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Abstract

MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in development and
stress response by down-regulating gene expression post-transcriptionally. MiRNA study in Medicago truncatula is
advancing quickly. This paper will introduce this field to readers from five aspects: nodulation, development of roots,

response to drought, metal ions and phytohormone.
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Introduction

In plants, there are two kinds of small RNAs, endogenous small
interfering RNAs (siRNAs) and microRNAs (miRNAs). Of them,
miRNAs have an approximate length of 21 nt, and play key roles in
negatively regulating gene expression by targeting corresponding
messenger RNAs (mRNAs) [1,2]. It has been reported that miRNAs
play a regulatory role in many processes in plants. In the field of
growth and development, they are involved in seed germination [3],
leaf morphogenesis [4,5], floral organ and root development [6-8]. In
addition, they participated in responses of plants to various abiotic
stresses, such as drought [9,10], cold [11], salinity [12], oxidative stress
[13], metal ion toxicity [14,15], and nutrition starvation [16,17].

As the third model plant after Arabidopsis and rice, the miRNA
study in Medicago truncatula is not so much detailed in contrast to
Arabidopsis and rice [18-20]. However, the research development is so
rapid. Here, the recent research progress on microRNAs will be
introduced from several areas in M. truncatula.

Nodulation

As leguminous species, the roots of M. truncatula have the ability to
interact with rhizobia to develop nitrogen-fixing root nodules. miR164
may be the first miRNA found to be involved in nodule formation,
which can target MtHAP2-1 encoding a transcription factor of the
CCAAT-binding family with an ability of controlling nodule meristem
function. Overexpression of miR164 leads to block of nodule
development by down-regulating the expression of MtHAP2-1 [21].
mR166 is another miRNA which affects nodule formation by
negatively regulating several class-III HD-ZIP genes, and
overexpression it makes number of symbiotic nodules decrease [8].
Lelandais-Briere et al. have identified many miRNAs in root nodules
of M. truncatula by the method of high-throughput sequencing
technology, which supplies abundant message for researchers about
miRNA in nodules development [22].

Development of Roots

The root system is crucial for resource acquisition from soil.
miRNAs involved in root development in M. truncatula have been
identified [23]. Of them, overexpression of miR166 can reduce the
number of lateral roots and induce ectopic development of vascular
bundles in roots [8]. In addition, miR396 can regulate the architecture
of the root system by targeting MtGRF5 [24].

Drought

Thirty-two known members of 10 miRNA families and 8 new
miRNAs/new members of known miRNA families were identified to
be responsive to drought stress by high-throughput sequencing of
SRNA libraries from M. truncatula. The targets of these miRNAs were
involved in development, transcription, protein degradation,
detoxification, nutrient status and cross adaptation [25]. An
interesting discovery is miR398 targeting two Cu/Zn superoxide
dismutases was found to be down-regulated transcriptionally in
response to drought, different from the results reported by Trindale et
al. [10]. This difference may results from the different extent and
duration of drought stress, and it is needed to be studied sequentially.

Metal Ions

The expression response of miRNAs to aluminum and mercury
toxicity was also been analyzed. Twenty-three miRNAs were
responsive to AIP*. By analysis the expression pattern of these
miRNAs, it’s found that the majority of these mRNAs was down-
regulated and responded rapidly to AI** [15]. miRNAs and their
targets response to Hg?* were identified by high-throughput
sequencing, too [14]. From these two articles, we found miR390 and
miR2199 were all down-regulated by AI** and Hg?*.

Phytohormone

The target of miR164, MtNACI can be down-regulated by auxin
homologous naphthaleneacetic acid (NAA), whose homolog AtNACI
plays a key role in auxin signal transport in Arabidopsis, but the
function of MtNACI is different from AtNACI [7,26]. In addition,
ethylene-responsive miRNAs in roots of M. truncatula have been
identified by high-throughput sequencing. Eight miRNAs were down-
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regulated after exposure to ethylene, and the potential role of these
miRNAs in the ethylene-induced inhibition of root elongation was
discussed [27].

Forecast

From the Web of Science, it’s known that there are many papers
about genome-wide identification of microRNAs from different
treatments of Medicago truncatula. According to the newest miRNA
database (miRBase 20, released in Jun. 2013), M. truncatula has the
most amount of precursors and mature miRNAs in plants, even more
than Arabidopsis and rice. But the functional study level of miRNAs in
M. truncatula is not as high as Arabidopsis and rice. For example, two
Cu/Zn superoxide dismutase genes (CSDI and CSD2), a copper
chaperone gene (CCSI) and a subunit gene of cytochrome ¢ oxidase
(COX5b-1) were all identified as target genes of miR398 in
Arabidopsis. These genes were reported to be involved in response to
diverse abiotic and biotic stresses, such as oxidative stress, salt stress
and heat stress, Cu and phosphate deficiency, and addition of sucrose
or plant pathogens, forming a detailed regulatory net of miR398 in
Arabidopsis [13,28-32]. Because most of miRNAs have been identified
and to find novel miRNAs from M. truncatula is more and more
difficult, researchers are beginning to pay more attention to the
functional study of important miRNAs in diverse biochemical and
physiological processes, which will become the trend of miRNAs study
in M. truncatula.
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