the user to control the granularity of the clusters formed. Due
to lack of cluster competition mechanism, different clusters which are
close to one another in the input space may merge. This problem can be
overcome by using the sigmoidal activation function.

D. The Hamming Network

The Hamming network [79] is a straightforward associative
memory. It calculates the Hamming distance between the input pattern
and each memory pattern, and selects the memory with the smallest
Hamming distance. The network output is the index of a prototype
pattern and thus the network can be used as a pattern classifier. The
Hamming network is used as classical Hamming decoder or Hamming
associative memory. It provides the minimum-Hamming-distance
solution.

The Hamming network has J - N - N layered architecture, as

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 7 of 15

illustrated in Figure 3. The third layer is called memory layer, each
of whose neurons corresponds to a prototype pattern. The input and
hidden layers are feedforward, fully-connected, while each hidden
node has a feedforward connection to its corresponding node in the
memory layer. Neurons in the memory layer are fully interconnected,
and form a competitive, winner-take-all (WTA) subnetwork known as
MAXNET. The MAXNET responds to an input pattern by generating a
winner-neuron through iterative competitions. The Hamming network
is implicitly recurrent due to the interconnections in the memory layer.

Architecture of the J - N - N Hamming network. The activation
function at all the units is the signum function. The number of neurons
in the memory layer, N , corresponds to the number of stored patterns.

= klt T , , = 1, ,k l N .

The second layer generates matching scores ()H , iJ d x x−

,
= 1, ,i N , for pattern x

. These matching scores ranges from 0 to
J . The unit with the highest matching score corresponds to the stored
pattern that best matches the input. The weights between the input and
hidden layers and the biases of the hidden layer are respectively set as

,=
2
j i

ij
x

w , and (2) =
2j
Jθ , = 1, ,j N , = 1, ,i J . All the thresholds

and the weights klt in the MAXNET are fixed. The thresholds are

set as zero. The weights from each node to itself are set as unity and

weights between nodes are inhibitory, that is, = 1klt for =k l and ε−

otherwise, where 1<
N

ε .

When a binary pattern is presented to the network, the network
first generates an initial input for the MAXNET

(2)

=1

(0) = , = 1, , ,
N

j ij i j
i

y w x j Nϕ θ

 −

∑ (23)

where ()ϕ ⋅ is a threshold-logic nonlinear function. The input pattern is
then removed and the MAXNET continues the iteration

=1,

(1) = () () , = 1, , ,
N

j j k
k k j

y t y t y t j Nϕ ε
≠

 + −

∑ (24)

until the output of only one node is positive. This node corresponds to
the selected class.

The Hamming network implements the minimum error classifier,

when the bit errors are random and independent. For the J - N - N
Hamming network, there are 2J N N× + connections, while for the
Hopfield network the number of connections is J 2. When J N , the
number of connections in the Hamming network is significantly less
than that in the Hopfield network. In addition, the Hamming network
offers a storage capacity that is exponential in the input dimension
[44], and it does not have any spurious state. Under the noise-free
condition, the Hamming network has a storage capacity of 2J patterns
[44]. For a sufficiently large but finite radix α, the ECAM operates as a
Hamming associative memory [44]. However, the Hamming network
suffers from difficult hardware implementations and slow retrieval
speed. Based on the correspondence between the Hamming network
and the ECAM [44], the ECAM can be used to compute the minimum
Hamming distance, in a distributed fashion by analog exponentiation
and thresholding devices. The two-level Hamming network [54]
generalizes the Hamming memory by providing for local Hamming
distance computations in the first level and a voting mechanism
in the second level. It allows for a much more practical hardware
implementation and a faster retrieval.

VI. Simulated Annealing
SA is a process simulating the anealing of certain alloys of metal.

The Metropolis algorithm is a simple method for simulating the
evolution to the thermal equilibrium of a solid for a given temperature
[87], and the SA algorithm [62] extends the Metropolis algorithm by
changing the temperature from high to low. SA is a general, serial
algorithm for finding a global minimum for a continuous function
[62]. The solutions by this technique are close to the global minimum
within a polynomial upper bound for the computational time. Some
parallel algorithms for SA have been proposed aiming to improve the
accuracy of the solutions [29]. SA is a successful method, for example,
used for the layout of integrated circuits [105].

A. Classic Simulated Annealing

According to statistical thermodynamics, the probability of a
physical system being in state with energy E at absolute temperature
T satisfies the Boltzmann or Boltzmann-Gibbs distribution. At high
T , the Boltzmann distribution exhibits uniform preference for all the
states, regardless of the energy. When T approaches zero, only the
states with minimum energy have nonzero probability of occurrence.
In SA, at high T , the system ignores small changes in the energy and
approaches the thermal equilibrium rapidly, that is, it performs a coarse
search of the space of global states and finds a good minimum. As T
is lowered, the system responds to small changes in the energy, and
performs a fine search in the neighborhood of the already determined
minimum and finds a better minimum. At T = 0, any change in the
system states does not increase the energy, and thus, the system must
reach equilibrium if T = 0.

When performing SA, theoretically a global minimum is
guaranteed to be reached with a high probability. The artificial thermal
noise is gradually decreased in time. The computational temperature
T controls the magnitude of the perturbations of the energy function

()E x

. The probability of a state change is determined by the Boltzmann

distributions of the energy difference between the two states, = e
E

TP
∆

−
. The

probability of uphill moves in the energy function (> 0E∆) is large at
a high T , and is low at a low T . SA allows uphill moves in a controlled
fashion: it attempts to improve on greedy local search by occasionally
taking a risk and accepting a worse solution. SA can be performed as
given by Algorithm 1 [62], [23].

()θ

y

y

y

x

x

(2) T

Σ

Σ

ΣΣ

Σ

Σ

W φ()φ

MAXNET

2

1

J

N

2

1

x

Figure 3: Architecture of the J - N - N Hamming network. The activation function
at all the units is the signum function. The number of neurons in the memory layer,
N , corresponds to the number of stored patterns. [], , 1, . . . , .= =T klt k l N

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 8 of 15

 Algorithm 1 (SA)

1. Initialize the system configuration.

2. Randomize (0)x

.

3. Initialize T with a large value.

 4. Apply random perturbations to the output state of neurons
=x x x+ ∆

.

5. Evaluate () = () ()E x E x x E x∆ + ∆ −

;

(a) If () < 0E x∆

, keep the new state;

(b) Otherwise, accept the new state with the probability = e
E

TP
∆

−
.

 6. Repeat Steps 4 and 5 until the number of accepted transitions
becomes below a threshold level.

7. Set =T T T− ∆ .
8. Repeat Steps 4 through 7 until T is small enough.

The cooling schedule for T is critical to the efficiency of SA. If
T cools too fast, a premature convergence to a local minimum may
occur. In contrast, if it is too slow, the algorithm is very slow to
converge. Based on a Markov chain analysis on the SA process, T

must be decreased according to 0() , = 1,2,
ln(1)

TT t t
t

≥
+

 to ensure

convergence to the global minimum with probability one [38], where
0T is the initial temperature. This is practically too slow. In practice,

one usually applies, in Step 7, a fast schedule () = (1)T t T tα − with
0.85 0.96α≤ ≤ , to achieve a suboptimal solution.

B. Variants of Simulated Annealing

Boltzmann annealing is too slow for a reliable cooling schedule.
Many methods, such as Cauchy annealing [111], simulated re-
annealing [55], generalized SA [114], and the SA algorithm with known
global value [81], have been proposed to accelerate the SA search.
There are also global optimization methods that make use of the idea
of annealing [98,100]. Some VLSI designs of SA are also available [68].

In Cauchy annealing [111], the Cauchy or Cauchy-Lorentz
distribution is used to replace the Boltzmann distribution. The infinite
variance provides a better ability to escape from local minima and
allows for the use of faster schedules, such as T decreasing according
to tTtT /=)(0 . A stochastic neural network trained with Cauchy

annealing is called the Cauchy machine. In simulated re-annealing [55],

T decreases exponentially with t, that is, JtcTT /1
0e= − , where 1 0> c is

a constant and J is the dimension of the input space. The introduction
of re-annealing also permits adaptation to changing insensitivities
in the multi-dimensional parameter space. The generalized SA [114]
generalizes both Cauchy annealing [111] and Boltzmann annealing [62]
within a unified framework inspired by the generalized thermostatistics.
An SA algorithm under the assumption of known global value *E has
been investigated in [81]. The algorithm is the same as the classical
SA except that at each iteration a uniform random point is generated
over a sphere, whose radius depends on the difference −

E x t E(()) *,
and T is also decided by this difference. The algorithm has guaranteed
convergence and an upper bound for the expected first hitting time, i.e.
the expected number of iterations before reaching the global optimum
value within a given accuracy ε, is established. The idea of annealing is
a general optimization principle, which can be extended by using fuzzy
logic. In the fuzzy annealing scheme [98], fuzzification is performed by
adding an entropy term. The fuzziness at the beginning of the entire

procedure is used to prevent the optimization process getting stuck at
an inferior local optimum. The fuzzy annealing scheme results in an
increase in the computation speed by a factor of one hundred or more
compared to SA [98].

SA makes a random search on the energy surface. Deterministic
annealing [101,100] is a method where randomness is incorporated
into the energy or cost function, which is then deterministically
optimized at a sequence of decreasing temperature. The approach is
derived within the framework of information theory and probability
theory. Deterministic annealing has been used for nonconvex
optimization problems such as clustering, MLP training, and RBFN
training [101,100].

VII. Combinatorial Optimization Problems
Any problem that has a large set of discrete solutions and a cost

function for rating those solutions relative to one another is a COP.
COPs are known to be NP-complete [110]. In COPs, the number of
solutions grows exponentially with n, the size of the problem, at (!)O n
or ()enO so that no algorithm can find the global minimum solution
in a polynomial computational time. The goal for COPs is to find an
optimal solution or sometimes a nearly optimal solution.

The traveling salesman problem (TSP) is a well-known COP [50]:
Assuming there are n cities, find the shortest possible tour such that a
salesman visits every city exactly once and then returns to the starting
point. There are (1)! / 2n − possible tours. The Hopfield network
was the first neural network used for the TSP, and it achieves a near-
optimum solution [52]. Routing of wires on a printed circuit board
(PCB) is a typical TSP. The location-allocation problem is another
COP.

The Hopfield network can be effectively used to deal with COPs
with the objective functions of the linear or quadratic form, linear
equalities and/or inequalities as the constraints, and binary variable
values so that the constructed energy function can be of quadratic form.
For example, a class of COPs including the location-allocation problem
is formulated in [84,31]. To make use of the Hopfield network, one
needs first to convert the COP into a constrained real optimization
problem and solve the latter using the penalty method. The total cost E
is the weighted sum of the objective term and terms associated with the
constraints. When all the constraint terms are all zeros, the solution is
a feasible one. The weights for individual constraints can be tuned for
an optimal or good solution. The cost E should the same form as that
of the energy function of the Hopfield network, given by (5). For the
penalty method, there is always a compromise between good-quality
solution and convergence. For a feasible solution, the weighting factors
for the penalty terms should be sufficiently large, which however
causes the constraints on the original problem to become relatively
weaker, resulting in a deterioration of the quality of the solution. A
trial-and-error process for choosing some of the penalty parameters is
inevitable in order to obtain feasible solutions. Moreover, the gradient-
descent method often leads to local minima of the energy landscape.
An inequality constraint can be expressed as an equality constraint by
introducing some slack variables (slack neurons).

A. Escaping Local Minima for Combinatorial Optimization
Problems

SA [62] is a popular method for any optimization problem
including COPs. However, due to its Monte Carlo nature, SA would
require even more iterations than complete enumeration, for some
problems, in order to guarantee convergence to an exact solution.
For example, for an n-city TSP, SA using the logarithmic cooling

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 9 of 15

schedule needs a computational complexity of
2 1nnO n

−

, which is

far more than ((1)!)O n − for complete enumeration and ()22nO n
for dynamic programming [18,1]. Thus, one has to apply heuristic fast
cooling schedules to improve the convergence speed.

The Hopfield network is more desirable for solving COPs that
can be formulated into quadratic functions. The Hopfield network
converges very fast, and it can also been easily implemented using RC
circuits. However, due to its gradient-descent nature, it always gets
trapped at the nearest local minimum of the initial random state. Some
strategies are necessary for escaping from the local minima.

1. Gain Annealing: To escape from the local minima, a popular
strategy is to change the sigmoidal gain β, by starting from a low gain
and gradually increasing it. When β is low, the energy landscape is
smooth, and the algorithm can easily find a good local minimum. As
β increases, more details of the energy landscape is revealed, and the
algorithm can find a better solution. This is analogous to the cooling
process of SA [62], and this process is usually called gain annealing. In
the limit, when β →∞ , the hypobolic tangent function becomes the
signum function.

2. Balancing Objective and Constraint Terms: In order to
use the Hopfield network for solving optimization problems, the cost
function can be constructed as

() = () (),o o c cE x E x E xλ λ+

 (25)

where E0 and Ec represent the objective and constraint terms,
respectively, and oλ , > 0cλ are their corresponding weights.

By adaptively adjusting the balance between the constraint and
objective terms, the network can avoid falling into a local minimum
and continue to update in a gradient-descent direction of energy [119].
At a local minimum of E, one always has

= 0, = 1, , .o c
i o c i

i i i

E EE x x i J
x x x

λ λ
 ∂ ∂∂

∆ + ∆ ≥ ∂ ∂ ∂
 (26)

The method for escaping from the local minimum is to adjust oλ
and/or cλ so that (26) is not satisfied for at least one neuron. The
energy of the network decreases with the state change of the ith neuron.
Thus, the learning eliminates the local minimum that the network
would fall into. The minimum found is not only a minimum of the
total energy function, but also the minima of both the constraint and
objective terms. This minimum is always a global or a near-global one.

B. Combinatorial Optimization Problems with Equality and
Inequality Constraints

The Hopfield network can be used to solve COPs under equality
as well as inequality constraints, as long as the constructed energy
function is of the form (5). Some extensions to the Hopfield model are
necessary in order to handle both equality and inequality constraints
[113,2]. In the extended Hopfield model [2], each inequality constraint
is converted to an equality constraint by introducing an additional
variable managed by a new neuron, known as the slack neuron.
Each slack neuron is connected to the initial neurons, where their
corresponding variables occur in its linear combination. The extended
Hopfield model has the drawback of being frequently stabilized in
neuron states far from the suitable ones, i.e., zero and one. To deal with
this drawback, a new penalty energy term is derived to significantly
reduce the number of neurons with unsuitable states [71]. The derived
rules introduce competitions between the variables involved into the

same constraint. The competitive mechanism also deals with the upper
bounded inequality constraints. This mechanism has the capacity to
distribute the neurons into the two states.

The k-out-of-n design rule [112] is used to facilitate the construction
of the network energy functions for multiple k-out-of-n equality

constraints,
=1

=
n

ii
x k∑ , and inequality constraints,

=1

n
ii

x k≤∑ . For

k-out-of-n inequality constraints, slack neurons are used. A generalized
architecture for the Hopfield network with k-out-of-n design is
achieved by adding to the original J neurons one adjustable neuron
associated with each given constraint [77] so as to improve the quality
of the solutions. This architecture also applies when slack neurons are
used for inequality constraints.

VIII. Chaotic Neural Networks
An RNN such as the Hopfield network, when introduced with

chaotic dynamics, is sometimes called a chaotic neural network. The
chaotic dynamics are temporarily generated for searching and self-
organizing, and eventually vanish with autonomous decrease of a
bifurcation parameter corresponding to the temperature in the SA
process. Thus, the chaotic neural network gradually approaches to a
dynamical structure of the RNN. Since the operation of the chaotic
neural network is similar to that of SA, not in a stochastic way but in
a deterministically chaotic way, the operation is known as chaotic SA
(CSA). More specifically, the transiently chaotic dynamics are used
for searching a basin containing the global optimum, followed by a
stable and convergent phase when the chaotic noise decreases to zero.
As a result, the chaotic neural network has a high ability for searching
globally optimal or near-optimal solutions [18]. SA searches all the
possible states by temporally changing the probability distributions,
while CSA searches a possible fractal subspace with continuous states
by temporally changing invariant measures that are determined by its
dynamics. Thus, the search region in CSA is very small compared with
the state space, and CSA can perform an efficient search.

A small amount of chaotic noise can be injected to the output
of the neurons and/or to the weights during the operation of the
Hopfield network. In [46], a chaotic neural network is obtained by
adding chaotic noise to each neuron of the discrete-time continuous-
output Hopfield network and gradually reducing the noise so that
it is initially chaotic, but eventually convergent. The chaotic neural
network introduced in [18,5] is obtained by adding a negative self-
coupling to the Hopfield network. By gradually removing the self-
coupling, the transient chaos is used for searching and self-organizing.
The updating rule for the chaotic neural network is given by [18]

() ()1(1) = 1 () () ,Ti
i i i i i

i i
net t net t w x c t xα

θ γ
τ τ

+ − + + − −

 (27)

()() = () ,i ix t net tϕ (28)

where (1) = ()c t c tβ+ , [0,1]β ∈ , the bias > 0γ , and other
parameters are the same for (6). A large initial value of ()c t is used so
that the self-coupling is strong enough to generate chaotic dynamics
for searching the global minima. The damping of ()c t produces
successive bifurcations so that the neurodynamics eventually converge
from strange attractors to a stable equilibrium point.

In [118], the CSA approach is derived by varying the time step
t∆ of an Euler discretization of the Hopfield network. The time step

is analogous to the temperature parameter in SA, and the method
starts with a large t∆ , where the dynamics are chaotic, and gradually
decreases it. When 0t∆ → , the system approaches the Hopfield
model (6) and minimizes its energy function. When = 1t∆ , the Euler-

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 10 of 15

discretized Hopfield network is identical to the chaotic neural network
given in [18]. The simulation results for COPs are comparable to that
of the method proposed in [18]. Many chaotic approaches [18,118,46]
can be unified and compared under the framework of adding an extra
energy term CSAE into the original computational energy (9) of the
Hopfield model [67]. The extra energy term modifies the original
Hopfield energy landscape to accommodate transient chaos. This
driving force is diminished as CSA 0E → when () 0tλ → .

CSA has a better search ability for solving COPs compared to SA.
However, a number of network parameters must be subtly adjusted
so as to guarantee the convergence of the chaotic network. Unlike SA,
CSA may not find a globally optimal solution no matter how slowly the
annealing is carried out, because the chaotic dynamics are completely
deterministic. Stochastic CSA [120] is proposed as a combination of
the SA and the CSA [18] by using a noisy chaotic neural network.
Stochastic CSA restricts the random search to a subspace of chaotic
attracting sets, and this subspace is much smaller than the entire state
space searched by SA. Simulation results show that stochastic CSA
performs more efficiently than SA and CSA [18] for the TSP and the
channel assignment problem.

IX. Hopfield Networks for Other Optimization and
Sign

The least squares (LS) problem is a typical method for optimization
and signal processing. Matrix inversion can be performed using the
Hopfield network [57]. Given a nonsingular n n× matrix A, the energy
function can be defined by F

2AV I− ,where V denotes the inverse of A
and the subscript F denotes the Frobenius norm. This energy function
can be decomposed into n energy functions, and n similar networks are
required, each optimizing an energy function. This method can be used
to solve a system of n linear equations with n variables, =x bA

, where
n nR ×∈A and x

, nb R∈

, if the set of linear equations (SLE) has a
unique solution, that is, A is nonsingular. In [17], this SLE is solved
by using a continuous Hopfield network with n nodes. The Hopfield

network is designed to minimize the energy function 21=
2

E x b − A

, and the activation function is selected as a linear transfer function.

This method is also applicable when there exists infinitely many
solutions and A is singular. Another neural LS estimator that uses
continuous Hopfield network and a nonlinear activation function
has been proposed in [36]. A Hopfield network with linear transfer
functions augmented by an additional feedforward layer can be used to
solve an SLE [117] and to compute the pseudoinverse of a matrix [72].
The resultant augmented linear Hopfield network can be used to solve
constrained LS optimization problems.

The linear programming (LP) network [113] is designed based on
the Hopfield model for solving LP problems

min Ta x

 (29)

subject to
T
j jd x h≥

 (30)

for = 1, ,j M , where (),1 ,2 ,= , , ,
T

j j j j Jd d d d

 , ,= j id D is an

M J× matrix, and jh is a constant. Each inequality constraint is
modeled by a slack neuron. The network contains a signal plane with
J neurons and a constraint plane with k neurons. The energy function
decreases until the net reaches a state where all time derivatives are zero.

With some modifications, the LP network [113] can be used to solve
LSE problems [124]. In [28], a circuit based on a modification of the LP
network [113] is designed for computing the discrete Hartley transform
(DHT). A circuit for computing the discrete Fourier transform (DFT)
is obtained by simply adding a few adders to the DHT circuit. The
circuits can compute the DHT and DFT within circuit time constants
of the order of nanoseconds. The stability, computational speed, and
computational accuracy of the LP network depends substantially on the

location of the eigenvalues of the matrix product T
g fD D (or T

f gD D),
where gD and fD are, respectively, approximations to D at the signal
and constraint planes of the network in the nonideal case [124,41].

X. Multistate Hopfield Networks
The multilevel Hopfield network [34] and the complex-valued

multistate Hopfield network [58,91] are two direct generalizations of
the Hopfield network. The multilevel Hopfield network uses neurons
with an increasing multistep function as the activation function, while
the complex-valued multistate Hopfield network uses a multivalued
complex-signum function as the activation function. The complex-
valued Hopfield-like network [49], like the complex-valued multistate
Hopfield network [58,91], uniformly quantizes the phase of the net
input of each neuron and disregards the corresponding amplitude, but
uses different dynamic equations.

The use of multistate neurons leads to a network architecture
that is significantly smaller than that of the conventional Hopfield
network, and hence, a simple hardware implementation. The reduction
in the network size is highly desirable in large-scale applications such
as image restoration and the TSP. In addition, the complex-valued
multistate Hopfield network is also more efficient and convenient than
the Hopfield network in the manipulation of complex-valued signals.

A. Multilevel Hopfield Networks

In [34], a multilevel Hopfield network for associative memory
is obtained by replacing the threshold activation function with an
increasing multistep function and modifying the generalized Hebbian
rule. The storage capability of the J -neuron multilevel Hopfield

network is proved to be ()3O J bits, which is of the same order as that

of the Hopfield network [3]. For a network of J neurons, the number
of patterns that the multilevel network can reliably store and retrieve
may be considerably less than that for the Hopfield network, since each
codeword typically contains more bits.

The multilevel sigmoidal function is typically used as the activation
function in the multilevel Hopfield network [128,107,129]. In [107],
a storage procedure for the multilevel Hopfield network in the
synchronous mode has been developed based on the LS solution, and
also examined by using an image restoration example. A retrieval
procedure for the multilevel Hopfield network has been proposed and
applied to COPs such as the TSP in [32]. In [128], a multilevel Hopfield-
like network is obtained by using a new neuron with self-feedback and
the multilevel sigmoidal activation function. The multilevel model has
been applied for A/D conversion, and a circuit implementation for the
neural A/D converter has been fabricated [128].

B. Complex-valued Multistate Hopfield Networks

The complex-valued multistate Hopfield network [58,91] adopts
the multivalued complex-signum activation function, defined as an L-stage
phase quantizer for complex numbers

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 11 of 15

)
)

)

0
0

1
0 0

1
0 0

, arg() 0,

, arg() ,2
csign() = ,

, arg() (1) ,L

z u

z u
u

z u L L

φ

φ φ

φ φ−

 ∈
 ∈

 ∈ −

 (31)

where 0= e jz φ with 0
2=
L
πφ is the Lth root of unity. Each state takes

one of the equally spaced L points on the unit circle of the complex
plane.

Similar to the Hopfield network, the system dynamics for the J -neuron
network are defined by

=1

() = (),
J

i ki k
k

net t w x t∑ (32)

1
2(1) = csign ()i ix t net t z

 + ⋅

 (33)

for = 1, ,i J , where the factor
1 0
2 2= e

j
z

φ

 places the resulting
states in angular centers of each sector. A sufficient condition for the
stability of the dynamics is that the weight matrix is Hermitian with
nonnegative diagonal entries, that is, = HW W , 0iiw ≥ [58]. The
energy can be defined as

1() = .
2

HE x x x− W

 (34)

In order to store a set of N patterns, { } {0,1, , 1}J
ix L⊂ −

 , ix is

first encoded to its complex memory state (),1 ,= , ,
T

i i i Jε ε ε

 with
,

, = .
xi j

i j zε (35)

 The decoding of a memory state to a pattern is the inverse of (35).
The complex-valued pattern set { }iε

 can be stored in weights by the
generalized Hebbian rule [50]

*
, ,

=1

1= , , = 1,2, , ,
N

ji i jw i j J
J µ µ

µ

ε ε∑ (36)

where superscript* denotes the conjugate operation. Thus, W is
Hermitian.

The storage capability of the memory, maxN , is dependent upon
the resolution L for an acceptable level of the error probability maxP .
As L is increased, maxN decreases, but each pattern contains more
information.

Due to the use of the generalized Hebbian rule, the storage capacity
of the network is very low and the problem of spurious memories is
very pronounced. In [70], a gradient descent-based learning rule
has been proposed to enhance the storage capacity and also reduce
the number of spurious memories. In [91], an LP method has been
proposed for storing into the network each pattern in an integral set

{0,1,2, , 1}JM L⊂ − as a fixed point. The LP method significantly
reduces the number of spurious memories, and provides better results
in case of noisy gray-level image reconstruction.

Since gray-scale images can be represented by integral vectors,
reconstruction of such images from their distorted versions constitutes
a straightforward application of multistate associative memory.
The complex-valued Hopfield network is particularly suitable
for interpreting images transformed by two-dimensional Fourier
transform and two-dimensional autocorrelation functions [58].

The complex-valued Hopfield-like network [49] processes input
vectors fully in the complex space using complex weights. Real and
imaginary parts of the data are treated with equal significance in

nondegenerate complex space. A modification of this network has been
successfully applied to the DoA estimation of antenna array [125].

XI. Boltzmann Machines and Learning
Boltzmann machines are a class of stochastic RNNs based on

physical systems [4,48]. It has the same network architecture as that
of the Hopfield model, that is, it is highly recurrent with =ij jiw w
and = 0iiw , , = 1, ,i j J . In contrast to the Hopfield network, the
Boltzmann machine can have hidden units. The Hopfield network
operates in an unsupervised manner, while the Boltzmann machine
can also be trained in a supervised manner.

A. The Boltzmann Machine

Unlike the Hopfield model, neurons of a Boltzmann machine are
divided into visible and hidden units. The visible units are clamped onto
specific states determined by the environment. The hidden units always
operate freely. By capturing high-order statistical correlations in the
clamping vector, the hidden units simulate the underlying constraints
contained in the input vectors. This type of Boltzmann machine uses
the unsupervised learning, and can perform pattern completion. When
the visible units are further divided into input and output neurons, this
type of Boltzmann machine can be trained in a supervised manner.
The recurrence eliminates the difference in input and output cells. The
Boltzmann machine, operated in sequential or synchronous mode, is
a universal approximator for arbitrary functions defined on finite sets
[126].

Instead of using a sigmoidal function in the Hopfield network, the
activation at each neuron takes the value of 0 or 1, depending on the
probability of temperature T

=1,

= = ,
J

i ji j i
j j i

net w x w x
≠

∑

 (37)

1= ,

1 e

i neti
T

P
−

+

 (38)

1, with probability
1, with probability1

=

− −

pixi pi
 . (39)

When = 0inet or T is very large, ix is either 1 or 0 with equal
probability. For very small T , ix is deterministically 1. The input and
output states can be fixed or variable.

The search for all the possible states is performed at a temperature
T in Boltzmann machines. At the steady state, the relative probability
of two states in a Boltzmann machine is determined by the Boltzmann

distribution of the energy difference between the two states eα

β

−=
p
p

,α β−E E
T

where Eα and Eβ are the corresponding energy levels of the two
states. The energy can be computed by the same formula as for the
Hopfield model given by (5).

For the Boltzmann machine with hidden units, the generalized
Hebbian rule cannot be used as in an unsupervised manner. For the
supervised learning of the Boltzmann machine, the BP is not applicable
due to the different network architecture. SA is used by Boltzmann
machines to learn weights corresponding to the global optimum.
Nevertheless, the Boltzmann learning is significantly slower than the
BP. For constraint-satisfaction problems, some of the neurons are
externally clamped to some input patterns, and we then find the global

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 12 of 15

minimum for these particular input patterns. The integration of SA into
the Boltzmann learning rule makes the Boltzmann machine especially
suitable for constraint satisfaction tasks involving a large number of
weak constraints [48].

The original Boltzmann learning algorithm [48,4] is based on
counting occurrences. The Boltzmann learning algorithm based on
correlations [95] provides a better performance than the original
algorithm. For each update of the algorithms, the algorithm first
estimates correlation in the clamped condition by performing SA
procedure for all the training set, ijρ+ , , = 1,2, , ,i j J i j≠ , then
estimates correlation in the free-running condition, ijρ− . Finally the
weight updated is performed by

()= , , = 1,2, , , ,ij ij ijw i j J i jη ρ ρ+ −∆ − ≠ (40)

where the learning rate =
T
εη , and ε is a small positive constant.

Equation (40) is called the Boltzmann learning rule. This procedure is
repeated until there is no change in ijw , for all i , j. The correlation-based
learning procedure for the Boltzmann machine is given in [31,95,45].

Like the multistate Hopfield model [58], a multi-valued Boltzmann
machine has been proposed as an extension of the two-valued
Boltzmann machine [78]. Each neuron of the multi-valued Boltzmann
machine can only take L discrete stable states, and the angle between

two adjacent directions is given by 0
2=
L
πφ . The probability of state

change is according to the Boltzmann distribution of the energy
difference between the two states. A synchronous Boltzmann machine
as well as its learning algorithm has been introduced to facilitate
parallel implementations [13].

B. The Mean-field-theory Machine
Mean-field approximation is a well-known method in statistical

physics [39]. The mean-field annealing algorithm was proposed to
accelerate the convergence of the Boltzmann machine [95,96]. The
Boltzmann machine with such an algorithm is also termed the mean-
field-theory (MFT) machine or deterministic Boltzmann machine.

The mean-field annealing algorithm is a deterministic method.
It generates continuous neuron outputs, which are calculated as the
average of the probability of the binary neuron variables at temperature
T , are used. The average of state ix is calculated for a specific value of
activation inet according to (39), (37) and (38)

E[] tanh().=
netixi T

 (41)

The correlations in the Boltzmann learning rule is replaced by the
mean-field approximation E E Ei j i jx x x x .

The MFT machine provides a substantial speedup over the
Boltzmann machine, and is one to two orders-of-magnitude faster than
the Boltzmann machine [42,95].

The mean-field annealing algorithm can be derived following the
optimization of the Kullback-Leibler divergence between the factorial
approximating distribution and the ideal joint distribution of the
binary neural variables in terms of the mean activations. In [123],
two interactive mean-field algorithms are derived by extending the
internal representations to include both the mean activations and
the mean correlations. The two algorithms improve the mean-field
approximation in both the performance and the relaxation efficiency.

The mean-field annealing dynamics are isomorphic to the steady-
state equations of an RC-circuit. The mean-field annealing algorithm
can be simulated by RC circuits, coupled with the local nature of the

Boltzmann machine, which makes the MFT machine suitable for
massively parallel VLSI implementation [9,69,106].

XII. Discussion
Both the Boltzmann and MFT machines can be used as associative

memory. These models, when using hidden units, have a far higher
capacity for storage and error-correcting retrieval of random patterns
and improved basins of attraction than the Hopfield network [42,9].
When the Boltzmann machine is trained as associative memory using
an adaptive association rule [59], it does not suffer from spurious
states. The association rule, which creates a sphere of influence around
each stored pattern, is a generalization of the generalized Hebbian rule.
Spurious fixed points, whose regions of attraction are not recognized
by the rule, are skipped.

The training for the Boltzmann machine and the MFT machine
models is given in the preceding sections. The retrieval can be performed
as follows [42]. The visible neurons are clamped to a corrupted pattern,
the whole network is annealed to a lower temperature, where the state
of the hidden neurons approximates the learned internal representation
of the stored pattern, and then the visible neurons are released. The
annealing process continues until the whole network is settled.

The Boltzmann machine is important historically and theoretically.
However, its exponential complexity with the number of neurons
restricts it applications in many problems. Likewise, the MFT machine
aslo has its limitations. It can only work in the supervised mode
with only a single hidden layer [45]. For multiple hidden layers, the
probability distribution cannot be well estimated. The mean state is not
a sufficient representation for the free-running probability distribution
and thus, the mean-field method is ineffective for unsupervised
learning.

In addition to the Boltzmann and MFT machines, there are
some other implementations of stochastic Hopfield networks. The
Gaussian machine [7] is a general framework that includes the
Hopfield network, the Boltzmann machine and also other stochastic
networks. Stochastic distribution is realized by adding thermal noise,
a stochastic external input ε , to each unit, and the network dynamics
are the same as that of the Hopfield network. The stochastic term
ε obeys a Gaussian distribution with zero mean and variance 2σ ,
where the deviation = kTσ , and T is the temperature. The stochastic
term ε can occasionally bring the network to states with a higher

energy. When 8=k
π

, the distribution of the outputs has the same

behavior as a Boltzmann machine. When employing noise obeying a
logistic distribution rather than a Gaussian distribution in the original
definition, we can obtain a Gaussian machine identical to a Boltzmann
machine. When the noise in the Gaussian machine takes a Cauchy
distribution with zero as the peak location and the half-width at the

maximum 8= Tσ
π

, we get a Cauchy machine [111]. The Gaussian

machine may be more suitable than the Boltzmann machine for some
tasks. A similar idea was embodied in the stochastic network given in
[73], where in addition to a cooling schedule for temperature Tgain

annealing is also applied. The gain 1
β

 has to be decreased more slowly

than T , and kept bounded away from zero.

XIII. Summary
We have given a comprehensive introduction to some RNNs

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 13 of 15

including the Hopfield model and the Boltzmann machine. These
models are mainly used for associative memory and for solving COPs.
The storage capabilities of various storage algorithms for associative
memory have been discussed. Some other models for associative
memory such as the MLP-based autoassociative memories and the
Hamming network are also introduced. The COP has been introduced
and various strategies for escaping local minima has been described.
SA is a stochastic global optimization method that is useful for any
optimization problem. The chaotic neural network is obtained by
adding chaotic dynamics to the Hopfield network, and this method
can easily find the global optimum of COPs by using the CSA method,
which is a fast, deterministic alternative to SA. Multilevel Hopfield
models can lead to a compact network architecture, and is especially
used for such tasks as image restoration. The Boltzmann machine
and learning is a generalization of the Hopfield model, and it can also
been used for supervised learning. The MFT machine is obtained by
applying the mean-field approximation to Boltzmann learning. Mean-
field annealing is a deterministic alternative to SA, and provides a
significant acceleration to the training of the Boltzmann machine.

While the Hopfield model and the Boltzmann machine are suitable
for hardware implementation. The bulky connections between neurons
cause difficulties in large-scale implementations. The cellular neural
network (CNN) model, proposed in 1988 by Chua and Yang [21,22],
has a unique network architecture. CNN is a generalization of the
Hopfield network [50], and can be used to solve a more generalized
optimization problem.

A CNN is a two- or higher-dimensional array of regularly spaced
neurons, called cells, which communicate only with the neurons in
its immediate neighborhood. Adjacent cells are connected by mutual
interconnections [21,22]. Each cell has its own dynamics whose
evolution is dependent on its circuit time constant = RCτ . The local
interactions can be programmed by a template matrix [21]. CNN
overcomes the massive interconnection problem of parallel distributed
processing. The key features are asynchronous parallel processing,
continuous time dynamics, and local interactions among the network
elements. CNN chips can have high-density cells, and some physical
implementations such as analog CMOS, emulated digital CMOS and
optical implementations, are available. The CNN universal machine
[104] is the analog cellular computer for processing analog array
signals, and has a computational power of tera 12(10) or peta 15(10)
analog operations per second on a single CMOS chip [22]. CNN
with a two-dimensional array architecture is a natural candidate for
image processing or simulation of partial differential equations. Using
different cloning templates, namely, the representation of the local
interconnection patterns, different operations can be conducted on
an image. CNN has now become an important method for image
processing.

References

1. Aarts E, Korst J (1989) Simulated annealing and Boltzmann machines. John
Wiley, Chichester.

2. Abe S, Kawakami J, Hirasawa K (1992) Solving inequality constrained
combinatorial optimization problems by the Hopfield neural networks. Neural
Netw 5 : 663–670.

3. Abu-Mostafa Y, St Jacques J (1985) Information capacity of the Hopfield
model. IEEE Trans Inf Theory 31: 461–464.

4. Ackley DH, Hinton GE, Sejnowski TJ (1985) A learning algorithm for Boltzmann
machines. Cogn Sci 9:147–169.

5. Aihara K, Takabe T, Toyoda M (1990) Chaotic neural networks. Phys Lett A
144: 333–340.

6. Aiyer SVB, Niranjan N, Fallside F (1990) A theoretical investigation into the
performance of the Hopfield model. IEEE Trans Neural Netw 1: 204–215.

7. Akiyama Y, Yamashita A, Kajiura M, Aiso H (1989) Combinatorial optimization
with Gaussian machines. In: Proc. IEEE Int. Joint Conf. Neural Netw 533–540.

8. Almeida LB (1987) A learning rule for asynchronous perceptrons with feedback
in combinatorial environment. In: Proc. IEEE 1st Int. Conf. Neural Netw San
Diego 609–618.

9. Alspector J, Jayakumar A, Ngo B (1992) An electronic parallel neural CAM
for decoding. In IEEE Worksh Neural Netw for Signal Process II Amsterdam
Denmark 581–587.

10. Amari SI (1972) Learning patterns and pattern sequences by self-organizing
nets of threshold elements. IEEE Trans Comput 21: 1197–1206.

11. Anderson JA (1972) A simple neural network generating interactive memory.
Math Biosci 14: 197–220.

12. Anderson JA, Silverstein JW, Ritz SA, Jones RS (1977) Distinctive features,
categorical perception, and probability learning: Some applications of a neural
model. Psychological Rev 84: 413–451.

13. Azencott R, Doutriaux A, Younes L (1993) Synchronous Boltzmann machines
and curve identification tasks. Network 4: 461–480.

14. Baird B (1990) Associative memory in a simple model of oscillating cortex.
In DS Touretzky (ed) Advances in neural information processing systems 2:
68–75. Morgan Kaufmann San Mateo CA

15. Bruck J(1990) On the convergence properties of the Hopfield model. Proc IEEE
78: 579–1585.

16. Bruck J, Roychowdhury WP (1990) On the number of spurious memories in the
Hopfield model. IEEE Trans Inf Theory 36: 393–397.

17. Chakraborty K, Mehrotra KG, Mohan CK, Ranka S (1992) An optimization
network for solving a set of simultaneous linear equations. In Proc Int Joint
Conf Neural Netw Baltimore MD 2: 516–521.

18. Chen L, Aihara K (1995) Chaotic simulated annealing by a neural-network
model with transient chaos. Neural Netw 8: 915–930.

19. Chiueh TD, Goodman RM (1991) Recurrent correlation associative memories.
IEEE Trans Neural Netw 2: 275–284.

20. Chiueh TD, Tsai HK (1993) Multivalued associative memories based on
recurrent networks. IEEE Trans Neural Netw 4: 364–366.

21. Chua LO, Yang L (1988) Cellular neural network–Part I: Theory; Part II:
Applications. IEEE Trans Circu Syst 35: 1257–1290.

22. Chua LO, Roska T (2002) Cellular neural network and visual computing–
Foundation and applications. Cambridge Univ Press Cambridge UK.

23. Cichocki A, Unbehauen R (1992) Neural networks for optimization and signal
processing. Wiley, New York.

24. Cohen MA, Grossberg S (1983) Absolute stability of global pattern formation
and parallel memory storage by competitive neural networks. IEEE Trans Syst
Man Cybern 13: 815–826.

25. Coombes S, Taylor JG (1994) Using generalized principal component analysis
to achieve associative memory in a Hopfield net. Network 5: 75–88.

26. Coombes S, Campbell C (1996) Efficient learning beyond saturation by single-
layered neural networks. Bristol Cen App Nonlinear Math Univ of Bristol UK.

27. Cover TM (1965) Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE Trans Electron
Computers 14: 326–334.

28. Culhane AD, Peckerar MC, Marrian CRK (1989) A neural net approach to
discrete Hartley and Fourier transforms. IEEE Trans Circ Syst 36: 695–702.

29. Czech ZJ (2001) Three parallel algorithms for simulated annealing. Springer
2328: 210–217.

30. Diederich S, Opper M (1987) Learning of correlated patterns in spin-glass
networks by local learning rules. Phys Rev Lett 58: 949–952.

31. Du KL, Swamy MNS (2006) Neural networks in a softcomputing framework.
Springer, London.

32. Erdem MH, Ozturk Y (1996) A new family of multivalued networks. Neural Netw
9: 979–989.

http://www.sciencedirect.com/science/article/pii/S0893608005800437
http://www.sciencedirect.com/science/article/pii/S0893608005800437
http://www.sciencedirect.com/science/article/pii/S0893608005800437
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1057069
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1057069
http://www.sciencedirect.com/science/article/pii/S0364021385800124
http://www.sciencedirect.com/science/article/pii/S0364021385800124
http://www.sciencedirect.com/science/article/pii/037596019090136C
http://www.sciencedirect.com/science/article/pii/037596019090136C
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=80232
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=80232
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=253654
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=253654
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=253654
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1672070
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1672070
http://www.sciencedirect.com/science/article/pii/0025556472900752
http://www.sciencedirect.com/science/article/pii/0025556472900752
http://psycnet.apa.org/journals/rev/84/5/413/
http://psycnet.apa.org/journals/rev/84/5/413/
http://psycnet.apa.org/journals/rev/84/5/413/
http://informahealthcare.com/doi/abs/10.1088/0954-898X_4_4_004
http://informahealthcare.com/doi/abs/10.1088/0954-898X_4_4_004
http://dl.acm.org/citation.cfm?id=109239
http://dl.acm.org/citation.cfm?id=109239
http://dl.acm.org/citation.cfm?id=109239
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=58341
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=58341
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=52486
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=52486
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=226936
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=226936
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=226936
http://www.sciencedirect.com/science/article/pii/089360809500033V
http://www.sciencedirect.com/science/article/pii/089360809500033V
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=80338
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=80338
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=207604
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=207604
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7600
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7600
http://books.google.co.in/books?hl=en&lr=&id=9EVOSvUBwj0C&oi=fnd&pg=PR11&dq=Cellular+neural+network+and+visual+computing%E2%80%93Foundation+and+applications&ots=U8NeIH7XNn&sig=V9MTGWCnmgIEe3P3k0oQRdOpNdM#v=onepage&q=Cellular neural network and visu
http://books.google.co.in/books?hl=en&lr=&id=9EVOSvUBwj0C&oi=fnd&pg=PR11&dq=Cellular+neural+network+and+visual+computing%E2%80%93Foundation+and+applications&ots=U8NeIH7XNn&sig=V9MTGWCnmgIEe3P3k0oQRdOpNdM#v=onepage&q=Cellular neural network and visu
http://dl.acm.org/citation.cfm?id=562697
http://dl.acm.org/citation.cfm?id=562697
http://psycnet.apa.org/psycinfo/1984-14284-001
http://psycnet.apa.org/psycinfo/1984-14284-001
http://psycnet.apa.org/psycinfo/1984-14284-001
http://informahealthcare.com/doi/abs/10.1088/0954-898X_5_1_005
http://informahealthcare.com/doi/abs/10.1088/0954-898X_5_1_005
https://rose.bris.ac.uk/handle/1983/283
https://rose.bris.ac.uk/handle/1983/283
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4038449
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4038449
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4038449
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=31318
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=31318
http://www.springerlink.com/content/899gnuhhpnp8yc6y/
http://www.springerlink.com/content/899gnuhhpnp8yc6y/
http://prl.aps.org/abstract/PRL/v58/i9/p949_1
http://prl.aps.org/abstract/PRL/v58/i9/p949_1
http://cronus.uwindsor.ca/units/isplab/ISPLab.nsf/54ef3e94e5fe816e85256d6e0063d208/506f251b4ea89667852576ec0069b0e1/$FILE/0.1.5.2006.00.0.ARO-Neural Networks in a Softcomputing Framework.Springer.pdf
http://cronus.uwindsor.ca/units/isplab/ISPLab.nsf/54ef3e94e5fe816e85256d6e0063d208/506f251b4ea89667852576ec0069b0e1/$FILE/0.1.5.2006.00.0.ARO-Neural Networks in a Softcomputing Framework.Springer.pdf
http://www.sciencedirect.com/science/article/pii/0893608096000160
http://www.sciencedirect.com/science/article/pii/0893608096000160

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 14 of 15

33. Farhat NH, Psaltis D, Prata A, Paek E (1985) Optical implementation of the
Hopfield model. Appl Opt 24: 1469–1475.

34. Fleisher M (1988) The Hopfield model with multi-level neurons. In DZ Anderson
(ed.) Neural information processing systems American Inst of Physics, New
York 278–289.

35. Funahashi KI, Nakamura Y (1993) Approximation of dynamical systems by
continuous time recurrent neural networks. Neural Netw 6: 801–806.

36. Gao K, Ahmad MO, Swamy MNS (1990) A neural network least-square
estimator. In Proc Int Joint Conf Neural Netw Washington DC 3: 805–810.

37. Gardner E (1988) The space of the interactions in neural network models. J
Phys A 21: 257–270.

38. Geman V, Geman D (1984) Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:
721–741.

39. Glauber RJ (1963) Time-dependent statistics of the Ising model. J Math Phys
4: 294–307.

40. Greville T (1960) Some applications of pseudo-inverse of matrix. SIAM Rev
2: 15–22.

41. Hanna MT (2000) On the stability of a Tank and Hopfield type neural network
in the general case of complex eigenvalues. IEEE Trans. Signal Process 48:
289–293.

42. Hartman E (1991) A high storage capacity neural network content-addressable
memory. Network 2: 315–334.

43. Hassoun MH (1995) Fundamentals of artificial neural networks. MIT Press,
Cambridge, MA, USA

44. Hassoun V, Watta PB (1996) The Hamming associative memory and its
relation to the exponential capacity DAM. In Proc IEEE Int Conf Neural Netw
Washington DC 1: 583–587.

45. Haykin S (1999) Neural networks: A comprehensive foundation. 2nd ed,
Prentice Hall, Upper Saddle River, New Jersey.

46. He Y (2002) Chaotic simulated annealing with decaying chaotic noise. IEEE
Trans Neural Netw 13:1526–1531.

47. Hebb V (1949) The organization of behavior. Wiley, New York.

48. Hinton GE, Sejnowski TJ (1986) Learning and relearning in Boltzmann
machines. In DE Rumelhart JL McClelland (eds.) Parallel distributed
processing: Explorations in microstructure of cognition 1: 282–317.

49. Hirose A (1992) Dynamics of fully complex-valued neural networks. Electron.
Lett 28: 1492–1494

50. Hopfield JJ (1982) Neural networks and physical systems with emergent
collective computational abilities. Proc Nat Acad Sci 79: 2554–2558.

51. Hopfield JJ (1984) Neurons with graded response have collective computational
properties like those of two-state neurons. Proc Nat Acad Sci 81: 3088–3092.

52. Hopfield JJ, Tank DW (1985) Neural computation of decisions in optimization
problems. Biol Cybern 52: 141–152.

53. Hopfield JJ, Tank DW (1986) Computing with neural circuits: A model. Science
233: 625–633.

54. Ikeda N, Watta P, Artiklar M, Hassoun MH (2001) A two-level Hamming network
for high performance associative memory. Neural Netw 14: 1189–1200.

55. Ingber L (1989) Very fast simulated re-annealing. Math. & Computer Modelling.
12: 967–973.

56. Jagota A, Mandziuk J (1998) Experimental study of Perceptron-type local
learning rule for Hopfield associative memory. Inf Sci 111: 65–81.

57. Jang JS, Lee SY, Shin SY (1988) An optimization network for matrix inversion.
In DZ Anderson (ed.) Neural information processing systems 397–401.

58. Jankowski S, Lozowski A, Zurada JM (1996) Complex-valued multi-state neural
associative memory. IEEE Trans Neural Netw 7: 1491–1496.

59. Kam M, Cheng R (1989) Convergence and pattern stabilization in the
Boltzmann machine. In: D.S. Touretzky (ed) Advances in neural information
processing systems Morgan Kaufmann San Mateo CA 1: 511–518.

60. Kamp Y, Hasler M (1990) Recursive neural networks for associative memory.
Wiley, New York

61. Kanter I, Sompolinsky H (1987) Associative recall of memory without errors.
Phys. Rev. A, 35: 380–392.

62. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated
annealing. Sci 220: 671–680.

63. Kobayashi K (1991) On the capacity of a neuron with a non-monotone output
function. Net wor 2: 237–243.

64. Kohonen T (1972) Correlation matrix memories. IEEE Trans. Compu 21: 353–
359.

65. Kohonen T (1989) Self-organization and associative memory. Springer Berlin.

66. Kosko B (1987) Adaptive bidirectional associative memories. Appl Opt 26:
4947–4960.

67. Kwok T, Smith KA (1999) A unified framework for chaotic neural-network
approaches to combinatorial optimization. IEEE Trans. Neural Netw 10: 978–
981.

68. Lee BW, Shen BJ (1992) Design and analysis of analog VLSI neural networks.
In B Kosko (ed) Neural networks for signal processing 229–284.

69. Lee BW, Shen BJ (1993) Parallel hardware annealing for optimal solutions on
electronic neural networks. IEEE Trans Neural Netw 4: 588–599.

70. Lee DL (2001) Improving the capacity of complex-valued neural networks with a
modified gradient descent learning rule. IEEE Trans Neural Netw 12: 439–443.

71. Le Gall A, Zissimopoulos V (1999) Extended Hopfield models for combinatorial
optimization. IEEE Trans Neural Netw 10: 72–80.

72. Lendaris GG, Mathia K, Saeks R (1999) Linear Hopfield networks and
constrained optimization. IEEE Trans Syst Man Cybern B 29: 114–118.

73. Levy BC, Adams MB (1987) Global optimization with stochastic neural
networks. In Proc 1st IEEE Conf Neural Netw San Diego CA 3: 681–689.

74. Li JH, Michel AN, Parod W (1989) Analysis and synthesis of a class of neural
networks: Linear systems operating on a closed hypercube. IEEE Trans Circ
Syst 36: 1405–1422.

75. Li LK (1992) Approximation theory and recurrent networks. In Proc Int Joint
Conf Neural Netw Baltimore MD 2: 266-271.

76. Li XD, Ho JKL, Chow TWS (2005) Approximation of dynamical time-variant
systems by continuous-time recurrent neural networks. IEEE Trans Circ Syst
52: 656–660.

77. Liang Y (1996) Combinatorial optimization by Hopfield networks using adjusting
neurons. Inf Sci 94: 261–276.

78. Lin CT, Lee CSG (1995) A multi-valued Boltzmann machine. IEEE Trans Syst
Man cybern 25: 660–669.

79. Lippman RP (1987) An introduction to computing with neural nets. IEEE ASSP
Mag 4: 4–22.

80. Little WA (1974) The existence of persistent states in the brain. Math. Biosci
19: 101–120.

81. Locatelli M (2001) Convergence and first hitting time of simulated annealing
algorithms for continuous global optimization. Math Methods of Oper Res 54:
171–199.

82. Ma J (1997) The stability of the generalized Hopfield networks in randomly
asynchronous mode. Neural Netw., 10: 1109–1116

83. Ma J (1999) The asymptotic memory capacity of the generalized Hopfield
network. Neural Netw 12: 1207–1212.

84. Matsuda S (1998) Optimal Hopfield network for combinatorial optimization with
linear cost function. IEEE Trans. Neural Netw 9: 1319–1330.

85. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in
nervous activity. Bull. Math. Biophys 5: 115–133.

86. McEliece RJ, Posner EC, Rodemich ER, Venkatesh SS (1987) The capacity of
the Hopfield associative memory. IEEE Trans Inf Theory 33: 461–482.

87. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equations
of state calculations by fast computing machines. J Chem Phys 21: 1087–1092.

88. Michel AN, Si J, Yen G (1991) Analysis and synthesis of a class of discrete-time
neural networks described on hypercubes. IEEE Trans Neural Netw 2: 32–46.

89. Minsky ML, Papert S (1969) Perceptrons. MIT Press Cambridge MA.

http://www.opticsinfobase.org/abstract.cfm?id=28380
http://www.opticsinfobase.org/abstract.cfm?id=28380
http://books.google.co.in/books?hl=en&lr=&id=hA0Lz-_3KeEC&oi=fnd&pg=PA278&dq=The+Hopfield+model+with+multi-level+neurons&ots=DuK_J75gN1&sig=MAKmBlM0P1DWQbS6Kw2COkrXJ00#v=onepage&q=The Hopfield model with multi-level neurons&f=false
http://books.google.co.in/books?hl=en&lr=&id=hA0Lz-_3KeEC&oi=fnd&pg=PA278&dq=The+Hopfield+model+with+multi-level+neurons&ots=DuK_J75gN1&sig=MAKmBlM0P1DWQbS6Kw2COkrXJ00#v=onepage&q=The Hopfield model with multi-level neurons&f=false
http://books.google.co.in/books?hl=en&lr=&id=hA0Lz-_3KeEC&oi=fnd&pg=PA278&dq=The+Hopfield+model+with+multi-level+neurons&ots=DuK_J75gN1&sig=MAKmBlM0P1DWQbS6Kw2COkrXJ00#v=onepage&q=The Hopfield model with multi-level neurons&f=false
http://www.sciencedirect.com/science/article/pii/S089360800580125X
http://www.sciencedirect.com/science/article/pii/S089360800580125X
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=137935
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=137935
http://iopscience.iop.org/0305-4470/21/1/030
http://iopscience.iop.org/0305-4470/21/1/030
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4767596
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4767596
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4767596
http://jmp.aip.org/resource/1/jmapaq/v4/i2/p294_s1?isAuthorized=no
http://jmp.aip.org/resource/1/jmapaq/v4/i2/p294_s1?isAuthorized=no
http://www.jstor.org/pss/2028054
http://www.jstor.org/pss/2028054
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=815505
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=815505
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=815505
http://informahealthcare.com/doi/abs/10.1088/0954-898X_2_3_006
http://informahealthcare.com/doi/abs/10.1088/0954-898X_2_3_006
http://books.google.co.in/books?hl=en&lr=&id=Otk32Y3QkxQC&oi=fnd&pg=PR13&dq=Fundamentals+of+artificial+neural+networks.+&ots=da1QaHzjU1&sig=tevG92YEyvcgsVXSCsD6ZKd6eTY#v=onepage&q=Fundamentals of artificial neural networks.&f=false
http://books.google.co.in/books?hl=en&lr=&id=Otk32Y3QkxQC&oi=fnd&pg=PR13&dq=Fundamentals+of+artificial+neural+networks.+&ots=da1QaHzjU1&sig=tevG92YEyvcgsVXSCsD6ZKd6eTY#v=onepage&q=Fundamentals of artificial neural networks.&f=false
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=548960
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=548960
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=548960
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1058086
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1058086
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=153204
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=153204
http://www.pnas.org/content/79/8/2554.short
http://www.pnas.org/content/79/8/2554.short
http://www.pnas.org/content/81/10/3088.short
http://www.pnas.org/content/81/10/3088.short
http://www.springerlink.com/content/m62385p2j7132844/
http://www.springerlink.com/content/m62385p2j7132844/
http://www.sciencemag.org/content/233/4764/625.short
http://www.sciencemag.org/content/233/4764/625.short
http://www.sciencedirect.com/science/article/pii/S0893608001000892
http://www.sciencedirect.com/science/article/pii/S0893608001000892
http://www.sciencedirect.com/science/article/pii/0895717789902021
http://www.sciencedirect.com/science/article/pii/0895717789902021
http://www.sciencedirect.com/science/article/pii/S002002559800005X
http://www.sciencedirect.com/science/article/pii/S002002559800005X
http://books.google.co.in/books?hl=en&lr=&id=hA0Lz-_3KeEC&oi=fnd&pg=PA397&dq=An+optimization+network+for+matrix+inversion&ots=DuK_J77lP5&sig=xK4kkNC3whLw2dKdUqVGpcPS54s#v=onepage&q=An optimization network for matrix inversion&f=false
http://books.google.co.in/books?hl=en&lr=&id=hA0Lz-_3KeEC&oi=fnd&pg=PA397&dq=An+optimization+network+for+matrix+inversion&ots=DuK_J77lP5&sig=xK4kkNC3whLw2dKdUqVGpcPS54s#v=onepage&q=An optimization network for matrix inversion&f=false
http://dl.acm.org/citation.cfm?id=89921
http://dl.acm.org/citation.cfm?id=89921
http://dl.acm.org/citation.cfm?id=89921
http://dl.acm.org/citation.cfm?id=131200
http://dl.acm.org/citation.cfm?id=131200
http://www.sciencemag.org/content/220/4598/671.short
http://www.sciencemag.org/content/220/4598/671.short
http://informahealthcare.com/doi/abs/10.1088/0954-898X_2_3_001
http://informahealthcare.com/doi/abs/10.1088/0954-898X_2_3_001
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5008975
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5008975
http://adsabs.harvard.edu/abs/1988soam.book.....K%CE%93%CE%AC
http://www.opticsinfobase.org/abstract.cfm?id=30894
http://www.opticsinfobase.org/abstract.cfm?id=30894
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=774279
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=774279
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=774279
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=238314
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=238314
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=914540
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=914540
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=737495
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=737495
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=740171
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=740171
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=41297
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=41297
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=41297
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=226997
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=226997
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1519654
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1519654
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1519654
http://www.sciencedirect.com/science/article/pii/0020025596001181
http://www.sciencedirect.com/science/article/pii/0020025596001181
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=370198
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=370198
http://hawk.cs.csuci.edu/William.Wolfe/UCD/engineering/cse/Graduate/courses/CSC5542/Lippmann.pdf
http://hawk.cs.csuci.edu/William.Wolfe/UCD/engineering/cse/Graduate/courses/CSC5542/Lippmann.pdf
http://www.sciencedirect.com/science/article/pii/0025556474900315
http://www.sciencedirect.com/science/article/pii/0025556474900315
http://www.springerlink.com/content/mwqqvv0jr2f331cc/
http://www.springerlink.com/content/mwqqvv0jr2f331cc/
http://www.springerlink.com/content/mwqqvv0jr2f331cc/
http://www.sciencedirect.com/science/article/pii/S0893608097000269
http://www.sciencedirect.com/science/article/pii/S0893608097000269
http://www.sciencedirect.com/science/article/pii/S0893608099000428
http://www.sciencedirect.com/science/article/pii/S0893608099000428
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=728382
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=728382
http://www.springerlink.com/content/61446605110620kg/
http://www.springerlink.com/content/61446605110620kg/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1057328
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1057328
http://www.aliquote.org/pub/metropolis-et-al-1953.pdf
http://www.aliquote.org/pub/metropolis-et-al-1953.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=80289
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=80289
http://psycnet.apa.org/psycinfo/1969-35017-000

Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104.
doi:10.4172/2165-7866.1000104

Page 15 of 15

90. Morita M (1993) Associative memory with nonmonotonicity dynamics. Neural
Netw 6: 115–126.

91. Muezzinoglu MK, Guzelis C, Zurada JM (2003) A new design method for the
complex-valued multistate Hopfield associative memory. IEEE Trans Neural
Netw 14: 891–899.

92. Nemoto I, Kubono M (1996) Complex associative memory. Neural Netw 9:
253–261.

93. Oja E (1982) Simplified neuron model as a principal component analyzer. J
Math & Biolo 15: 267–273.

94. Personnaz L, Guyon I, Dreyfus G (1986) Collective computational properties
of neural networks: New learning mechanisms Phys Rev A 34: 4217–4228.

95. Peterson C, Anderson JR (1987) A mean field learning algorithm for neural
networks. Complex Syst 1: 995–1019.

96. Peterson C (1990) Applications of mean field theory neural networks. In: Lima
R, Streit R, Mendes RV (eds) Dynamic and stochastic processes: Theory and
applications Springer Notes in Physics 355: 141–173.

97. Pineda FJ (1987) Generalization of back-propagation to recurrent neural
networks. Phys Rev Lett 59: 2229–2232.

98. Richardt J, Karl F, Muller C (1998) Connections between fuzzy theory,
simulated annealing, and convex duality. Fuzzy Sets Syst 96: 307–334.

99. Rojas R (1996) Neural networks: A systematic introduction. Springer Berlin.

100. Rose K (1998) Deterministic annealing for clustering, compression,
classification, regression, and related optimization problems. Proc IEEE 86:
2210–2239.

101. Rose K, Gurewitz E, Fox GC (1990) A deterministic annealing approach to
clustering. Pattern Recogn Lett 11: 589–594.

102. Rosenblatt R (1958) The Perceptron: a probabilistic model for information
storage and organization in the brain. Psychol Rev 65: 386–408.

103. Rosenblatt R (1962) Principles of neurodynamics. Spartan Books New York.

104. Roska T, Chua LO (1993) The CNN universal machine: An analogic array
computer. IEEE Trans Circ Syst II 40: 163–173.

105. Rutenbar RA (1989) Simulated annealling algorithms: An overview. IEEE Circ
Dev Mag 5: 19–26.

106. Schneider RS, Card HC (1998) Analog hardware implementation issues in
deterministic Boltzmann machines. IEEE Trans Circ Syst II 45: 352–360.

107. Si J, Michel AN (1995) Analysis and synthesis of a class of discrete-time
neural networks with multilevel threshold neurons. IEEE Trans Neural Netw
6: 105–116.

108. Storkey AJ (1997) Increasing the capacity of the Hopfield network without
sacrificing functionality. In Gerstner W, Germond A, Hastler M, Nicoud J (eds.)
ICANN97, LNCS Springer 1327, 451–456.

109. Storkey AJ, Valabregue R (1997) Hopfield learning rule with high capacity
storage of time-correlated patterns. Electron Lett 33: 1803–1804.

110. Swamy MNS, Thulasiraman K (1981) Graphs, networks, and algorithms.
Wiley New York.

111. Szu HH, Hartley RL (1987) Nonconvex optimization by fast simulated
annealing. Proc. IEEE 75:1538–1540 Also published: Szu H Fast simulated
annealing Phys Lett A 122: 152–162.

112. Tagliarini GA, Christ JF, Page EW (1991) Optimization using neural networks.
IEEE Trans Comput 40: 1347–1358.

113. Tank DW, Hopfield JJ (1986) Simple “neural” optimization networks: An A/D
converter, signal decision circuit, and a linear programming circuit. IEEE Trans
Circ Syst 33: 533–541.

114. Tsallis C, Stariolo DA (1996) Generalized simulated annealing. Physica A 233:
395–406.

115. Venkatesh SS, Psaltis D (1989) Linear and logarithmic capacities in associative
memory. IEEE Trans Inf Theory 35: 558–568.

116. Ventura D, Martinez T (2000) Quantum associative memory. Inf Sci 124:
273–296.

117. Wang J, Li H (1994) Solving simultaneous linear equations using recurrent
neural networks. Inf Sci 76: 255–277.

118. Wang L, Smith K (1998) On chaotic simulated annealing. IEEE Trans Neural
Netw 9: 716–718.

119. Wang RL, Tang Z, Cao QP (2002) A learning method in Hopfield neural
network for combinatorial optimization problem. Neurocomput 48: 1021–1024.

120. Wang L, Li S,Tian F, Fu X (2004) A noisy chaotic neural network for solving
combinatorial optimization problems: stochastic chaotic simulated annealing.
IEEE Trans Syst Man Cybern B 34: 2119–2125.

121. Williams RJ, Zipser D (1989) A learning algorithm for continually running fully
recurrent neural networks. Neural Comput 1: 270–280.

122. Wu Y, Batalama SN (2000) An efficient learning algorithm for associative
memories. IEEE Trans. Neural Netw 11: 1058–1066.

123. Wu JM (2004) Annealing by two sets of interactive dynamics. IEEE Trans Syst
Man Cybern B 34: 1519–1525.

124. Yan H (1991) Stability and relaxation time of Tank and Hopfield’s neural
network for solving LSE problems. IEEE Trans Circ Syst 38: 1108–1110.

125. Yang WH, Chan KK, Chang PR (1994) Complex-valued neural network for
direction of arrival estimation. Electron Lett 30: 574–575.

126. Younes L (1996) Synchronous Boltzmann machines can be universal
approximators. Appl Math Lett 9: 109–113.

127. Yoshizawa S, Morita M, Amari SI (1993) Capacity of associative memory
using a nonmonotonic neuron model. Neural Netw 6: 167–176.

128. Yuh JD, Newcomb RW (1993) A multilevel neural network for A/D conversion.
IEEE Trans Neural Netw 4: 470–483.

129. Zurada JM, Cloete I, van der Poel E (1996) Generalized Hopfield networks
for associative memories with multi-valued stable states. Neurocomput 13:
135–149.

http://www.sciencedirect.com/science/article/pii/S0893608005800760
http://www.sciencedirect.com/science/article/pii/S0893608005800760
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1215405
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1215405
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1215405
http://www.sciencedirect.com/science/article/pii/0893608095000046
http://www.sciencedirect.com/science/article/pii/0893608095000046
http://www.springerlink.com/content/u9u6120r003825u1/
http://www.springerlink.com/content/u9u6120r003825u1/
http://pra.aps.org/abstract/PRA/v34/i5/p4217_1
http://pra.aps.org/abstract/PRA/v34/i5/p4217_1
http://www.mendeley.com/research/a-mean-field-theory-learning-algorithm-for-neural-networks/
http://www.mendeley.com/research/a-mean-field-theory-learning-algorithm-for-neural-networks/
http://prl.aps.org/abstract/PRL/v59/i19/p2229_1
http://prl.aps.org/abstract/PRL/v59/i19/p2229_1
http://www.sciencedirect.com/science/article/pii/S0165011496003016
http://www.sciencedirect.com/science/article/pii/S0165011496003016
http://books.google.co.in/books?hl=en&lr=&id=txsjjYzFJS4C&oi=fnd&pg=PA3&dq=Neural+networks:+A+systematic+introduction&ots=fl20JHBvxV&sig=C6FX7KtK3ZZkz69LksOa117vy70#v=onepage&q=Neural networks%3A A systematic introduction&f=false
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=726788
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=726788
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=726788
http://www.sciencedirect.com/science/article/pii/016786559090010Y
http://www.sciencedirect.com/science/article/pii/016786559090010Y
http://psycnet.apa.org/journals/rev/65/6/386/
http://psycnet.apa.org/journals/rev/65/6/386/
http://www.citeulike.org/group/780/article/507136
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=222815
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=222815
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=17235
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=17235
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=664241
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=664241
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=363445
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=363445
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=363445
http://www.springerlink.com/content/d70n477381670107/
http://www.springerlink.com/content/d70n477381670107/
http://www.springerlink.com/content/d70n477381670107/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=633404
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=633404
http://www.getcited.org/pub/102064470
http://www.getcited.org/pub/102064470
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1458183
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1458183
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1458183
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=106220
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=106220
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1085953
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1085953
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1085953
http://www.sciencedirect.com/science/article/pii/S0378437196002713
http://www.sciencedirect.com/science/article/pii/S0378437196002713
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=30977
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=30977
http://www.sciencedirect.com/science/article/pii/S0020025599001012
http://www.sciencedirect.com/science/article/pii/S0020025599001012
http://www.sciencedirect.com/science/article/pii/0020025594900124
http://www.sciencedirect.com/science/article/pii/0020025594900124
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=701185
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=701185
http://www.sciencedirect.com/science/article/pii/S0925231202005969
http://www.sciencedirect.com/science/article/pii/S0925231202005969
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1335506
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1335506
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1335506
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1989.1.2.270
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1989.1.2.270
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=870039
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=870039
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1298898
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1298898
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=83886
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=83886
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=280609
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=280609
http://www.sciencedirect.com/science/article/pii/0893965996000419
http://www.sciencedirect.com/science/article/pii/0893965996000419
http://www.sciencedirect.com/science/article/pii/089360809390014N
http://www.sciencedirect.com/science/article/pii/089360809390014N
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=217190
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=217190
http://www.sciencedirect.com/science/article/pii/0925231296000860
http://www.sciencedirect.com/science/article/pii/0925231296000860
http://www.sciencedirect.com/science/article/pii/0925231296000860

	Title
	Corresponding author
	Abstract
	I. Introduction
	II. Recurrent Neural Networks
	III. The Hopfield Model
	1. Stability of the Hopfield model
	2. Applications of the Hopfield model

	IV. Analog Implementation of Hopfield Networks
	V. Associative Memory Models
	A. Hopfield Model: Storage and Retrieval
	B. Storage Capability
	C. Multilayer Perceptrons as Associative Memories
	D. The Hamming Network

	VI. Simulated Annealing
	A. Classic Simulated Annealing
	B. Variants of Simulated Annealing

	VII. Combinatorial Optimization Problems
	A. Escaping Local Minima for Combinatorial Optimization Problems
	B. Combinatorial Optimization Problems with Equality and Inequality Constraints

	VIII. Chaotic Neural Networks
	IX. Hopfield Networks for Other Optimization and Signal Processing Problems
	X. Multistate Hopfield Networks
	A. Multilevel Hopfield Networks
	B. Complex-valued Multistate Hopfield Networks

	XI. Boltzmann Machines and Learning
	A. The Boltzmann Machine
	B. The Mean-field-theory Machine

	XII. Discussion
	XIII. Summary
	References

