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Abstract
Due to feedback connections, recurrent neural networks (RNNs) are dynamic models. RNNs can provide more 

compact structure for approximating dynamic systems compared to feedforward neural networks (FNNs). For some 
RNN models such as the Hopfield model and the Boltzmann machine, the fixed-point property of the dynamic systems 
can be used for optimization and associative memory. The Hopfield model is the most important RNN model, and 
the Boltzmann machine as well as some other stochastic dynamic models are proposed as its generalization. These 
models are especially useful for dealing with combinatorial optimization problems (COPs), which are notorious NP-
complete problems. In this paper, we provide a state-of-the-art introduction to these RNN models, their learning 
algorithms as well as their analog implementations. Associative memory, COPs, simulated annealing (SA), chaotic 
neural networks and multilevel Hopfield models are also important topics treated in this paper.
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I. Introduction
In 1943, McCulloch and Pitts found that the neuron can be

modeled as a simple threshold device to perform logic function [85]. In 
the late 1950s, Rosenblatt [102,103] proposed the first neural network 
model---the perceptron model as well as its learning algorithm called 
the Perceptron learning algorithm. Interest in neural networks waned 
rapidly after Minsky and Papert proved mathematically that the 
Rosenblatt’s simple perceptron model cannot be used for complex 
logic function [89]. The simple perceptron model cannot correctly 
classify linearly inseparable patterns.

The modern era of neural network research is commonly deemed 
to have started with the publication of the Hopfield network in 1982 
[50,51,53]. The Hopfield model works at the system level rather than 
at a single neuron level. It is an RNN working with the Hebbian rule 
[47]. As a dynamically stable network, the fixed points of this network 
can be used as associative memories for information storage as well 
as solutions to optimization problems. The Boltzmann machine 
was introduced in 1985 as an extension to the Hopfield network by 
incorporating stochastic neurons [4]. The Boltzmann learning is based 
on a method called simulated annealing (SA) [62]. SA is a stochastic 
search method for the global optimum of any objective function. The 
chaotic neural network was introduced by adding a negative self-
coupling term, termed chaotic dynamics, to the Hopfield network [5]. 
The operation of the chaotic neural network is similar to that of SA, but 
in a deterministically chaotic way rather than in a stochastic way, hence 
called chaotic SA (CSA).

Memory is important for transforming a static system into a 
dynamic one. Memories can be long-term or short-term. A long-term 
memory is used to store stable system information, while a short-term 
memory is useful for simulating a dynamic system with a temporal 
dimension. Feedforward neural networks (FNNs) can become 
dynamic by embedding memory into the network using time-delay 
[31]. RNNs are dynamic models due to the feedback connections in 
the architecture.

The combinatorial optimization problem (COP) and associative 
memory are the two major applications of the Hopfield network and the 
Boltzmann machine. In this paper, in addition to the Hopfield network 
and the Boltzmann machine, the topics of associative memory and COPs 
are also developed. Some other models for associative memory such 
as the multilayer perceptron (MLP)-based autoassociative memories 
and the Hamming network [79] are introduced. SA, a general-purpose 
global optimization method, is also described. This paper is organized 
as follows. In Section II, we briefly mention a class of RNNs with the 

universal approximation capability for dynamic systems. The Hopfield 
model is introduced in Section III, and its analog implementation is 
described in Section IV. Various associative memory models and their 
storage/retrieval algorithms are described in Section V. In Section VI, 
we deal with SA. Combinatorial optimization problems are treated in 
Section VII. Chaotic neural networks are introduced in Section VIII. 
In Section IX, we also mention the application of the Hopfield model 
to some other optimization and signal processing problems. Multilevel 
Hopfield networks are described in Section X. Section XI is dedicated 
to the Boltzmann machine and its learning. A discussion is given in 
Section XII. Finally, in Section XIII, a brief summary of the paper is 
drawn, and the cellular neural network model is also mentioned in this 
section.

II. Recurrent Neural Networks
RNNs are inspired by ideas from statistical physics. There is at least

one feedback connection in RNNs. RNNs are dynamical systems with 
temporal state representations. They are computationally powerful, and 
can be used in many temporal processing models and applications. The 
Hopfield model can store information in a dynamically stable structure 
[50]. The Boltzmann machine [4], which relies on a stochastic algorithm 
of statistical thermodynamics called SA [62], is a generalization of the 
Hopfield model.

For a fully-connected RNN of J  McCulloch-Pitts neurons, 
the dynamics of the network with sound biological and electronic 
motivations are given in [35,43]. The output of a sufficiently large such 
continuous-time model can approximate any continuous state-space 
trajectory to any desired degree of accuracy [35]. In other words, the 
RNN is a universal approximator of dynamical systems. The universal 
approximation capability of RNNs have also been investigated in 
a number of papers [75,76]. In [75], a fully-connected discrete-time 
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RNN using McCulloch-Pitts neurons has been proved to be a universal 
approximator of discrete- or continuous-time trajectories on compact 
time intervals. A continuous-time RNN McCulloch-Pitts neurons 
and external input is shown to be able to approximate any finite-time 
trajectory of a dynamical time-variant system [76].

When used for approximation of dynamic systems, an RNN is 
more powerful in representing complex dynamics than an FNN. Given 
the same approximation capability, an RNN has a compact network 
size considerably smaller than that of an FNN. RNNs can also be used 
as associative memories to build attractors py



 from input-output 
association { },p px y

 

. The recurrent backpropagation (BP) [97,8] and 
the RTRL [121] are usually used for RNN training.

III. The Hopfield Model
The Hopfield model [52] is the most popular dynamic model. It 

is a fully-interconnected RNN with J  McCulloch-Pitts neurons [85], 
and is usually represented by using a J  - J   layered architecture, as 
illustrated in Figure 1. The input layer only collects and distributes 
feedback signals from the output layer. The network has a symmetric 
architecture with a symmetric zero-diagonal real weight matrix, that is, 

=ij jiw w  and = 0iiw . The Hopfield network is biologically plausible 
since it functions like the human retina [68].

Architecture of the Hopfield network. Note that = 0iiw  is 
represented by a dashed-line connection. ( )ϕ ⋅



 and θ


 are respectively 
a vector comprising the activation functions of all the neurons and a 
vector comprising the biases of all the neurons.

The Hopfield model operates in an unsupervised manner. The 
dynamics of the network are described by a system of nonlinear 
ordinary differential equations (ODE). The discrete form of the 
dynamics is defined by 

=1

( 1) = ( ) ,
J

i ji j i
j

net t w x t θ+ +∑ 			                 (1)

( 1) = ( ( 1)),i ix t net tϕ+ + 				                     (2)

where inet  is the weighted net input of the ith neuron, ( )ix t  is the 
output of the ith neuron, iθ  is a bias to the neuron, and ( )ϕ ⋅  is the 
sigmoidal function. The discrete time variable t  in (1) and (2) takes 
values 0,1,2, .

Correspondingly, the continuous Hopfield model is given by 

=1

d ( ) = ( ) ,
d

J
i

ji j i
j

net t w x t
t

θ+∑ 			                 (3)

( ) = ( ( )).i ix t net tϕ 				                  (4)

Notice that t in (3) and (4) denotes the continuous time variable.

In order to characterize the performance of the network, the 
concept of energy is introduced and the following energy function 
defined [50]: 

=1 =1 =1

1=
2

J J J

ij i j i i
i j i

E w x x xθ− −∑∑ ∑
1= ,
2

T Tx x x θ− −W


  

				                   (5)

where ( )1 2= , , , T
Jx x x x



  is the input and state vector, and 

( )1 2= , , , T
Jθ θ θ θ



  is the bias vector.

1. Stability of the Hopfield model

The stability of the Hopfield network is asserted by Lyapunov’s 

second theorem [31]. The dynamic equations of the Hopfield network 
actually implement a gradient-descent algorithm based on the cost 
function E [51]. The Hopfield model is asymptotically stable when 
running in asynchronous or serial update mode. In asynchronous or 
serial mode, only one neuron at a time updates itself in the output 
layer, and the energy function either decreases or stays the same 
after each iteration. However, if the Hopfield memory is running in 
the synchronous or parallel update mode, that is, all neurons update 
themselves at the same time, it may not converge to a fixed point, but 
may instead become oscillatory between two states [80,15,19]. The 
Hopfield network with the signum activation has a smaller degree of 
freedom compared to that using the sigmoidal activation, since it is 
constrained to changing the states along the the edges of a J -dimensional 
hypercube = { 1,1}J∂ − . The use of sigmoidal functions helps in 
smoothing out some of the local minima.

2. Applications of the Hopfield model

The Hopfield network can be used for converting analog signals 
into the digital format, for associative memory, and for solving COPs. 
The Hopfield network can be used as an effective interface between 
analog and digital devices, where the input signals to the network are 
analog and the output signals are discrete values. The neural-based 
analog-to-digital (A/D) converter [113] adapts to compensate for 
initial device mismatches or long-term drifts. Associative memory is 
a major application of the Hopfield network. The fixed points in the 
network energy function are used to store feature patterns. When a 
noisy or incomplete pattern is presented to the trained network, a 
pattern in the memory is retrieved. This property is most useful for 
pattern recognition or pattern completion. The energy minimization 
ability of the Hopfield network is used to solve optimization problems. 
A large class of COPs can be expressed in this form of QP optimization 
problems, and thus can be solved using the Hopfield network. Signal 
estimation can also be formulated as QP problems. In this approach, 
the weights and biases are trained such that the global minimum state 
of the network energy corresponds to the optimum solution of the 
optimization problem.

IV. Analog Implementation of Hopfield Networks
The Hopfield network is especially suitable for analog VLSI 

implementation. The convergence time of the network dynamics 
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Figure: 1 Architecture of the Hopfield network. Note that 0=w ji is represented 

by a dashed-line connection. (.)φ


 and θ


 are respectively a vector comprising 
the activation functions of all the neurons and a vector comprising the biases of 
all the neurons.
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is decided by a circuit time constant, which is of the order of a few 
nanoseconds [51]. The Hopfield network can be implemented 
by interconnecting an array of resistors, nonlinear operational 
amplifiers with symmetrical outputs, capacitors, and external bias 
current sources. Each neuron can be implemented by a capacitor, a 
resistor, and a nonlinear amplifier. A current source is necessary for 
representing the bias. The circuit structure of the neuron is shown in 
Figure 2. A drawback of the Hopfield network is the necessity to update 
the complete set of network coefficients caused by the signal change, 
and this causes difficulties in its circuit implementation.

By applying Ohm’s law and Kirchhoff’s current law to the ith 
neuron, we obtain 

	
=1

d =
d

J
i

i i i ji j i
j

u u w x
t

τ α θ
 
 − + +  
 
∑

	 ,T
i i i ia u w x θ= − + +

  				                    (6)

where ( )= =i i ix v uϕ  is the input signal, ( )ϕ ⋅  being the sigmoidal 
function, =i i irCτ  is the circuit time constant, ir  is a scaling resistance, 

= i
i

i

r
R

α  is a damping coefficient, 0 =1

1 =
J

i ijji
G G

R
+∑  and ijG  is the 

conductance corresponding to ijR , = =i
ji i ij

ij

rw rG
R

 is the synaptic 

weight, =i i ir Iθ  is the external bias signal, and 1 2( , ,...., )=
 T

i i i Jiw w w w

is the weight vector feeding neuron i . In Figure 2, the inverting output 
of each neuron is used to generate negative weights since ijG  is always 
positive.

The dynamics of the whole network can be written as 

d = ,
d

Tu u x
t

τ α θ− + +W




  

				                   (7)

where the circuit time constant matrix ( )1 2= diag , , , Jτ τ τ τ


 , the 

interconnect-point voltage vector ( )1 2= , , , T
Ju u u u



 , the damping 
coefficient matrix ( )1 2= diag , , , Jα α α α



 , the input and state vector 
( )1 2= , , , T

Jx x x x


 , the bias vector ( )1 2= , , , T
Jθ θ θ θ



 , and the 

J J×  weight matrix 1 2= Jw w w  W
  

 .

At the equilibrium of the system, d = 0
d
u
t





, thus 

	 = .Tu xα θ+W


  

				                     (8)

The dynamics of the network are controlled by iC  and ijR . A 

sufficient condition for the Hopfield network to be stable is that W  is 
a symmetric matrix with zero diagonal elements [51]. The stable states 
correspond to the local minima of the Liapunov function [51]

1

0=1

1( ) = ( )d ,
2

J xiT T
i

i

E x x x x θ α ϕ ξ ξ−− − +∑ ∫W


   

	                   (9)

where 1( )ϕ− ⋅  is the inverse of ( )ϕ ⋅ . Equation (9) is a special case of the 
Cohen-Grossberg model [24].

An inspection of (6) and (3) shows that α  is zero in the basic 
Hopfield model. This term corresponds to the integral related to 

1( )ϕ− ⋅  in (9). When the gain of the sigmoidal function β →∞ , that 
is, when the sigmoidal function is selected as the hard-limiter function 
and the nonlinear amplifiers function as switches, the integral terms 
are insignificant. In this case, the circuit model approaches the basic 
Hopfield model. The stable states of the basic Hopfield network are 
the corners of the hypercube, namely, the local minima of (5) are in 
{ 1, 1}J− +  [51]. For large but finite gains, the sigmoidal function leads 
to a large positive contribution near the hypercube boundaries, but to a 
negligible contribution far from the boundaries. This leads to an energy 
surface that still has its maxima at the corners, but the minima slightly 
move inward from the corners of the hypercube. As β  decreases, each 
minimum moves further inward and disappears one at a time. When 
β  gets small enough, the energy minima start to disappear.

For the neuron given in Figure 2, the network parameters cannot 
be independently adjusted, since the coefficient iα  is nonlinearly 
related to all the weights ijw . Many other circuit implementations 
of the Hopfield model have been proposed, among which the work in 
[74] deserves mentioning. In [74], iα  are removed by replacing the 
integrators and nonlinear amplifiers in the previous model by ideal 
integrators with saturation. This model is referred to as a linear system 
in a saturated mode (LSSM), which retains the basic structure of the 
Hopfield model and is easier to analyze, synthesize and implement 
than the Hopfield model. The energy function of the model is exactly 
the same as (5).

The Hopfield model is a network model which is most suitable 
for hardware implementation. Numerous circuits for the Hopfield 
model have been proposed, including analog VLSI and optical [33] 
implementations.

V. Associative Memory Models
Association is a salient feature of human memory. Associative 

memory is known as content-addressable memory (CAM). A pattern 
can be stored in memory through a learning process. For an imperfect 
input pattern, associative memory has the capability to recall the 
stored pattern correctly by performing a collective relaxation search. 
Associative memories can be either heteroassociative or autoassociative, 
where the input and output vectors range over different vector spaces 
or over the same vector space. Numerous associative memory models 
are available in the literature, among which linear associative memories 
[10,64,11], the brain-states-in-a-box (BSB) [12], and bidirectional 
associative memories [66,14] can be used as both autoassociative 
and heteroassociative memories, while the Hopfield model [50], the 
Hamming network [79], the Boltzmann machine [4] can only be used 
as autoassociative models.

The Hopfield model is a continuous-time, continuous-state 
dynamic associative memory model. Information retrieval is realized 
as an evolution of the system state. The binary Hopfield network is a 
well-known model for nonlinear associative memories. This is done by 
mapping a fundamental memory x onto a stable point of a dynamical 
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Figure 2: A circuit for neuron i in the Hopfield model. 0=w ji  is the output 
voltage of neuron (.)φ



 is the external bias current source for neuron θ


 is the 
voltage at the interconnection point, Ci  is a capacitor, and , 0,1, ...,=R k Jik  are 
resistors. The sigmoidal function (.)φ

 
is used as the transfer function of the 

amplifiers.
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system. The states of the neurons can be considered as short-term 
memories (STMs) while the synaptic weights can be treated as long-
term memories (LTMs).

A. Hopfield Model: Storage and Retrieval

As an associative memory, the Hopfield network operates in two 
phases, namely storage and retrieval. Bipolar coding is often used for 
associative memory since bipolar vectors have a greater probability of 
being orthogonal than binary vectors. Given a set, { }px



, of N  bipolar 

patterns, where ( ),1 ,2 ,= , , ,
T

p p p p Jx x x x

 , , = 1p ix ± , which are to 

be stored in the network. These patterns are called the fundamental 
memories. Storage is performed by using a learning algorithm, while 
retrieval is based on the dynamics of the network.

1. Generalized Hebbian Rule: Conventional algorithms for 
associative storage are typically local algorithms based on the Hebbian 
rule [47], known as the outer product rule of storage in connection 
with associative learning. A generalized Hebbian rule for training the 
Hopfield network is defined by [50] 

, ,
=1

1= , ,
N

ij p i p j
p

w x x i j
J

∀ ≠∑ 			                    (10)

and = 0iiw . In matrix form 

=1

1= ,
N

T
p p J

p

x x N
J

 
 −  
 
∑W I
 

			               (11)

where JI  denotes the J J×  identity matrix. Equation (10) can be 
written in an incremental form 

, ,
1( ) = ( 1) , , = 1, , ,ij ij t i t jw t w t x x i j t N
J

− + ∀ ≠  	              (12)

where (0) = 0ijw . As such, the learning is completed after each pattern 
tx  in the pattern set is presented exactly once.

The generalized Hebbian rule is both local and incremental. It 

has an absolute storage capability of max =
2ln

JN
J

 [86], where the 

storage capability of an associative memory network is defined by 
the maximum number of fundamental memories, maxN , that can be 
stored and retrieved reliably. For reliable retrieval, maxN  is dropped 

to approximately 
4ln

J
J

 [86]. The generalized Hebbian rule, however, 

suffers severe degradation and maxN  decreases significantly, if the 
training patterns are correlated. For example, time series usually 
include significant correlations in the measurements of adjacent 
samples. Some variants of the Hebbian rule, such as the weighted 
Hebbian rule [10] and the Hebbian rule with decay [65], can improve 
the storage capabilities. When training associative memory networks 
using the classical Hebbian learning, an additional term called crosstalk 
may arise. When crosstalk becomes too large, spurious states other 
than the negative stored patterns appear [99]. The number of negative 
stored patterns is always equivalent to the number of stored patterns. 
Hebbian learning produces good results when the stored patterns 
are nearly orthogonal. This is the case when N  bipolar vectors are 
randomly selected from JR , and N J . In practice, patterns are 
usually correlated and the incurred crosstalk may reduce the capacity 
of the network. The storage capability of the network is expected to 
decrease if the Hamming distance between the fundamental memories 
becomes smaller.

2. Pseudoinverse Rule: The pseudoinverse solution targets 
at minimizing the crosstalk between the stored patterns. The 

pseudoinverse rule uses the pseudoinverse of the pattern matrix, while 
classical Hebbian learning uses the correlation matrix of the patterns 
[94,61,60,99].

Denoting 1 2= , , , Nx x x  X
  

 , the autoassociative memory is 
defined as 

= .T TX W X 					                      (13)

The pseudoinverse solution for the weight matrix is thus given as 

( )†
= .T TW X X 				                  (14)

The pseudoinverse rule, also called the projection learning rule, is 
neither incremental nor local. It involves inverting an N N×  matrix, 
thus the training is very slow and impractical. However, there are 
iterative procedures consisting of successive local corrections [30] and 
incremental procedures for the calculation of the pseudoinverse [40].

The pseudoinverse solution performs better than the Hebbian 
learning when the patterns are correlated. Both the Hebbian and 
pseudoinverse rules are general-purpose methods for training 

associative memory networks that can be represented as =
TTX W X , 

where X  and X  are respectively the stored and associated pattern 
matrices. For an autoassociated pattern ix , the weights generated from 
the Hebbian learning projects the whole input space into the linear 
subspace spanned by ix . The projection, however, is not orthogonal. 
Instead, the pseudoinverse solution provides orthogonal projection to 
the linear subspace spanned by the stored patterns [99]. Theoretically, 
for <N J  and uncorrelated patterns, the pseudoinverse solution has a 
zero error, and the storage capability in this case is max = 1N J −  [60], 
[99].

The pseudoinverse rule is also adapted to sorting sequences of 
prototypes, where an input ix  leads to an output 1ix +



. The MLP with 
BP learning can be used to compute the pseudoinverse solution when 
the dimension J  is large [60,99].

3. Improved Hebbian Learning Rule: An alternative local and 
incremental learning rule based on the Hebbian rule is given by [108], 
[109] 

, , , ,
1( ) = ( 1) ( ) ( ) ,ij ij t i t j ji t i ij t jw t w t x x h t x h t x
J
 − + − −  	                (15)

 ( ) ( 1) ,
1, ,

= −∑
= ≠

J
h t w t xt uij iuu u i j

			                (16)

for = 1,2, ,t N , where (0) = 0ijw  for all i and j, and ijh  is a form of 
local field at neuron i.

The improved Hebbian rule given by (15) and (16) has an absolute 

capacity of 
2ln

J
J

 for uncorrelated patterns. It also performs better 

than the generalized Hebbian rule for correlated patterns [108]. It 
does not suffer significant capacity loss when patterns with medium 
correlation are stored. It is shown in [109] that the Hebbian rule is the 
zeroth-order expansion of the pseudoinverse rule, and the improved 
Hebbian rule given by (15) and (16) is one form of the first-order 
expansion of the pseudo-inverse rule.

4. Perceptron-type Learning Rule: Training of the above rules 
can be completed in a single epoch. A learning problem in a Hopfield 
network with J  units can be transformed into a learning problem for 

a perceptron of dimension ( 1)
2

J J +  [99], and thus every learning 



Volume 1 • Issue 2 • 1000104J Inform Tech Soft Engg
ISSN: 2165-7866 JITSE, an open access journal

Citation: Wang H, Wu Y, Zhang B, Du KL (2011) Recurrent Neural Networks: Associative Memory and Optimization. J Inform Tech Soft Engg 1:104. 
doi:10.4172/2165-7866.1000104

Page 5 of 15

algorithm for perceptrons can be transformed into a learning algorithm 
for Hopfield networks. Perceptron learning-based learning algorithms 
for storing bipolar patterns in Hopfield networks are discussed in [60]. 
They are simple, online, local algorithms. Perceptron learning-based 
algorithms work over multiple epochs and often reduce the error 
nonmonotonically over the epochs. The perceptron-type learning 
algorithm is given by [56,60] 

, , , , , ,
1( ) ( 1) ( ) ,
2

 = − + − +  
wij ij t i t j t i t j t j t it w t x x y x y xη 	                 (17)

where ( )= sgnt ty xW
 

, = 1, ,t N , the learning rate η  is a small 
positive number, and (0)jiw ’s are small random numbers or zero. 
From now on, the signum function sgn (x) takes 1 for 0x ≥  and –1 
for < 0x . If all (0)jiw ’s are selected as zero, η  can be selected as any 
positive number; otherwise, η  can be selected as a number of the same 
order-of-magnitude or larger than the weights. This accelerates the 
convergence process. Note that ( ) = ( )ji ijw t w t .

However, when the signum vector is not realizable, the perceptron-
type algorithm does not converge but oscillates indefinitely. The 
perceptron-type rule can be viewed as a supervised extension of the 
Hebbian rule by incorporating a term for correcting unstable bits. For 
an RNN, the storage capability of the perceptron-type algorithm can 
reach the upper bound max =N J , for uncorrelated patterns. In [92], 
a complex perceptron learning algorithm has also been studied for 
associative memory by using complex weights and a decision circle in 
the complex plane for the output function.

An extensive experimental comparison between a perceptron-
type learning rule [60] and the generalized Hebbian rule [50] has been 
made in [56] on a wide range of conditions on the library patterns: 
the number of patterns N, the pattern-density p, and the amount 
of correlation of the bits in a pattern, decided by block size B. The 
perceptron-type rule is found to be perfect in ensuring stability of the 
stored library patterns under all the evaluated conditions. In many 
cases, the perceptron-type rule works much better than the generalized 
Hebbian rule in correcting pattern errors. The uniformly random case 
(p = 0.5, B = 1) is the main exception, when the generalized Hebbian 
rule systematically equals or outperforms the perceptron-type rule 
in the error-correction experiments. An experimental comparison 
between the storage capacities of generalized Hebbian learning, 
improved Hebbian learning, and perceptron-type learning is given in 
[31].

5. Retrieval Stage: After the bipolar words have been stored, the 
network can be used for information retrieval. When a J -dimensional 
vector (bipolar word) x , representing a corrupted or incomplete 
memory of the network, is presented to the network as its state, 
information retrieval is performed automatically according to the 
network dynamics given by (1) and (2), or (3) and (4). For hard-
limiting activation function, the discrete form of the network dynamics 
can be written as 

=1

( 1) = sgn ( ) , = 1,2, , ,
J

i ji j i
j

x t w x t i Jθ
 
 + +  
 
∑  	             (18)

 or in matrix form 

( 1) = sgn( ( ) ),x t x t θ+ +W


 

			                 (19)

where (0)x


 is the input corrupted memory, and ( )x t


 represents the 
retrieved memory at time t. The retrieval process continues until the 
state vector x



 remains unchanged. The convergent x


 is a fixed point 
or the retrieved memory.

B. Storage Capability

An upper bound on the storage capability of a class of RNNs with 
zero-diagonal weight matrix is derived deterministically in [3]. 

Theorem 5.1 (Upper Bound):  For any subset of N binary J -vectors, 
in order to find a corresponding zero-diagonal weight matrix W and a 
bias vector θ



 such that these vectors are fixed points of the network 

= sgn( ), = 1,2, , ,i ix x i Nθ+W


 

 			                (20)

 one needs to have N J≤ . 

Thus, the upper bound on the storage capability is max =N J . 
This bound is valid for any learning algorithm for RNNs with a zero-
diagonal weight matrix. The Hopfield network, having a symmetric 
zero-diagonal weight matrix, is one such network, and as a result, 
the Hopfield network can at most stably store J  patterns. This upper 
bound is too tight, since it requires that all the N-tuple subsets of bipolar 
J -vectors are retrievable. It is also noted in [115] that any two datums 
differing in precisely one component cannot be jointly stored as stable 
states in the Hopfield network.

When permitting a small fraction ε  of a set of N bipolar J -vectors 
irretrievable, the upper bound approximates 2J  when J →∞ . This 
is given by a theorem derived from the function counting theorem 
[27,37,115,60]. This theorem is more general than Theorem 5.1, 
since there is no constraint on W. This RNN is sometimes referred 
to as the generalized Hopfield network. Both the theorems hold true 
irrespective of the updating mode, be it synchronous or asynchronous. 
The generalized Hopfield network with a general, zero-diagonal weight 
matrix has stable states in randomly asynchronous mode [82]. The 
asymptotic storage capacity of such a network using the perceptron 
learning scheme [103,83] gives a lower and an upper bound of the 
asymptotic storage capacity as  1J −  and 2J , respectively. In a special 
case of the generalized Hopfield network with zero bias vector, some 
spectral strategies are used for constructing W [115]. All the spectral 
storage algorithms have a storage capacity of J  for uncorrelated 
patterns [115].

When the Hopfield network is used as associative memory, 
there are cases where the fundamental memories are not stable. 
In addition, spurious states, which are other stable states different 
from the fundamental memories and their negative counterparts, 
may arise [6,99]. The Hopfield network trained with the generalized 
Hebbian rule can have a large number of spurious states, depending 
exponentially on N, even in the case when these vectors are orthogonal 
[16]. These spurious states are the corners of the unit hypercube that 
lie on or near the subspace spanned by the N fundamental memories. 
Presence of spurious states and limited storage capacity are the two 
major restrictions for the Hopfield network being used as associative 
memory. As long as N is small compared to the number of neurons J , 
the fundamental memories are proved to be stable in a probabilistic 
sense [6].

The Gardner conditions [37] are often used as a measure of the 
stability of the patterns. Associative learning can be designed to 
enhance the basin of attraction for every pattern to be stored by 
optimizing these conditions. The Gardner algorithm [37] combines 
maximal storage with a pre-defined level of stability for the patterns. 
Based on the Gardner conditions, the inverse Hebbian rule [26,25] is 
given by 

( )1= ,ij ij
w −− C 				                    (21)

where the correlation matrix 
=1

1=
N T

p pp
x x

N∑C
 

. Unlike the 
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generalized Hebbian rule, which can only store unbiased patterns, 
the inverse-Hebbian rule is capable of storing N patterns, biased or 
unbiased, in a Hopfield network of N neurons. The patterns have zero 
basins of attraction, and C must be nonsingular. Matrix inversion can 
be implemented using a local learning algorithm [57]. The inverse-
Hebbian rule provides ideal initial conditions for any algorithm capable 
of increasing the pattern stability. The quadratic Oja algorithm is a non-
local generalization of the Oja’s algorithm [93], and can be applied to 
adapt the weights so as to enhance the size of the basin of attraction of 
a subset of the stored patterns until the storage of the pattern subset is 
compromised. In [63], by using the Gardner algorithm for training the 
weights [37] and using a nonmonotonic activation function, the storage 
capacity of the network can be made to be always larger than 2 J  and reach 
its maximum value of 10.5J . In [90,127], a continuous nonmonotonic 
activation function is used to greatly improve the storage capacity 
of the Hopfield network to approximately 0.4J , and spurious states 
can be totally eliminated. When it fails to recall a memory, a chaotic 
behavior will occur.

The eigenstructure learning rule [74] is developed for continuous-
time Hopfield models in linear saturated mode. The design method 
allows linear combinations of the prototype vectors to be stored as 
asymptotically stable equilibrium points as well. The storage capacity is 
better than those of the pseudoinverse solution [94] and the generalized 
Hebbian rule [50]. The method has been extended to discrete-time 
neural networks in [88]. A quantum computational learning algorithm 
that combines quantum computation with the Hopfield network 
is given in [116]. The quantum associative memory offers a storage 
capacity of (2 )JO . It employs simple spin-1/2 (two-state) quantum 
systems and represents patterns as quantum operators.

C. Multilayer Perceptrons as Associative Memories

Most RNN-based associative memories have low storage capacity 
as well as poor retrieval ability. RNNs exhibit asymptotic behavior and 
as such are difficult to analyze. MLP-based autoassociative memories 
with equal number of input and output nodes have been introduced to 
overcome these limitations [19,122].

The recurrent correlation associative memory (RCAM) [19] is A  
J  - N - J  MLP whose outputs are fed back to their respective inputs. 
At each instant, the hidden layer computes an intermediate mapping, 
while the output layer completes an association of the input pattern 
to an approximate prototype pattern. The approximated pattern is 
fed back to the network and the process continues until convergence 
to a prototype is achieved. The weight matrix between the input and 
hidden layers (1)W , a J N×  matrix, is made up of the N J -bit bipolar 

memory patterns , = 1,2, ,ix i N

 , that is, (1)
1 2= , , , Nx x x  W
  

 . The 

weight matrix between the hidden and output layers (2) (1)=
T

 
 W W . 

The activation function for the ith neuron in the hidden layer is ( )iϕ ⋅ , 

and the activation function at the output layer is the signum function. 
At the presentation of pattern x , the network evolution is given by 

( )
=1

( 1) = sgn ( ) .
N

T
j j j

j

x t x x t xϕ
 
 + ⋅  
 
∑   

		             (22)

 The correlation of two patterns, ( )1 2 H 1 2= 2 ,Tx x J d x x−
   

, where 
H ( )d ⋅  is the Hamming distance between two binary vectors within, 

which is the number of bits in the two vectors that do not match each 
other.

When all ( ) = ( )i net netϕ ϕ , ( )netϕ  being any continuous, 
monotonic nondecreasing weighting function over [ , ]J J− , the RCAM 
(22) is proved to be asymptotically stable in both the synchronous 
and asynchronous update modes [19]. This property is especially 
suitable for hardware implementation, since there are faults in the 
manufacture of any physical device. Based on this, a family of RCAMs 
are proposed which possess the asympototical stability. When all 

( ) =i net netϕ , the RCAM model is equivalent to the correlation-matrix 
associative memory [64,11], that is, the connection can be written as 

=1
=

N T
p pp

x x∑W
 

. By suitably selecting ( )iϕ ⋅ , the model is reduced 

to some existing associative memories, which have a storage capacity 
that grows polynomially or exponentially with J  [19]. In particular, 
when all ( ) = net

i net aϕ  with radix > 1a , an exponential correlation 
associative memory model (ECAM) [19] is obtained. The exponential 
activation function stretches the ratios among the weights and makes 
the largest weight more overwhelming. This significantly increases the 
storage capacity. The ECAM model exhibits an asymptotic storage 
capacity that scales exponentially with J  [19]. Under the noise-free 
condition, this storage capacity is 2J  patterns [19]. A VLSI chip for the 
ECAM model has been fabricated and tested [19]. The multi-valued 
RCAM [20] can increase the error correction capability with large 
storage capability and less interconnection complexity.

The local identical index (LII) [122] is an autoassociative memory 
model that uses the J  - N - J  MLP architecture. The weight matrices 

(1)W  and (2)W  are the same as those defined in the RCAM. It utilizes 
the signum activation function and biases in both the hidden and 
output layers. The LII model utilizes the local characteristics of the 
fundamental memories through two metrics, namely, the global 
identical index (GII) and the LII. Based on the minimum Hamming 
distance as the underlying association principle, the scheme can be 
viewed as an approximate Hamming decoder. The LII model exhibits 
low structural as well as operational complexity. It is a one-shot 
associative memory, and can accommodate up to 2J prototype patterns. 
The LII model outperforms the LSSM [74] and its discrete version [88] 
in recognition accuracy at the presentation of the corrupted patterns, 
controlled by using the Hamming distance. It can successfully associate 
input patterns that are even loosely correlated with the corresponding 
prototype pattern.

For a J  - J2- J  MLP-based autoassociative memory, the hidden 
layer is a bottleneck layer with less nodes, 2 <J J . This bottleneck layer 
is used to discover a limited set of unique prototypes that cluster the 
training set. When a linear activation function is employed, the MLP-
based autoassociative memory has a serious limitation, namely, it does 
not allow the user to control the granularity of the clusters formed. Due 
to lack of cluster competition mechanism, different clusters which are 
close to one another in the input space may merge. This problem can be 
overcome by using the sigmoidal activation function.

D. The Hamming Network

The Hamming network [79] is a straightforward associative 
memory. It calculates the Hamming distance between the input pattern 
and each memory pattern, and selects the memory with the smallest 
Hamming distance. The network output is the index of a prototype 
pattern and thus the network can be used as a pattern classifier. The 
Hamming network is used as classical Hamming decoder or Hamming 
associative memory. It provides the minimum-Hamming-distance 
solution.

The Hamming network has J  - N - N layered architecture, as 
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illustrated in Figure 3. The third layer is called memory layer, each 
of whose neurons corresponds to a prototype pattern. The input and 
hidden layers are feedforward, fully-connected, while each hidden 
node has a feedforward connection to its corresponding node in the 
memory layer. Neurons in the memory layer are fully interconnected, 
and form a competitive, winner-take-all (WTA) subnetwork known as 
MAXNET. The MAXNET responds to an input pattern by generating a 
winner-neuron through iterative competitions. The Hamming network 
is implicitly recurrent due to the interconnections in the memory layer.

Architecture of the J  - N - N Hamming network. The activation 
function at all the units is the signum function. The number of neurons 
in the memory layer, N , corresponds to the number of stored patterns. 

= klt  T , , = 1, ,k l N . 

The second layer generates matching scores ( )H , iJ d x x−
 

, 
= 1, ,i N , for pattern x



. These matching scores ranges from 0 to 
J . The unit with the highest matching score corresponds to the stored 
pattern that best matches the input. The weights between the input and 
hidden layers and the biases of the hidden layer are respectively set as 

,=
2
j i

ij
x

w , and (2) =
2j
Jθ , = 1, ,j N , = 1, ,i J . All the thresholds 

and the weights klt  in the MAXNET are fixed. The thresholds are 

set as zero. The weights from each node to itself are set as unity and 

weights between nodes are inhibitory, that is, = 1klt  for =k l  and ε−  

otherwise, where 1<
N

ε .

When a binary pattern is presented to the network, the network 
first generates an initial input for the MAXNET 

(2)

=1

(0) = , = 1, , ,
N

j ij i j
i

y w x j Nϕ θ
 
 −
 
 
∑  		              (23)

where ( )ϕ ⋅  is a threshold-logic nonlinear function. The input pattern is 
then removed and the MAXNET continues the iteration 

=1,

( 1) = ( ) ( ) , = 1, , ,
N

j j k
k k j

y t y t y t j Nϕ ε
≠

 
 + −  
 

∑  	             (24)

until the output of only one node is positive. This node corresponds to 
the selected class.

The Hamming network implements the minimum error classifier, 

when the bit errors are random and independent. For the J  - N - N 
Hamming network, there are 2J N N× +  connections, while for the 
Hopfield network the number of connections is J 2. When J N , the 
number of connections in the Hamming network is significantly less 
than that in the Hopfield network. In addition, the Hamming network 
offers a storage capacity that is exponential in the input dimension 
[44], and it does not have any spurious state. Under the noise-free 
condition, the Hamming network has a storage capacity of 2J  patterns 
[44]. For a sufficiently large but finite radix α, the ECAM operates as a 
Hamming associative memory [44]. However, the Hamming network 
suffers from difficult hardware implementations and slow retrieval 
speed. Based on the correspondence between the Hamming network 
and the ECAM [44], the ECAM can be used to compute the minimum 
Hamming distance, in a distributed fashion by analog exponentiation 
and thresholding devices. The two-level Hamming network [54] 
generalizes the Hamming memory by providing for local Hamming 
distance computations in the first level and a voting mechanism 
in the second level. It allows for a much more practical hardware 
implementation and a faster retrieval.

VI. Simulated Annealing
SA is a process simulating the anealing of certain alloys of metal. 

The Metropolis algorithm is a simple method for simulating the 
evolution to the thermal equilibrium of a solid for a given temperature 
[87], and the SA algorithm [62] extends the Metropolis algorithm by 
changing the temperature from high to low. SA is a general, serial 
algorithm for finding a global minimum for a continuous function 
[62]. The solutions by this technique are close to the global minimum 
within a polynomial upper bound for the computational time. Some 
parallel algorithms for SA have been proposed aiming to improve the 
accuracy of the solutions [29]. SA is a successful method, for example, 
used for the layout of integrated circuits [105].

A. Classic Simulated Annealing

According to statistical thermodynamics, the probability of a 
physical system being in state with energy E at absolute temperature 
T  satisfies the Boltzmann or Boltzmann-Gibbs distribution. At high 
T , the Boltzmann distribution exhibits uniform preference for all the 
states, regardless of the energy. When T  approaches zero, only the 
states with minimum energy have nonzero probability of occurrence. 
In SA, at high T , the system ignores small changes in the energy and 
approaches the thermal equilibrium rapidly, that is, it performs a coarse 
search of the space of global states and finds a good minimum. As T  
is lowered, the system responds to small changes in the energy, and 
performs a fine search in the neighborhood of the already determined 
minimum and finds a better minimum. At T = 0, any change in the 
system states does not increase the energy, and thus, the system must 
reach equilibrium if  T = 0.

When performing SA, theoretically a global minimum is 
guaranteed to be reached with a high probability. The artificial thermal 
noise is gradually decreased in time. The computational temperature 
T  controls the magnitude of the perturbations of the energy function 

( )E x


. The probability of a state change is determined by the Boltzmann 

distributions of the energy difference between the two states, = e
E

TP
∆

−
. The 

probability of uphill moves in the energy function ( > 0E∆ ) is large at 
a high T , and is low at a low T . SA allows uphill moves in a controlled 
fashion: it attempts to improve on greedy local search by occasionally 
taking a risk and accepting a worse solution. SA can be performed as 
given by Algorithm 1 [62], [23].
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Figure 3: Architecture of the J - N - N Hamming network. The activation function 
at all the units is the signum function. The number of neurons in the memory layer, 
N , corresponds to the number of stored patterns. [ ], , 1, . . . , .= =T           klt k l N
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	 Algorithm 1 (SA)  

1.  Initialize the system configuration. 

2.  Randomize (0)x


. 

3.  Initialize T  with a large value. 

	 4.  Apply random perturbations to the output state of neurons 
=x x x+ ∆
  

. 

5.  Evaluate ( ) = ( ) ( )E x E x x E x∆ + ∆ −
   

;  

(a) If ( ) < 0E x∆


, keep the new state; 

(b) Otherwise, accept the new state with the probability = e
E

TP
∆

−
. 

	 6.  Repeat Steps 4 and 5 until the number of accepted transitions 
becomes below a threshold level. 

7.  Set =T T T− ∆ . 
8.  Repeat Steps 4 through 7 until T  is small enough. 

The cooling schedule for T  is critical to the efficiency of SA. If 
T  cools too fast, a premature convergence to a local minimum may 
occur. In contrast, if it is too slow, the algorithm is very slow to 
converge. Based on a Markov chain analysis on the SA process, T  

must be decreased according to 0( ) , = 1,2,
ln(1 )

TT t t
t

≥
+

  to ensure 

convergence to the global minimum with probability one [38], where 
0T  is the initial temperature. This is practically too slow. In practice, 

one usually applies, in Step 7, a fast schedule ( ) = ( 1)T t T tα −  with 
0.85 0.96α≤ ≤ , to achieve a suboptimal solution.

B. Variants of Simulated Annealing

Boltzmann annealing is too slow for a reliable cooling schedule. 
Many methods, such as Cauchy annealing [111], simulated re-
annealing [55], generalized SA [114], and the SA algorithm with known 
global value [81], have been proposed to accelerate the SA search. 
There are also global optimization methods that make use of the idea 
of annealing [98,100]. Some VLSI designs of SA are also available [68].

In Cauchy annealing [111], the Cauchy or Cauchy-Lorentz 
distribution is used to replace the Boltzmann distribution. The infinite 
variance provides a better ability to escape from local minima and 
allows for the use of faster schedules, such as T  decreasing according 
to tTtT /=)( 0 . A stochastic neural network trained with Cauchy 

annealing is called the Cauchy machine. In simulated re-annealing [55], 

T decreases exponentially with t, that is, JtcTT /1
0e= − , where 1 0>  c  is 

a constant and J   is the dimension of the input space. The introduction 
of re-annealing also permits adaptation to changing insensitivities 
in the multi-dimensional parameter space. The generalized SA [114] 
generalizes both Cauchy annealing [111] and Boltzmann annealing [62] 
within a unified framework inspired by the generalized thermostatistics. 
An SA algorithm under the assumption of known global value *E  has 
been investigated in [81]. The algorithm is the same as the classical 
SA except that at each iteration a uniform random point is generated 
over a sphere, whose radius depends on the difference −



E x t E( ( )) *, 
and T  is also decided by this difference. The algorithm has guaranteed 
convergence and an upper bound for the expected first hitting time, i.e. 
the expected number of iterations before reaching the global optimum 
value within a given accuracy ε, is established. The idea of annealing is 
a general optimization principle, which can be extended by using fuzzy 
logic. In the fuzzy annealing scheme [98], fuzzification is performed by 
adding an entropy term. The fuzziness at the beginning of the entire 

procedure is used to prevent the optimization process getting stuck at 
an inferior local optimum. The fuzzy annealing scheme results in an 
increase in the computation speed by a factor of one hundred or more 
compared to SA [98].

SA makes a random search on the energy surface. Deterministic 
annealing [101,100] is a method where randomness is incorporated 
into the energy or cost function, which is then deterministically 
optimized at a sequence of decreasing temperature. The approach is 
derived within the framework of information theory and probability 
theory. Deterministic annealing has been used for nonconvex 
optimization problems such as clustering, MLP training, and RBFN 
training [101,100].

VII. Combinatorial Optimization Problems
Any problem that has a large set of discrete solutions and a cost 

function for rating those solutions relative to one another is a COP. 
COPs are known to be NP-complete [110]. In COPs, the number of 
solutions grows exponentially with n, the size of the problem, at ( !)O n  
or ( )enO  so that no algorithm can find the global minimum solution 
in a polynomial computational time. The goal for COPs is to find an 
optimal solution or sometimes a nearly optimal solution.

The traveling salesman problem (TSP) is a well-known COP [50]: 
Assuming there are n cities, find the shortest possible tour such that a 
salesman visits every city exactly once and then returns to the starting 
point. There are ( 1)! / 2n −  possible tours. The Hopfield network 
was the first neural network used for the TSP, and it achieves a near-
optimum solution [52]. Routing of wires on a printed circuit board 
(PCB) is a typical TSP. The location-allocation problem is another 
COP.

The Hopfield network can be effectively used to deal with COPs 
with the objective functions of the linear or quadratic form, linear 
equalities and/or inequalities as the constraints, and binary variable 
values so that the constructed energy function can be of quadratic form. 
For example, a class of COPs including the location-allocation problem 
is formulated in [84,31]. To make use of the Hopfield network, one 
needs first to convert the COP into a constrained real optimization 
problem and solve the latter using the penalty method. The total cost E
is the weighted sum of the objective term and terms associated with the 
constraints. When all the constraint terms are all zeros, the solution is 
a feasible one. The weights for individual constraints can be tuned for 
an optimal or good solution. The cost E should the same form as that 
of the energy function of the Hopfield network, given by (5). For the 
penalty method, there is always a compromise between good-quality 
solution and convergence. For a feasible solution, the weighting factors 
for the penalty terms should be sufficiently large, which however 
causes the constraints on the original problem to become relatively 
weaker, resulting in a deterioration of the quality of the solution. A 
trial-and-error process for choosing some of the penalty parameters is 
inevitable in order to obtain feasible solutions. Moreover, the gradient-
descent method often leads to local minima of the energy landscape. 
An inequality constraint can be expressed as an equality constraint by 
introducing some slack variables (slack neurons).

A. Escaping Local Minima for Combinatorial Optimization 
Problems

SA [62] is a popular method for any optimization problem 
including COPs. However, due to its Monte Carlo nature, SA would 
require even more iterations than complete enumeration, for some 
problems, in order to guarantee convergence to an exact solution. 
For example, for an n-city TSP, SA using the logarithmic cooling 
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schedule needs a computational complexity of 
2 1nnO n

− 
 
 

, which is 

far more than (( 1)!)O n −  for complete enumeration and ( )22nO n  
for dynamic programming [18,1]. Thus, one has to apply heuristic fast 
cooling schedules to improve the convergence speed.

The Hopfield network is more desirable for solving COPs that 
can be formulated into quadratic functions. The Hopfield network 
converges very fast, and it can also been easily implemented using RC 
circuits. However, due to its gradient-descent nature, it always gets 
trapped at the nearest local minimum of the initial random state. Some 
strategies are necessary for escaping from the local minima.

1. Gain Annealing: To escape from the local minima, a popular 
strategy is to change the sigmoidal gain β, by starting from a low gain 
and gradually increasing it. When β is low, the energy landscape is 
smooth, and the algorithm can easily find a good local minimum. As 
β increases, more details of the energy landscape is revealed, and the 
algorithm can find a better solution. This is analogous to the cooling 
process of SA [62], and this process is usually called gain annealing. In 
the limit, when β →∞ , the hypobolic tangent function becomes the 
signum function.

2. Balancing Objective and Constraint Terms: In order to 
use the Hopfield network for solving optimization problems, the cost 
function can be constructed as 

( ) = ( ) ( ),o o c cE x E x E xλ λ+
  

			                   (25)

where E0 and Ec represent the objective and constraint terms, 
respectively, and oλ , > 0cλ  are their corresponding weights.

By adaptively adjusting the balance between the constraint and 
objective terms, the network can avoid falling into a local minimum 
and continue to update in a gradient-descent direction of energy [119]. 
At a local minimum of E, one always has 

= 0, = 1, , .o c
i o c i

i i i

E EE x x i J
x x x

λ λ
 ∂ ∂∂

∆ + ∆ ≥  ∂ ∂ ∂ 
 	              (26)

The method for escaping from the local minimum is to adjust oλ  
and/or cλ  so that (26) is not satisfied for at least one neuron. The 
energy of the network decreases with the state change of the ith neuron. 
Thus, the learning eliminates the local minimum that the network 
would fall into. The minimum found is not only a minimum of the 
total energy function, but also the minima of both the constraint and 
objective terms. This minimum is always a global or a near-global one.

B. Combinatorial Optimization Problems with Equality and 
Inequality Constraints

The Hopfield network can be used to solve COPs under equality 
as well as inequality constraints, as long as the constructed energy 
function is of the form (5). Some extensions to the Hopfield model are 
necessary in order to handle both equality and inequality constraints 
[113,2]. In the extended Hopfield model [2], each inequality constraint 
is converted to an equality constraint by introducing an additional 
variable managed by a new neuron, known as the slack neuron. 
Each slack neuron is connected to the initial neurons, where their 
corresponding variables occur in its linear combination. The extended 
Hopfield model has the drawback of being frequently stabilized in 
neuron states far from the suitable ones, i.e., zero and one. To deal with 
this drawback, a new penalty energy term is derived to significantly 
reduce the number of neurons with unsuitable states [71]. The derived 
rules introduce competitions between the variables involved into the 

same constraint. The competitive mechanism also deals with the upper 
bounded inequality constraints. This mechanism has the capacity to 
distribute the neurons into the two states.

The k-out-of-n design rule [112] is used to facilitate the construction 
of the network energy functions for multiple k-out-of-n equality 

constraints, 
=1

=
n

ii
x k∑ , and inequality constraints, 

=1

n
ii

x k≤∑ . For 

k-out-of-n inequality constraints, slack neurons are used. A generalized 
architecture for the Hopfield network with k-out-of-n design is 
achieved by adding to the original J  neurons one adjustable neuron 
associated with each given constraint [77] so as to improve the quality 
of the solutions. This architecture also applies when slack neurons are 
used for inequality constraints.

VIII. Chaotic Neural Networks
An RNN such as the Hopfield network, when introduced with 

chaotic dynamics, is sometimes called a chaotic neural network. The 
chaotic dynamics are temporarily generated for searching and self-
organizing, and eventually vanish with autonomous decrease of a 
bifurcation parameter corresponding to the temperature in the SA 
process. Thus, the chaotic neural network gradually approaches to a 
dynamical structure of the RNN. Since the operation of the chaotic 
neural network is similar to that of SA, not in a stochastic way but in 
a deterministically chaotic way, the operation is known as chaotic SA 
(CSA). More specifically, the transiently chaotic dynamics are used 
for searching a basin containing the global optimum, followed by a 
stable and convergent phase when the chaotic noise decreases to zero. 
As a result, the chaotic neural network has a high ability for searching 
globally optimal or near-optimal solutions [18]. SA searches all the 
possible states by temporally changing the probability distributions, 
while CSA searches a possible fractal subspace with continuous states 
by temporally changing invariant measures that are determined by its 
dynamics. Thus, the search region in CSA is very small compared with 
the state space, and CSA can perform an efficient search.

A small amount of chaotic noise can be injected to the output 
of the neurons and/or to the weights during the operation of the 
Hopfield network. In [46], a chaotic neural network is obtained by 
adding chaotic noise to each neuron of the discrete-time continuous-
output Hopfield network and gradually reducing the noise so that 
it is initially chaotic, but eventually convergent. The chaotic neural 
network introduced in [18,5] is obtained by adding a negative self-
coupling to the Hopfield network. By gradually removing the self-
coupling, the transient chaos is used for searching and self-organizing. 
The updating rule for the chaotic neural network is given by [18]  

( ) ( )1( 1) = 1 ( ) ( ) ,Ti
i i i i i

i i
net t net t w x c t xα

θ γ
τ τ

 
+ − + + − −  

 

 

	           (27)

( )( ) = ( ) ,i ix t net tϕ 				                 (28)

where ( 1) = ( )c t c tβ+ , [0,1]β ∈ , the bias > 0γ , and other 
parameters are the same for (6). A large initial value of ( )c t  is used so 
that the self-coupling is strong enough to generate chaotic dynamics 
for searching the global minima. The damping of ( )c t  produces 
successive bifurcations so that the neurodynamics eventually converge 
from strange attractors to a stable equilibrium point.

In [118], the CSA approach is derived by varying the time step 
t∆  of an Euler discretization of the Hopfield network. The time step 

is analogous to the temperature parameter in SA, and the method 
starts with a large t∆ , where the dynamics are chaotic, and gradually 
decreases it. When 0t∆ → , the system approaches the Hopfield 
model (6) and minimizes its energy function. When = 1t∆ , the Euler-
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discretized Hopfield network is identical to the chaotic neural network 
given in [18]. The simulation results for COPs are comparable to that 
of the method proposed in [18]. Many chaotic approaches [18,118,46] 
can be unified and compared under the framework of adding an extra 
energy term CSAE  into the original computational energy (9) of the 
Hopfield model [67]. The extra energy term modifies the original 
Hopfield energy landscape to accommodate transient chaos. This 
driving force is diminished as CSA 0E →  when ( ) 0tλ → .

CSA has a better search ability for solving COPs compared to SA. 
However, a number of network parameters must be subtly adjusted 
so as to guarantee the convergence of the chaotic network. Unlike SA, 
CSA may not find a globally optimal solution no matter how slowly the 
annealing is carried out, because the chaotic dynamics are completely 
deterministic. Stochastic CSA [120] is proposed as a combination of 
the SA and the CSA [18] by using a noisy chaotic neural network. 
Stochastic CSA restricts the random search to a subspace of chaotic 
attracting sets, and this subspace is much smaller than the entire state 
space searched by SA. Simulation results show that stochastic CSA 
performs more efficiently than SA and CSA [18] for the TSP and the 
channel assignment problem.

IX. Hopfield Networks for Other Optimization and 
Sign 

The least squares (LS) problem is a typical method for optimization 
and signal processing. Matrix inversion can be performed using the 
Hopfield network [57]. Given a nonsingular n n×  matrix A, the energy 
function can be defined by F

2AV I−  ,where V denotes the inverse of A 
and the subscript F denotes the Frobenius norm. This energy function 
can be decomposed into n energy functions, and n similar networks are 
required, each optimizing an energy function. This method can be used 
to solve a system of n linear equations with n variables, =x bA





, where 
n nR ×∈A  and x



, nb R∈


, if the set of linear equations (SLE) has a 
unique solution, that is, A is nonsingular. In [17], this SLE is solved 
by using a continuous Hopfield network with n nodes. The Hopfield 

network is designed to minimize the energy function 21=
2

E x b − A




, and the activation function is selected as a linear transfer function. 

This method is also applicable when there exists infinitely many 
solutions and A is singular. Another neural LS estimator that uses 
continuous Hopfield network and a nonlinear activation function 
has been proposed in [36]. A Hopfield network with linear transfer 
functions augmented by an additional feedforward layer can be used to 
solve an SLE [117] and to compute the pseudoinverse of a matrix [72]. 
The resultant augmented linear Hopfield network can be used to solve 
constrained LS optimization problems.

The linear programming (LP) network [113] is designed based on 
the Hopfield model for solving LP problems 

min Ta x
 

					                    (29)

subject to 
T
j jd x h≥




					                   (30)

for = 1, ,j M , where ( ),1 ,2 ,= , , ,
T

j j j j Jd d d d


 , ,= j id  D  is an 

M J×  matrix, and jh  is a constant. Each inequality constraint is 
modeled by a slack neuron. The network contains a signal plane with 
J  neurons and a constraint plane with k neurons. The energy function 
decreases until the net reaches a state where all time derivatives are zero. 

With some modifications, the LP network [113] can be used to solve 
LSE problems [124]. In [28], a circuit based on a modification of the LP 
network [113] is designed for computing the discrete Hartley transform 
(DHT). A circuit for computing the discrete Fourier transform (DFT) 
is obtained by simply adding a few adders to the DHT circuit. The 
circuits can compute the DHT and DFT within circuit time constants 
of the order of nanoseconds. The stability, computational speed, and 
computational accuracy of the LP network depends substantially on the 

location of the eigenvalues of the matrix product T
g fD D  (or T

f gD D ), 
where gD  and fD  are, respectively, approximations to D at the signal 
and constraint planes of the network in the nonideal case [124,41].

X. Multistate Hopfield Networks
The multilevel Hopfield network [34] and the complex-valued 

multistate Hopfield network [58,91] are two direct generalizations of 
the Hopfield network. The multilevel Hopfield network uses neurons 
with an increasing multistep function as the activation function, while 
the complex-valued multistate Hopfield network uses a multivalued 
complex-signum function as the activation function. The complex-
valued Hopfield-like network [49], like the complex-valued multistate 
Hopfield network [58,91], uniformly quantizes the phase of the net 
input of each neuron and disregards the corresponding amplitude, but 
uses different dynamic equations.

The use of multistate neurons leads to a network architecture 
that is significantly smaller than that of the conventional Hopfield 
network, and hence, a simple hardware implementation. The reduction 
in the network size is highly desirable in large-scale applications such 
as image restoration and the TSP. In addition, the complex-valued 
multistate Hopfield network is also more efficient and convenient than 
the Hopfield network in the manipulation of complex-valued signals.

A. Multilevel Hopfield Networks

In [34], a multilevel Hopfield network for associative memory 
is obtained by replacing the threshold activation function with an 
increasing multistep function and modifying the generalized Hebbian 
rule. The storage capability of the J -neuron multilevel Hopfield 

network is proved to be ( )3O J  bits, which is of the same order as that 

of the Hopfield network [3]. For a network of J  neurons, the number 
of patterns that the multilevel network can reliably store and retrieve 
may be considerably less than that for the Hopfield network, since each 
codeword typically contains more bits.

The multilevel sigmoidal function is typically used as the activation 
function in the multilevel Hopfield network [128,107,129]. In [107], 
a storage procedure for the multilevel Hopfield network in the 
synchronous mode has been developed based on the LS solution, and 
also examined by using an image restoration example. A retrieval 
procedure for the multilevel Hopfield network has been proposed and 
applied to COPs such as the TSP in [32]. In [128], a multilevel Hopfield-
like network is obtained by using a new neuron with self-feedback and 
the multilevel sigmoidal activation function. The multilevel model has 
been applied for A/D conversion, and a circuit implementation for the 
neural A/D converter has been fabricated [128].

B. Complex-valued Multistate Hopfield Networks

The complex-valued multistate Hopfield network [58,91] adopts 
the multivalued complex-signum activation function, defined as an L-stage 
phase quantizer for complex numbers 
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where 0= e jz φ  with 0
2=
L
πφ  is the Lth root of unity. Each state takes 

one of the equally spaced L points on the unit circle of the complex 
plane.

Similar to the Hopfield network, the system dynamics for the J -neuron 
network are defined by 

=1

( ) = ( ),
J

i ki k
k

net t w x t∑  				                  (32)

1
2( 1) = csign ( )i ix t net t z

 
 + ⋅
 
 

			                (33)

for = 1, ,i J , where the factor 
1 0
2 2= e

j
z

φ

 places the resulting 
states in angular centers of each sector. A sufficient condition for the 
stability of the dynamics is that the weight matrix is Hermitian with 
nonnegative diagonal entries, that is, = HW W , 0iiw ≥  [58]. The 
energy can be defined as 

1( ) = .
2

HE x x x− W
  

				                   (34)

In order to store a set of N  patterns, { } {0,1, , 1}J
ix L⊂ −


 , ix  is 

first encoded to its complex memory state ( ),1 ,= , ,
T

i i i Jε ε ε


  with 
,

, = .
xi j

i j zε 					                       (35)

 The decoding of a memory state to a pattern is the inverse of (35). 
The complex-valued pattern set { }iε



 can be stored in weights by the 
generalized Hebbian rule [50] 

*
, ,

=1

1= , , = 1,2, , ,
N

ji i jw i j J
J µ µ

µ

ε ε∑  		               (36)

where superscript* denotes the conjugate operation. Thus, W is 
Hermitian.

The storage capability of the memory, maxN , is dependent upon 
the resolution L for an acceptable level of the error probability maxP .
As L is increased, maxN  decreases, but each pattern contains more 
information.

Due to the use of the generalized Hebbian rule, the storage capacity 
of the network is very low and the problem of spurious memories is 
very pronounced. In [70], a gradient descent-based learning rule 
has been proposed to enhance the storage capacity and also reduce 
the number of spurious memories. In [91], an LP method has been 
proposed for storing into the network each pattern in an integral set 

{0,1,2, , 1}JM L⊂ −  as a fixed point. The LP method significantly 
reduces the number of spurious memories, and provides better results 
in case of noisy gray-level image reconstruction.

Since gray-scale images can be represented by integral vectors, 
reconstruction of such images from their distorted versions constitutes 
a straightforward application of multistate associative memory. 
The complex-valued Hopfield network is particularly suitable 
for interpreting images transformed by two-dimensional Fourier 
transform and two-dimensional autocorrelation functions [58].

The complex-valued Hopfield-like network [49] processes input 
vectors fully in the complex space using complex weights. Real and 
imaginary parts of the data are treated with equal significance in 

nondegenerate complex space. A modification of this network has been 
successfully applied to the DoA estimation of antenna array [125].

XI. Boltzmann Machines and Learning
Boltzmann machines are a class of stochastic RNNs based on 

physical systems [4,48]. It has the same network architecture as that 
of the Hopfield model, that is, it is highly recurrent with =ij jiw w  
and = 0iiw , , = 1, ,i j J . In contrast to the Hopfield network, the 
Boltzmann machine can have hidden units. The Hopfield network 
operates in an unsupervised manner, while the Boltzmann machine 
can also be trained in a supervised manner.

A. The Boltzmann Machine

Unlike the Hopfield model, neurons of a Boltzmann machine are 
divided into visible and hidden units. The visible units are clamped onto 
specific states determined by the environment. The hidden units always 
operate freely. By capturing high-order statistical correlations in the 
clamping vector, the hidden units simulate the underlying constraints 
contained in the input vectors. This type of Boltzmann machine uses 
the unsupervised learning, and can perform pattern completion. When 
the visible units are further divided into input and output neurons, this 
type of Boltzmann machine can be trained in a supervised manner. 
The recurrence eliminates the difference in input and output cells. The 
Boltzmann machine, operated in sequential or synchronous mode, is 
a universal approximator for arbitrary functions defined on finite sets 
[126].

Instead of using a sigmoidal function in the Hopfield network, the 
activation at each neuron takes the value of 0 or 1, depending on the 
probability of temperature T  

=1,

= = ,
J

i ji j i
j j i

net w x w x
≠

∑  

			                 (37)

1= ,

1 e

i neti
T

P
−

+

				                (38)

1, with probability
1, with probability1


= 

− −

pixi pi
	.	                 	               (39)

When = 0inet  or T  is very large, ix  is either 1 or 0 with equal 
probability. For very small T , ix  is deterministically 1. The input and 
output states can be fixed or variable.

The search for all the possible states is performed at a temperature 
T in Boltzmann machines. At the steady state, the relative probability 
of two states in a Boltzmann machine is determined by the Boltzmann 

distribution of the energy difference between the two states eα

β

−=
p
p

,α β−E E
T  

where Eα  and Eβ  are the corresponding energy levels of the two 
states. The energy can be computed by the same formula as for the 
Hopfield model given by (5).

For the Boltzmann machine with hidden units, the generalized 
Hebbian rule cannot be used as in an unsupervised manner. For the 
supervised learning of the Boltzmann machine, the BP is not applicable 
due to the different network architecture. SA is used by Boltzmann 
machines to learn weights corresponding to the global optimum. 
Nevertheless, the Boltzmann learning is significantly slower than the 
BP. For constraint-satisfaction problems, some of the neurons are 
externally clamped to some input patterns, and we then find the global 
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minimum for these particular input patterns. The integration of SA into 
the Boltzmann learning rule makes the Boltzmann machine especially 
suitable for constraint satisfaction tasks involving a large number of 
weak constraints [48].

The original Boltzmann learning algorithm [48,4] is based on 
counting occurrences. The Boltzmann learning algorithm based on 
correlations [95] provides a better performance than the original 
algorithm. For each update of the algorithms, the algorithm first 
estimates correlation in the clamped condition by performing SA 
procedure for all the training set, ijρ+ , , = 1,2, , ,i j J i j≠ , then 
estimates correlation in the free-running condition, ijρ− . Finally the 
weight updated is performed by 

( )= , , = 1,2, , , ,ij ij ijw i j J i jη ρ ρ+ −∆ − ≠ 		                (40)

where the learning rate =
T
εη , and ε is a small positive constant. 

Equation (40) is called the Boltzmann learning rule. This procedure is 
repeated until there is no change in ijw , for all i , j. The correlation-based 
learning procedure for the Boltzmann machine is given in [31,95,45].

Like the multistate Hopfield model [58], a multi-valued Boltzmann 
machine has been proposed as an extension of the two-valued 
Boltzmann machine [78]. Each neuron of the multi-valued Boltzmann 
machine can only take L discrete stable states, and the angle between 

two adjacent directions is given by 0
2=
L
πφ . The probability of state 

change is according to the Boltzmann distribution of the energy 
difference between the two states. A synchronous Boltzmann machine 
as well as its learning algorithm has been introduced to facilitate 
parallel implementations [13].

B. The Mean-field-theory Machine
Mean-field approximation is a well-known method in statistical 

physics [39]. The mean-field annealing algorithm was proposed to 
accelerate the convergence of the Boltzmann machine [95,96]. The 
Boltzmann machine with such an algorithm is also termed the mean-
field-theory (MFT) machine or deterministic Boltzmann machine.

The mean-field annealing algorithm is a deterministic method. 
It generates continuous neuron outputs, which are calculated as the 
average of the probability of the binary neuron variables at temperature 
T , are used. The average of state ix  is calculated for a specific value of 
activation inet  according to (39), (37) and (38) 

E[ ] tanh( ).=
netixi T

				                (41)

The correlations in the Boltzmann learning rule is replaced by the 
mean-field approximation E E Ei j i jx x x x         .

The MFT machine provides a substantial speedup over the 
Boltzmann machine, and is one to two orders-of-magnitude faster than 
the Boltzmann machine [42,95].

The mean-field annealing algorithm can be derived following the 
optimization of the Kullback-Leibler divergence between the factorial 
approximating distribution and the ideal joint distribution of the 
binary neural variables in terms of the mean activations. In [123], 
two interactive mean-field algorithms are derived by extending the 
internal representations to include both the mean activations and 
the mean correlations. The two algorithms improve the mean-field 
approximation in both the performance and the relaxation efficiency.

The mean-field annealing dynamics are isomorphic to the steady-
state equations of an RC-circuit. The mean-field annealing algorithm 
can be simulated by RC circuits, coupled with the local nature of the 

Boltzmann machine, which makes the MFT machine suitable for 
massively parallel VLSI implementation [9,69,106].

XII. Discussion
Both the Boltzmann and MFT machines can be used as associative 

memory. These models, when using hidden units, have a far higher 
capacity for storage and error-correcting retrieval of random patterns 
and improved basins of attraction than the Hopfield network [42,9]. 
When the Boltzmann machine is trained as associative memory using 
an adaptive association rule [59], it does not suffer from spurious 
states. The association rule, which creates a sphere of influence around 
each stored pattern, is a generalization of the generalized Hebbian rule. 
Spurious fixed points, whose regions of attraction are not recognized 
by the rule, are skipped.

The training for the Boltzmann machine and the MFT machine 
models is given in the preceding sections. The retrieval can be performed 
as follows [42]. The visible neurons are clamped to a corrupted pattern, 
the whole network is annealed to a lower temperature, where the state 
of the hidden neurons approximates the learned internal representation 
of the stored pattern, and then the visible neurons are released. The 
annealing process continues until the whole network is settled.

The Boltzmann machine is important historically and theoretically. 
However, its exponential complexity with the number of neurons 
restricts it applications in many problems. Likewise, the MFT machine 
aslo has its limitations. It can only work in the supervised mode 
with only a single hidden layer [45]. For multiple hidden layers, the 
probability distribution cannot be well estimated. The mean state is not 
a sufficient representation for the free-running probability distribution 
and thus, the mean-field method is ineffective for unsupervised 
learning.

In addition to the Boltzmann and MFT machines, there are 
some other implementations of stochastic Hopfield networks. The 
Gaussian machine [7] is a general framework that includes the 
Hopfield network, the Boltzmann machine and also other stochastic 
networks. Stochastic distribution is realized by adding thermal noise, 
a stochastic external input ε , to each unit, and the network dynamics 
are the same as that of the Hopfield network. The stochastic term 
ε  obeys a Gaussian distribution with zero mean and variance 2σ , 
where the deviation = kTσ , and T  is the temperature. The stochastic 
term ε  can occasionally bring the network to states with a higher 

energy. When 8=k
π

, the distribution of the outputs has the same 

behavior as a Boltzmann machine. When employing noise obeying a 
logistic distribution rather than a Gaussian distribution in the original 
definition, we can obtain a Gaussian machine identical to a Boltzmann 
machine. When the noise in the Gaussian machine takes a Cauchy 
distribution with zero as the peak location and the half-width at the 

maximum 8= Tσ
π

, we get a Cauchy machine [111]. The Gaussian 

machine may be more suitable than the Boltzmann machine for some 
tasks. A similar idea was embodied in the stochastic network given in 
[73], where in addition to a cooling schedule for temperature Tgain 

annealing is also applied. The gain 1
β

 has to be decreased more slowly 

than T , and kept bounded away from zero.

XIII. Summary
We have given a comprehensive introduction to some RNNs 
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including the Hopfield model and the Boltzmann machine. These 
models are mainly used for associative memory and for solving COPs. 
The storage capabilities of various storage algorithms for associative 
memory have been discussed. Some other models for associative 
memory such as the MLP-based autoassociative memories and the 
Hamming network are also introduced. The COP has been introduced 
and various strategies for escaping local minima has been described. 
SA is a stochastic global optimization method that is useful for any 
optimization problem. The chaotic neural network is obtained by 
adding chaotic dynamics to the Hopfield network, and this method 
can easily find the global optimum of COPs by using the CSA method, 
which is a fast, deterministic alternative to SA. Multilevel Hopfield 
models can lead to a compact network architecture, and is especially 
used for such tasks as image restoration. The Boltzmann machine 
and learning is a generalization of the Hopfield model, and it can also 
been used for supervised learning. The MFT machine is obtained by 
applying the mean-field approximation to Boltzmann learning. Mean-
field annealing is a deterministic alternative to SA, and provides a 
significant acceleration to the training of the Boltzmann machine.

While the Hopfield model and the Boltzmann machine are suitable 
for hardware implementation. The bulky connections between neurons 
cause difficulties in large-scale implementations. The cellular neural 
network (CNN) model, proposed in 1988 by Chua and Yang [21,22], 
has a unique network architecture. CNN is a generalization of the 
Hopfield network [50], and can be used to solve a more generalized 
optimization problem.

A CNN is a two- or higher-dimensional array of regularly spaced 
neurons, called cells, which communicate only with the neurons in 
its immediate neighborhood. Adjacent cells are connected by mutual 
interconnections [21,22]. Each cell has its own dynamics whose 
evolution is dependent on its circuit time constant = RCτ . The local 
interactions can be programmed by a template matrix [21]. CNN 
overcomes the massive interconnection problem of parallel distributed 
processing. The key features are asynchronous parallel processing, 
continuous time dynamics, and local interactions among the network 
elements. CNN chips can have high-density cells, and some physical 
implementations such as analog CMOS, emulated digital CMOS and 
optical implementations, are available. The CNN universal machine 
[104] is the analog cellular computer for processing analog array 
signals, and has a computational power of tera 12(10 ) or peta 15(10 ) 
analog operations per second on a single CMOS chip [22]. CNN 
with a two-dimensional array architecture is a natural candidate for 
image processing or simulation of partial differential equations. Using 
different cloning templates, namely, the representation of the local 
interconnection patterns, different operations can be conducted on 
an image. CNN has now become an important method for image 
processing.
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