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Gene transfer, especially for the goal of human gene therapy, is the 
principle of administrating therapeutic coding sequences in a target for 
sustained expression instead of providing a final product with short 
pharmacological half-life. The identification of genes associated with 
diverse human pathologies and the expansion of gene transfer vectors 
has allowed to develop a broad range of models of human disorders 
and to establish the first human clinical trials, to find applications at 
clinical levels for genetic disorders, neurologic and muscle disorders, 
cardiovascular diseases, infectious and other acquired diseases, for 
degenerative, chronic, inflammatory, or age-related diseases, and for 
tumors. The most common strategies are gene replacement therapies 
(gene targeting) or gene addition (growth and transcription factors, 
cytokines, and antagonists), the transfer of inhibitory nucleic acids, and 
the application of enhancers of immune responses (genetic vaccines). 
Evidence of the functionality of a gene transfer protocol necessitates 
an evaluation in culture systems in vitro prior to translation in vivo by 
either transplantation of cells genetically modified ex vivo or by direct 
administration of the candidate treatment in vivo. Direct approaches 
are simpler, as the cells are not manipulated before reimplantion, but 
indirect strategies permit a thorough characterization of the modified 
cells, without injecting viral particles, and are better suited when cell 
repopulation is an issue like for regenerative medicine.

Critical to the success of a gene transfer approach is the identification 
of a vector capable of both efficiently and durably expressing a 
transgene, often with a rapid onset and without being detrimental to 
the host. The systems used are based on either nonviral compounds 
(naked DNA, gene gun, electroporation, ultrasound-facilitated and 
hydrodynamic gene transfer, cationic lipid and polymer delivery) or on 
viruses (Ads: Adenoviruses; RVs: Retroviruses; HSVs: Herpes Simplex 
Viruses; AAV: Adeno-Associated Virus). Nonviral vectors are safe but 
only mediate transgene expression at low and short-term efficiencies 
[1,2]. Viral vectors are more potent, using natural entry pathways in the 
cell. Still, classical (Ads, RVs, HSVs) vectors have shortcomings (risk of 
insertional mutagenesis of RVs, immunogenicity of Ads, cytotoxicity 
of HSVs) [1,2] while recombinant AAVs (rAAVs) have emerged as 
favored gene vehicles. AAV is non-pathogenic, replication-defective 
human parvovirus (25 nm diameter, 4.7-kb single-stranded DNA) [3]. 
Most rAAVs derive from serotype 2 (AAV-2) [4] but others are now 
also available (AAV-1 to AAV-12) [5]. In generating rAAVs, both rep 
(replication) and cap (encapsidation) viral open reading frames can be 
deleted to maintain only the two inverted terminal repeats around the 
transgene cassette [6].

rAAVs have first been produced in the presence of a helper (Ad) 
virus that provides the rep and cap genes in trans but helper-free 
methods are now favorized to avoid the risk of contamination by helper 
proteins, of unwanted immune responses to rAAV, and of creating 
replication-competent AAV particles by recombination [7-9]. Since, 
several reports have focused on the production of clinical-grade rAAVs 
to support clinical trials [5,10-12].

Permissivity to rAAV has been reported for both proliferating and 
quiescent cells (including progenitor cells) and in various tissues (muscle, 
bone, cartilage, soft tissues, synovium, skin, liver, brain and retina cells, 
lymphocytes/macrophages/monocytes, endothelial cells, etc.) [13-
22] expressing the viral receptor (cell membrane-associated heparan
sulfate proteoglycan, HSPG [23], and cell-specific co-receptors like the

FGF receptor 1, integrins tg βvβ5/α5β1, HGF receptor, PDGF receptor). 
Upon binding, rAAV is endocytosed and transported to the nucleus 
for uncoating and conversion to double-stranded DNA intermediates 
(circular and linear) [24]. As some tissues are refractory to transduction, 
knowing that intracellular trafficking of rAAV depends on surface (co-)
receptor concentrations and on the biology of the serotype [25], large 
efforts have been made to bypass these rate-limiting steps for improved 
efficacy and specificity by modifying the capsid genes. New rAAV have 
been created by mutagenesis, chemical conjugation, peptide display 
libraries, or DNA shuffling and error-prone PCR, leading to mosaic, 
pseudotyped, chimeric, and hybrid (Ad/AAV, HSV/AAV) vectors. 
Advantage has also been taken of the hierarchy between serotypes 
over AAV-2 (AAV-1 for the muscle, AAV-5 for the brain, AAV-8 for 
the liver). Another issue has long been the limited capacity of rAAVs 
(~5 kb). This has been largely solved by using the ability of the virus 
to form head-to-tail (circular) DNA concatamers by intermolecular 
recombination [26-29]. Another important development nithe use of 
rAAVs has been the generation of self-complementary rAAV (scAAV) 
to bypass the requirement of host cell-mediated rate-limiting synthesis 
of double-stranded DNA from the single-stranded rAAV genome [30]. 
Also notably, the wild-type AAV genome integrates specifically in the 
short 19p13-qter region of chromosome 19 (AAVS1 site), a process that 
only requires Rep proteins and the ITRs [31-33]. In the absence of Rep 
in the recombinant genome, rAAV transgenes persist as 99% of stable 
episomes actively and persistently transcribed (up to 1.5 years) [34,35] 
with only 1% of slow, nonspecific integrants, indicating a low risk of 
insertional mutagenesis.

All these properties have thus made rAAV a very powerful gene 
transfer system for in vivo applications [11,12,36-38] and the benefits 
of employing this class of vector in clinical protocols are under active 
investigation for cystic fibrosis [39-41] and α1 anti-trypsin deficiency 
[42,43] for neurologic, retinal, and muscular diseases [36,44-56], 
for cardiovascular diseases [57-60], for viral infections and vaccine 
development [61], bone disorders [62], rheumatoid arthritis [63], and 
against malignancies [36].
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