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Introduction
Human metapneumovirus (hMPV) is a recently identified 

virus belonging to the Paramyxoviridae family that also includes 
respiratory syncytial virus (RSV) and parainfluenza virus [1]. Soon 
after its discovery, hMPV has been commonly recognized as a leading 
cause for lower respiratory tract infections in young children, the 
immunocompromised patients and older adults [2-5]. 

hMPV is a negative sense single-stranded RNA virus. Its RNA 
accumulation is believed to be similar to that of RSV. RSV RNA 
synthesis is comprised of two independent events: viral replication 
and gene transcription. Both events are tightly regulated by RNA-
dependent RNA polymerase (RdRp) complex of viruses. Upon entry, 
the viral genome is used as a template for gene transcription, with each 
gene transcribed individually along a gradient, then poly A-tailed. The 
negative-sense genome is replicated into a positive-sense antigenome, 
which serves as a template for replication of many copies of the viral 
genome [6]. hMPV antigenome contains nine open reading frames 
for hMPV protein expression: 3’-N-P-M-F-M2-1-M2-2-SH-G-L-5’. 
Although hMPV is a clinical important pathogen, no vaccine is 
currently available. In this review, we will discuss the recent efforts for 
hMPV vaccine development.

Inactivated vaccines

Inactivated influenza is commonly used for mass immunization 
because it is in good stability, easy for manufacturing, and biologically 
safe due to the absence of viral replication, (http://www.cdc.gov/
vaccines/hcp/vis/vis-statements/flu.html). However, the vaccination of 
a formalin-inactivated human RSV vaccine (FI-hRSV) led to enhanced 
disease upon natural infection [7,8], which probably resulted from a Th2-
biased T cell-memory responses [9-11], formaldehyde hypersensitivity 
[12], and/or immature antibody production and its associated weak 
recognition of hRSV epitopes from natural infections [13]. Recently, 
decrease in FI-hRSV enhanced disease by RSV G glycoprotein peptide 
was recently reported, suggesting the antibody specific to RSV G is 
critical for RSV pathogenesis control [14]. Similarly, vaccine-enhanced 
pulmonary disease and Th2 response following hMPV challenge were 
also observed in animals vaccinated with formalin-inactivated Hmpv 
[15,16], suggesting that formalin-inactivated hMPV may not be a 
suitable vaccine candidate. 

Recently, a nanoemulsion-adjuvanted inactive RSV has been shown 
to be able to induce durable RSV-specific humoral responses, decrease 

mucus production and increase viral clearance, without evidence of 
Th2 immune mediated pathology [17]. However, vaccinated mice 
exhibited an enhanced Th1/Th17 response. Since IL-17 has been 
shown to induce pulmonary pathogenesis during respiratory viral 
infection and exacerbate associated allergic disease [18], the safety of 
nanoemulsion-adjuvanted inactive RSV vaccine candidate needs to be 
carefully investigated. Whether hMPV with nanoemulsion inactivation 
is immunogenic and protective, and launches balanced Th1/Th2/Th17 
immune responses needs to be determined. 

Viral protein-based vaccines

Subunit vaccines are purified or expressed viral proteins, full-length 
or partial. The expressed proteins are usually in a form of virus-like 
particles (VLPs), nanoparticles, or with immune-enhancing adjuvants 
[19]. The most immunogenic protein among paramyxoviruses is 
mainly the fusion protein F. In terms of RSV, a close family member of 
hMPV, its F in a form of nanoparticle is being evaluated in a phase II 
clinical trial by Novavax [20]. 

Several animal studies using hMPV proteins as subunit vaccine 
candidates have been recently conducted. By using retroviral core 
particles as a carrier, intraperitoneal injection of hMPV F induces a 
strong humoral immune response against both homologous and 
heterologous strains. Moreover, the induced neutralizing antibodies 
prevented mortality upon subsequent infection of the lungs with both 
homologous and heterologous viruses, while hMPV glycoprotein G 
vaccination did not induce neutralizing activity [21]. Similar results 
were observed using an alphavirus replicon- or parainfluenza virus 
type 3 (PIV3)-based hMPV F vaccine [22,23]. It has been also recently 
demonstrated that animals vaccinated by intramuscular injection 
of adjuvanted soluble hMPV F proteins develop humoral immune 
response. However, such response diminished rapidly over time [24]. 
Recently, research from Dr. Williams’ group demonstrated that hMPV 
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Abstract
Recently identified human metapneumovirus (hMPV) and its close family member respiratory syncytial virus (RSV) 

are two major causes of lower respiratory tract infection in the pediatrics population. hMPV is also a leading cause of 
morbidity and mortality worldwide in the immunocompromised patients and older adults. Repeated infections occur 
often demonstrating a heavy medical burden. However, there is currently no hMPV-specific prevention treatment. 
This review focuses on the current literature on hMPV vaccine development. We believe that a better understanding 
of the role(s) of viral proteins in host responses might lead to efficient prophylactic vaccine development.
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VLPs obtained by expressing matrix (M) and F protein in suspension-
adapted human embryonic kidney epithelial (293-F) cells provide 
protection against hMPV replication in the lungs of mice, and are 
not associated with a Th2-skewed cytokine response, suggesting non-
replicating VLPs are a promising vaccine candidate for hMPV [25]. 

Other hMPV proteins which have been used for protein-based 
vaccine development includes P and G proteins [21,26]. A recombinant 
bacillus Calmette-Guerin (BSG, a carrier to promote immune response 
against antigens from other bacterial, parasitic, and viral pathogens) 
expressing hMPV P protein is able to confer strong effector phenotypes to 
both CD4+ and CD8+ T cells, which showed protective hMPV immunity 
equivalent to actively immunized animals. However several groups 
have suggested that hMPV G-based subunit did not develop protective 
antibodies, suggesting hMPV G is not important for immunogenicity 
[21,27,28]. Interestingly, studies using recombinant hMPV lacking G 
protein (rhMPV-∆G) suggested that G protein plays an important role 
in inducing protective immune responses [29]. Although the results 
on the role of G in immunogenicity are still controversial, there are 
several possibilities may contribute to unsuccessful immunogenicity of 
G during the single protein immunization process. One possibility is 
that hMPV G undergoes certain modification on the level of gene and/
or protein during the single protein immunization, similar to what has 
been described for RSV F protein [30]. Another possibility is that same 
carriers may have reduced ability to incorporate G than F [21]. Overall, 
whether G is important in immunogenicity still needs to be clarified.

Overall, the immunization using hMPV F-based subunit vaccine 
is promising; but more experiments are needed to determine the 
combination of inoculation routes, carrier forms, and length of F to 
induce the best immunogenicity efficacy and duration. Since other 
hMPV proteins are also important for immunogenicity and immune 
balance, subunit immunization requires more investigation on the 
effect of immunization on Th1/Th2/Th17 balance. 

Live attenuated vaccines

Live attenuated vaccines can be divided into two groups: non-
recombinant and recombinant. Non-recombinant live attenuated 
viruses are usually generated by natural mutations/deletions during 
viral passages in cells with or without experimental stresses such as 
chemical mutagenesis and clod passage [31-33]. The major risk of 
non-recombinant live attenuated vaccine is it’s in vivo reversion and 
recovery of viral pathogenicity and subsequent disease development. 
Some non-recombinant live-attenuated RSV vaccines have been 
evaluated in clinical trials, but showed some side effects and also 
insufficient attenuation [34]. Temperature-sensitive hMPV strains have 
been generated recently by the group of Drs. Fouchier and Osterhaus. 
Immunized hamsters showed protective immunity [35]. 

The recombinant live-attenuated viruses are generated from 
the cells transfected with hMPV cDNA genome, with/without gene 
modification/deletion, along with plasmids encoding individual 
proteins essential for forming RNA-dependent RNA polymerase 
(RdPp) complex [36-38]. Recently, a wild type recombinant hMPV, 
with the codon optimization in SH, has been approved to be a suitable 
parent virus for development of live-attenuated HMPV vaccine 
candidates in experimental human infection trial [39]. The attenuation 
of recombinant hMPV has been achieved by the deletion of certain 
accessory genes. They are recombinant hMPV lacking G (rhMPV-∆G), 
G and SH (rhMPV-∆G/SH), and M2-2 (rhMPV-∆M2-2) [29,40,41]. In 
infected hamsters, rhMPV-∆G and rhMPV-∆G/SH were at least 40-fold 
and 600-fold restricted in replication in the lower and upper respiratory 

tract, respectively, compared to wild-type rhMPV. However, in rodent 
model, rhMPV lacking SH alone (rhMPV-ΔSH) replicated somewhat 
more efficiently in hamster lungs when compared to wild-type(WT)-
rhMPV, indicating that SH is completely dispensable in vivo and that 
its deletion does not confer an attenuating effect.. In infected African 
green monkeys, the attenuation of rhMPV-∆M2-2 reached higher level 
than that of rhMPV-∆G, and had induce comparable immunogenicity 
and protective efficiency [41]. There is another attenuated recombinant 
hMPV whose P protein was replaced with avian MPV P protein. 
Although it is well attenuated, it was found to be poorly infectious in 
healthy adults [42]. 

Other factors should be considered in designing future 
vaccines

Although F protein is believed to be a major factor determining the 
immunogenicity of hMPV, identification of viral antigens that activate 
both protective cytotoxic T-lymphocyte (CTL) and humoral responses 
are still necessary to develop a successful vaccination strategy. Indeed, 
several CTL peptides have been proved to be important for CD8+ CTL 
responses to hMPV challenge. These peptides are 164VGALIFTKL172 
from N for H-2b mice, 56CYLENIEII64 from M2-2 protein for H-2d 
mice, and 35KLILALLTFL44 from SH protein and 32SLILIGITTL41 from 
G protein for HLA-A*0201 transgenic mice. Vaccination with these 
hMPV CTL epitopes upregulates expression of Th1-type cytokines in 
the lungs and peribronchial lymph nodes of hMPV-challenged mice, 
resulted in reduced viral titers and disease in mouse models [43]. Given 
the importance of CTL epitopes in the immunogenicity, the deficiency 
of such epitope(s) by complete gene deletion in live attenuated 
rhMPV may contribute to the reduced ability of rhMPV to induce 
the immunogenicity. To prolong immunogenicity of F protein-based 
vaccination or to enhance the immunogenicity of deletion mutants 
of rhMPV, co-immunizing the host with peptides containing CTL 
epitopes may be a good option. 

Identifying viral proteins which are important for antiviral signaling 
regulation is also critical in vaccine design. Recently, we identified 
that some viral proteins, such as G and M2-2, play a significant role 
in suppressing hMPV-induced host innate immunity [37,38,44,45]. 
Regarding M2-2 protein, we and others found that it is a protein with 
multiple functions. It not only regulates the viral gene transcription 
and viral RNA replication [37,40], but also contains a CTL epitope 
and targets central adaptors for RIG-I and TLRs [37,43,46,47]. In 
addition, M2-2 also plays a significant role in regulating the expression 
of miRNAs, some of which are important for the expression of immune 
related genes (Deng et al., Data will be separately published soon). The 
multi-functions of viral protein(s) raise the need to identify the domains 
respectively responsible for their function, as it is important for rational 
design of live attenuated recombinant virus. Recently, we identified that 
the regulatory domains of M2-2 for viral gene and genome replication 
are different [37]. We also identified M2-2 motifs which are responsible 
for their inhibition on antiviral signaling (manuscript in preparation). 
All these pieces of information on M2-2 might provide a foundation 
to design M2-2-based live attenuated vaccine candidates. For example 
mutants containing mutations on 1) M2-2’s viral replication domain 
for replication attenuation purpose, and 2) protein interactive motifs to 
abolish M2-2’s suppression on antiviral signaling for immunogenicity 
enhancement. On the other hand, the domains which are important 
for the transcription of viral genes should not be modified in order to 
1) minimize frequent mutations of other viral proteins [48], 2) prevent 
skewed Th1/Th2 balance [49], and 3) main all naïve CTL epitopes 
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for immunogenicity purpose [43], Overall, dissecting the functional 
domains of viral protein is essential for vaccine development.

Discussion
Overall, a variety of vaccination strategies have been explored 

to protect different groups from hMPV-induced respiratory illness. 
An efficient vaccine candidate should ideally be more immunogenic 
and protective than natural hMPV infection, which only launches 
incomplete immune protection. Studies in cotton rats revealed that 
immunization with FI-hMPV-induced enhanced pathology in the 
lungs of animals after subsequent infection with hMPV [16], excluding 
it as a promising candidate. Subunit vaccines are promising and safe, 
especially in the form of non-infectious carrier, for the risk groups 
such as immunocompromised individuals and the elderly. However, 
they seem to induce short protective immunity [24]. Current live 
attenuated hMPV vaccine is promising, as well. However, the balance 
between a satisfactory degree of attenuation and a satisfactory level of 
immunogenicity may be difficult to obtain. We are currently exploring 
the possibilities to identify major immune regulatory protein(s) and 
associated functional motifs with an aim to develop vaccine candidates 
with decent attenuation and less inhibition on host antiviral systems.
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