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Introduction
After the Human Genome Project was finished at the beginning 

of 21st century, it seems that we have our own destiny under control. 
However, what is the next step to deal with such a large pool of data so that 
they are meaningful to people? The direct approach to understanding 
the complex processes encoded by the human genome is studying gene 
products’ function, assigning these enzyme products to biochemical 
pathways and reconstructing biochemical networks. These biochemical 
pathways define regulated sequences of biochemical transformations. 
It is a first step towards quantitative modelling of metabolism. An 
individual’s metabolism is determined by one’s genetics, environment, 
and nutrition. Hopefully, with the available human genome sequence 
and its annotation [1-3], the human body’s metabolic network can be 
reconstructed. Numerous metabolic genes and enzymes have been 
individually studied for decades; however, these results are dispersed 
without integrated understanding. The procedure for integrating these 
diverse data types to form a network reconstruction and predictive 
model is well established for microorganisms [4] and has been 
applied to mouse hybridomas [5]. Such in silico models have enabled 
hypothesis-driven biology, including the prediction of the outcome 
of adaptive evolution [6-10] and the identification and discovery of 
candidates for missing metabolic functions that were subsequently 
experimentally verified [11].  Because metabolic networks are more 
complex in mammals than in single-celled organisms, there is likely 
to be an even greater opportunity for the use of computational models 
to understand the basis of normal and abnormal cellular function [12]. 
At the same time, reconstructing biochemical reaction networks in 
mammals is also more complex and tougher. Assignment of genes to 
pathways also permits a validation of the human genome annotation 
because patterns of pathway assignments spotlight likely false-positive 
and false-negative genome annotations.

Previous researches have reconstructed global human 
metabolic network based on genomic data. Homo sapiens Recon 
1 is a comprehensive literature-based genome-scale metabolic 
reconstruction that accounts for the functions of 1,496 ORFs, 2,004 
proteins, 2,766 metabolites, and 3,311 metabolic and transport 
reactions [12]. Another computational prediction of human metabolic 
pathways from the complete human genome assigns 2,709 human 

enzymes to 896 bioreactions and 622 of the enzymes are assigned roles 
in 135 predicted metabolic pathways [13].

This paper presents the reconstruction of the local human metabolic 
network only with information from human chromosome 9(referred 
as chr9 in this paper). Bottom-up reconstruction method was used 
in this paper. The comprehensive database-based chromosome-scale 
metabolic reconstruction, named as Rec 9, accounts for 53 ORFs, 53 
proteins, 4 nonenzymatic proteins, 16 metabolic enzymes(7 of them 
are redundant), and 9 natural metabolic and transport reactions. Rec 
9 (i) enhances our understanding of gene inter-locking rules and the 
relationship between inter-locked genes’ products, (ii) facilitates the 
computational interrogation of the overall properties of the human 
metabolic network, and (iii) provides supplemental context for analysis 
of “-omics” data sets. 

Methods
The complete DNA sequence of human chr9 was downloaded 

from NCBI GeneBank, in FASTA format. Prediction of genes on 
chr9 and their corresponding peptides was conducted by GENSCAN. 
Considering the maximum DNA length limitation, the whole sequence 
of chr9 was randomly divided into two parts, each part was processed 
by GENSCAN separately. Set HumanIso.Smat as the parameter matrix. 
SAPS was utilized to elucidate proteins’ physiochemical properties. 
Secondary structure, together with functional domain, was analyzed 
using several online tools, namely 9aaTAD, Scratch Protein Predictor, 
NetSurfP, SOPMA, PeptideCutter, and ELM. Subcellular location of 
each protein was also analyzed with TargetP. 

Because these predicted proteins are uncharacterized and 
unknown, the reactions they are involved in can’t be searched directly 
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in databases. To solve this problem, two ways were suggested. One is 
de novo discover, that is using some analyzing tools to predict potential 
functions from protein sequence information. In the other method, 
these sequences were blasted and their functions were regarded the 
same as their identities’ (similar known proteins’) functions. The 
blast process used BLASTP 2.2.23, chose UniProtKB (Protein) as 
the database and blosum62 as the scoring matrix. All the candidates 
selected under certain criteria from the blast results were searched 
against UniProtKB for detailed description. Each candidate was 
manually examined to see whether it has certain characters. Candidates 
with similar function were regarded as one protein. A second selection 
was done then based on the information richness and redundancy of 
these candidate proteins.

Reactions these predicted proteins involved in were defined 
as those catalyzed by the enzymes determined in the final selection. 
Thus, structural proteins and proteins with unknown function were 
not examined in the reaction prediction step. Reactions involving 
predicted proteins as substrates were not included since it is rare for a 
gene product to be a metabolite. Reactions were obtained from KEGG 
ENZYME database and BRENDA. 

KEGG LIGAND was used to map all the reactions predicted before, 
in detail, Pathway Mapper was employed. Besides, each reaction was 
also searched against KEGG PATHWAY database to view the whole 
map of pathway it involved in. All the predicted proteins were also 
searched against EMBL REACTOME database to directly find out 
whether they are involved in any known pathways. 

All the processes were limited to Homo Sapiens if species 
specification was possible.

Results
The whole DNA sequence of chr9 is 1246910 bp(divided into 

939400bp, referred as s1; 307510bp, referred as s2). The average G+C 
is 41.04%(42.11% for s1; 39.96% for s2). GENSCAN predicted 53 genes 
(Supplementary Information 1), including information about their 
structures. GENSCAN results also predicted 53 peptides accordingly 
(Supplementary Invitation 2), so there is no need to use another tool, 
such as Transeq, to translate nucleotides into proteins. 

2 predicted proteins were located in mitochondria; 5 were 
associated with secretary pathway (Supplementary Information 3). 
Physiochemical property analysis showed these predicted peptides 

vary in amino acids composition, thus differ in charge distribution 
(Supplementary Information 4). Nevertheless, it is also necessary to 
infer secondary structures of these predicted proteins for function 
is usually associated with protein’ higher structures. The results by 
different online tools were compared and final results of secondary 
structure (Supplementary Information 5) came from Scratch Protein 
Predictor (ExPASy). 

The blast result is a list of proteins in the order of increasing E-value. 
The selection of similar proteins to represent the predicted protein is a 
problem. To which degree of similarity can we define the function of 
a predicted protein the same as that of its identity? Considering some 
relative numbers in alignment, candidates were selected with identity 
higher than 80% and relatively low E-value in this study. 166 protein 
candidates, corresponding to 24 predicted peptides, were selected under 
this criterion (supplementary data not shown here). 8 of these predicted 
proteins had matches with 100% identity, and E-values were also low 
enough so that we can equate these predicted proteins to their identical 
matches. However, most of these 166 candidates were uncharacterized 
proteins or isoforms of each other. After filtering according to their 
ontology and information from UniProtKB, 13 distinctive proteins 
were determined (Table 1), of which 9 were enzymes, which could be 
subdivided into 7 metabolic enzymes, plus 2 nonmetabolic enzymes 
(including enzymes whose substrates are macromolecules, such as 
protein kinases and DNA polymerases). The ‘Unmatched’ row includes 
predicted proteins with no character information, while the remaining 
4 nonenzymatic proteins are listed in the ‘Nonenzyme’ row. 

Some proteins’ descriptions were not well-characterized that one 
protein may retrieve several enzymes with different EC number but 
similar function. In such cases, extra alignments between the predicted 
protein and its identities were done. The enzyme with the highest score 
was chosen. Sometimes several predicted proteins were assigned to one 
enzyme, which means several genes have the same function. 30.2% of 
the predicted genes coded enzymes, correspond to 28.75% of the whole 
chr9 DNA. 

KEGG assigned one reaction to one enzyme, while BRENDA 
offered as many reactions as possible from literature study. Thus, 
sometimes one gene product was matched to more than one reaction, 
as happens with multifunctional enzymes. All together 82 reactions (52 
of them had missing information on products) were predicted besides 

Type Pro# Identity’s Name Main Reaction or Function
Unmatched 5,8,27,46

Nonenzyme

2 transmembrane protein
integral to membrane13 FAM122A

39 FAM189A2
48 forkhead box protein D4 transcription factor

Nonmetabolic 
Enzyme

22 ATP + a protein = ADP + a phosphoprotein

33,41,44,45 deoxynucleoside-triphosphate:DNA 
deoxynucleotidyltransferase (RNA-directed) deoxynucleoside triphosphate+DNAn = diphosphate+DNAn+1

Metabolic 
Enzyme

7 chondroitin-D-glucuronate 5-epimerase chondroitin D-glucuronate = dermatan L-iduronate

18 ATP:1-phosphatidyl-1D-myo-inositol-4-
phosphate 5-phosphotransferase

ATP+1-phosphatidyl-1D-myo-inositol-4-phosphate=ADP+1-phosphatidyl-1D-myo-inositol-
4,5-Bisphosphate

24,25,26 Frataxin 4Fe2++4H++O2 = 4Fe3++2H2O
28 GTP:AMP phosphotransferase GTP+AMP = GDP+ADP
31 tight junction protein 2 tight junction; ATP+GMP=ADP+GDP

43,47 RTP:adenosylcobinamide 
phosphotransferase

RTP+adenosylcobinamide=adenosylcobinamide phosphate+RDP [RTP is either ATP or GTP 
]

51,52 alpha-D-glucose 1,6-phosphomutase alpha-D-glucose 1-phosphate = D-glucose 6-phosphate
Pro#, the ID number of predicted protein, in this study we set the order of the predicted proteins resulting from GENSCAN as 1~53.

Table 1: 
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the main 9 ones. Most of them were reactions recorded in BRENDA 
in the enzymatic reaction list of frataxin(=ferroxidase) and cAMP-
dependent protein kinase γ subunit(PKAγ). 

REACTOME found 3 predicted proteins involved in 11 known 
pathways (Table 2). Among them, one protein was multifunctional, the 
other two were specific to one pathway each. KEGG Pathway Mapper 
resulted in 7 pathway maps (Table 3), but the streptomycin biosynthesis 
and biosynthesis of secondary metabolites pathways obviously do not 
occur in human beings, thus, they were ignored.

Discussion
It is common to find several genes referred to one enzyme, or at 

least their products have the same function. One explanation is that 
these gene products may form a protein complex; therefore, their 
protein annotations are similar. Another explanation is that these 
genes code isoenzymes, that is enzymes with similar function but 
various sequences. This may result from gene duplication at some 
time. Gene duplications commonly happen in the evolution history, 
especially on the same chromosome. It is a main type of gene mutation 
and chromosome variation. According to duplication mechanism, it is 
quite possible to observe ‘one enzyme, several genes’ as these predicted 
genes locate on the same chromosome. The result suggests functional 
redundancy of interlocked genes may be a common phenomenon in 
higher organisms, which coordinates with the concept of quantitative 
trait.

Most predicted reactions involved phosphorylation and 
dephosphorylation of ATP or GTP, indicating their possible 
correlations in energy metabolism. However, there’s still a lot of missing 
information, and these reactions are relatively not well-interconnected 
that a proper network can’t be built. 

The predicted enzymes encoded by human chromosome 9 and 
their corresponding reactions are relatively less in quantity, compared 

to other genome-wide predictions with DNA sizes in consideration. 
This suggests that prediction based on partial genome data is often 
problematic. Computational prediction of organism metabolic 
networks should better use whole genome data. The reason is not 
clear though. It is possible that this study used genes and proteins 
predicted simply from DNA sequences as input, while genome-wide 
network reconstruction researches used information from genome 
annotation as input. Gene annotations may be better as they are 
curated and confirmed by literature. Another potential inference from 
this underestimation is that adding data results in nonlinear increase of 
information, that is to say, the information encoded by whole genome 
isn’t equal to simple adding of information from partial genome data.

The formulation of an in silico model from the reconstruction 
and initial analysis of the network structure will likely be critical in 
elucidating underlying mechanisms of disease and identifying treatment 
strategies by developing cell-, tissue-, and context-specific models and 
building additional layers of complexity into the framework. Genome-
scale microbial metabolic reconstructions have been widely used to 
successfully perform systems analysis to the point that models resulting 
from these reconstructions have become tools for hypothesis driven 
biological discovery [4]. Human metabolic reconstruction is expected 
not only to become a prototype for other mammalian reconstructions 
but hopefully also to enable significant dimensions in the study of 
human systems biology. The future promise for individualized medicine 
and treatment will need a context to integrate and analyze data, and 
models resulting from these reconstructions can play a significant 
role in fulfilling this need. However, the development of cell-type or 
context-specific models will require the integration of various types of 
data, including transcriptomic, proteomic, fluxomic, and metabolomic 
measurements. Achieving these ambitious goals will require top–down 
data sets in conjunction with quantitative bottom-up reconstructions 
such as the one this study has tried to make.

Pro# Pathways Involved Reactions Related

22

glucose metabolism PFKFB1 dimer+ATP=phosphor PFKFB1 dimer+ADP

lipid digestion,mobilization, and transport perilipin+ATP=phosphorylated perilipin+ADP; hormone sensitive lipase+ATP=phosphorylated 
hormone sensitive lipase+ADP

hemostasis

opioid signalling PKA tetramer + 3’,5’-cyclic AMP = PKA catalytic subunit + cAMP : PKA regulatory subunit; 
ATP+CREB=ADP+phosphor-CREB

NGF signalling ATP+CREB=ADP+phosphor-CREB
glucagon signaling

ChREBP protein+ATP= pChREBP(Thr 666)+ADP;
pChREBP(Thr 666)+ATP= pChREBP(Ser 196, Thr 666)+ADP;

PFKFB1 dimer+ATP=phosphor PFKFB1 dimer+ADP

Hormone-sensitive lipase (HSL)-mediated 
triacylglycerol hydrolysis

regulation of insulin secretion
Rap1 signalling Rap1 GTPase-activating protein 2+ATP=p(S7)-Rap1 GTPase- activating protein 2+ADP

regulation of water balance by renal aquaporins aquaporin-2 tetramer+ATP=phosphorylated aquaporin-2 tetramer+ADP

28 megakaryocyte development and platelet 
production(hemostasis) GTP+AMP = GDP+ADP

31 Apoptosis
Pro#, the ID number of predicted protein, in this study we set the order of the predicted proteins resulting from GENSCAN as 1~53.

Table 2: REACTOME results of pathways in which predicted proteins involved.

Pro# Pathways involved
18 Metabolic pathways; Phosphatidylinositol signaling system; Inositol phosphate metabolism; 
31 Metabolic pathways; Purine metabolism
43,47 Metabolic pathways; Porphyrin and chlorophyll metabolism
24,25,26 Porphyrin and chlorophyll metabolism
Pro#, the ID number of predicted protein, in this study we set the order of the predicted proteins resulting from GENSCAN as 1~53.

Table 3: KEGG Pathway results of pathways in which predicted proteins involved.
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