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Introduction
Drug resistance is a devastating problem in cancer chemotherapy 

because drug resistant cancer cells are harder to kill with the same drug. 
Despite initial high response rate, a large proportion of patients develop 
resistance to the drug causing relapse of the disease. This multifaceted 
problem could be attributed to various factors, mainly on MDR 
(Multiple Drug Resistance) activation, tissue heterogeneity (including 
stem cells), microenvironmental context, abnormal mitochondrial 
respiration, vascularization, DNA repair and apoptosis [1].

The cellular signaling leading to these molecular processes depends 
on redox signaling in the cell. Reactive oxygen species (ROS) with 
highly reactive oxygen atom reacts with DNA, amino acids of proteins 
and unsaturated fatty acids leading to oxidation of these biomolecules. 
ROS can lead to oxidation [2] of amino acid residues of side chains, 
formation of protein-protein cross-linkages, and oxidation of the 
protein backbone resulting in protein fragmentation. These oxidized 
proteins, in turn, modify normal protein functions, have profound 
effects in cellular signaling, and create oxidative stresses in the cell, thus 
compel cells to adopt altered molecular pathways. 

Understanding redox regulation and its role in developing drug 
resistance in cancer cells are immensely important to overcome 
chemotherapeutic challenges. Modulation of ROS is not only a 
prerequisite for tumor development but also a measure of drug 
resistance. Critical ROS level could also be a marker of drug efficacy 
that would determine the progress of drug response in cancer patients 
[3].

ROS management in tumorigenesis

Positive ROS signaling is a necessary prerequisite for the 
development of tumors [4,5]. Cancer cells always have higher ROS 
content than normal cells [6]. Cancer cells are often found to harbor 
mitochondrial mutations and consequently abnormal mitochondrial 
respirations are a general cause for increased ROS generation [7]. 
Other sources of ROS generation such as from plasma membrane and 
peroxisomes are not extensively studied in relation to cancers except 
for peroxiredoxins where prx-/- mice develop tumors at many sites and 
act as tumor suppressor genes [8]. Higher ROS content in cancer cells 
is necessary to induce tumor development. Therefore one can assume 
that oxidative stress inducing genes have inductive roles on oncogenes 

to induce tumor formation. 

An alternative hypothesis suggests that oncogenes increase NFE2L2 
(NRF2) expression to activate the antioxidant system for reducing ROS 
and detoxifying cells to induce tumorigenesis in mice [9]. They showed 
that oncogenes, K-Ras, B-Raf and c-Myc overexpression increase 
NFE2L2 expression that subsequently detoxifies cells from increased 
ROS level and induces tumorigenicity. 

Several factors should be considered before explaining this 
apparent conflict between the ROS generation or reduction during 
tumorigenesis. The effect of only three oncogenes on an increase of 
NFE2L2 expression is not sufficient to assume that overall reduction 
of ROS level certainly induces tumor development [9]. In human lung 
cancer, several somatic mutations in KEAP1 are identified, although 
the functions of these individual mutations are not studied [10]. It is 
believed that these mutations abolish KEAP1 binding with NFE2L2 
and free NFE2L2 could activate the antioxidant system to decrease 
the ROS level in lung cancer but the direct evidences for such an 
assumption is not verified. Unfortunately, Keap1-/- mice expressed 
NFE2L2 constitutively but did not live more than 21 days, making it 
impossible to assess its direct role in tumorigenesis [11]. In contrast 
to oncogenes, tumor suppressor genes, such as p53 downregulation 
induces ROS generation during tumorigenesis [12] and is also shown 
to harbor numerous mutations in many cancers [13,14]. Thus, p53 
mutation supports the view that positive ROS signaling is necessary 
for tumorigenesis.

Additionally, no germline mutations in NFE2L2 or KEAP1 have 
been identified in any cancers that would justify the notion that an 
increase in antioxidants facilitates tumor development. It is believed 
that cancer stem cells or normal cells when becoming cancerous do need 
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increased ROS signaling [5,15], but mature tumor cells cannot sustain 
excessive ROS generation due to abnormal mitochondrial mutations 
in cancer cells [7,16]. Any cells, including cancer cells are vulnerable 
to excess ROS, thus somatic mutations in NFE2L2 or KEAP1 genes 
observed in cancer cells activate antioxidant systems to reduce the 
ROS level that actually helps tumor progression, but may not initiate 
tumor development. Importantly, several NFE2L2 mutations are also 
observed in lung cancer patients (11/103 patients) and are believed to 
help tumor progression [10]. It has also been proposed that excess ROS, 
generated by cancer cells, itself drives cancer cells from their primary 
site towards the bloodstream and is a molecular basis for metastasis 
[17]. This assumes that the adherence properties of cancer cells are 
reduced in the presence of excessive ROS signaling and ROS mediated 
physiological changes help to prepare them to move from primary 
sites. Although extensive experimental research is needed to establish 
this, it appears that tumorigenesis depends on a critical level of ROS in 
a dose dependant manner but not solely on a decrease or increase of 
ROS level that activates antioxidant systems or/and metastasis [18,19]. 

Most anticancer drugs induce ROS generation through 
common molecular pathways leading to apoptosis 

Most of the anticancer agents or drugs initially induce ROS 
generation to kill cancer cells by apoptosis [15,20,21]. A detailed 
description of anticancer agent mediated ROS generation has been 
outlined earlier [22]. However, it is unclear how these anticancer agents 
influence cellular mechanisms to generate ROS. Direct relationships 
between drugs and antioxidant modulating genes/proteins are yet to 
be established. Although it is not known whether ROS generation is 
the only way to induce cancer cell death, it obviously plays a major 
role in inducing apoptosis. It is evident that various anticancer agents 
induce ROS in various cancers activating different genes although the 
pathways of these genes are studied discretely. But it is not clear whether 
they lead to the same pathways involving the same set of genes that 
could induce apoptosis. Evidence suggests that ROS induces a set of 
genes that are known to induce apoptosis in cancer cells. For example, 
in breast cancer, rotenone activates ERK1/2, JUN and MAPK8 [23], 
but sulforaphane inhibits hTERT [24]. Dithiophene induces IL24 in 
pancreatic cancer cells to activate apoptosis [25]. Similarly, in ovarian 
cancer cells, chlorambucil and cisplatin activate NFKB and p53 [26] 
whereas CDDO-ME (C-28 methyl ester derivative methyl-2-cyano-
3,12-dioxooleana-1,9(11)-dien-28-oate) downregulates NFE2L2 [27]. 
PI3K, CFLAR, MAPK8, ERK1/2, PRKDC, p53, NFKB1 and RB1 are 
the principle genes those are identified to be modulated in various 
anticancer drug mediated ROS generation [22,28,29]. IPA analysis 
(Ingenuity Pathway Analysis; www.ingenuity.com) showed that they 
could activate apoptotic genes, Casapases (CASPs), FADD/MORT 
and cytochrome C (Figure 1). This ROS-apoptosis model explains that 
various anticancer agents in most of the cancer cells induce apoptosis 
through ROS generation in common pathways.

ROS reduction is a general mechanism of drug resistance

Although most of these anticancer drugs induce apoptosis through 
ROS generation, prolonged treatment with the same drug reduces the 
ROS level in cancer cells [26]. Thus, drug resistant cells have lower 
ROS content than the drug sensitive cells and addition of exogenous 
ROS in conjunction with the drug resensitizes drug resistant cells 
to sensitive cells. A ROS management cycle in cancer cells could be 
established, which demonstrates these events (Figure 2). However, 
it is not known whether a reduced ROS level makes the cancer cells 
resistant or if resistant cells reduce ROS level in the cell. That is whether 

ROS reduction is a primary phenomenon for prolonged treatment with 
anticancer drug.

  Evidence suggests that drug resistant cells have a higher expression 
of catalase at the plasma membrane that could reduce some of the 
ROS level [30]. Recent observations also indicate that overexpression 
of NFE2L2, that mechanistically should reduce ROS, actually confers 
resistance to lung and ovarian epithelial cancer for platinum based drugs 
[31,32]. Depletion of glutathione-S-transferase (GSH) , an antioxidant 
producing enzyme, through phenyl isothiocyanate (PEITC) induces 
apoptosis in MCF7 breast cancer cells [33]. In fibrosarcoma cells, p21 
mediated apoptosis could be blocked by overexpression of catalase 
at the mitochondria of these cells [34]. APEX1, a DNA transcription 
factor and DNA repair gene, confers drug resistance through ROS 
and MDR activation [35]. Recently, Li et al. [36] showed that APE1 
regulates mitochondrial membrane potential and ROS production 
after photodynamic therapy of lung cancer cells and induces apoptosis. 
Thus, evidence is accumulating that the reduced ROS level could be the 
primary reason for acquired drug resistance in various cancers.

The molecular mechanism of ROS reduction

NFE2L2-KEAP1 is the most potent antioxidant regulatory system 
that reduces ROS level in cancer cells. NFE2L2, a transcription factor, 
remains bound in cytoplasm with another protein called KEAP1 
(Figure 3). Oxidative stress releases NFE2L2 from the KEAP1 complex 
[37]. Free NFE2L2 is phosphorylated and travels to the nucleus to bind 
at the Antioxidant Responsive Element (ARE) which is located at the 
promoter of a series of antioxidant genes and activates transcription. The 
minimum sequence requirement for ARE is 5’-gagTcACaGTgAGtCgg 
CAaaatt-3’ or TMAnnRTGAYnnnGCRwwww or TGA(C/T)nnnGCA 
[38,39] and the presence of two or more copies of the ARE in close 
proximity to each other often serves as a bona fide ARE [40]. Increase 
of NFE2L2 in the nucleus facilitates transcription of antioxidant 
genes, such as catalase (CAT) or glutathione –S-transferase (GST) that 
reduces ROS level in the cell [41].
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Figure 1: ROS inducing genes induce apoptosis in common pathways. 
In various cancer cells with various anticancer agents, ROS induces a set of 
master regulatory genes which in turn act on apoptotic genes, thus inducing 
apoptosis through common pathways. Sky blue-master regulatory genes, pink-
apoptotic genes, orange-small molecules.
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Master regulatory genes could act on upstream of NFE2L2-
KEAP1 system to activate antioxidant system

Similar set of genes, such as ARHGEF6, MAPK8, p53, CYR61, 
PRKDC, CDK6 and others [23,26,28,29] those induce apoptosis through 
ROS generation are also involved to modulate the antioxidant system 
through NFE2L2-KEAP1 and reduce ROS. Some of them are common 
(p53, PRKDC, MAPK8 etc) and are believed to regulate NFE2L2 and 
KEAP1 expression or phosphorelation in positive or negative way thus 
play dual role in apoptosis or ROS reduction. IPA analysis with these 
master regulatory genes suggests that they could modulate NFE2L2-
KEAP1 expression (Figure 4). Therefore these genes are not the target 
of NFE2L2. ARHGEF6, a prominent gene that is identified in drug 
resistance in ovarian cancer [26], could interact with NFE2L2 through 
MAPK8, implying MAPK8 could cause phosphorylation of NFE2L2 

allowing it to travel to the nucleus [42]. Increased CAT expression 
could also reduce ROS level to make cancer cells drug resistant, which is 
observed by Bechtel and Bayer [30]. Similarly, CDKs are also predicted 
to be involved in phosphorylating NFE2L2 [31], although the specific 
role of CDK6 in phosphorylating NFE2L2 has not been demonstrated. 
However, CYR61, a ROS inducing angiogenic gene could also modulate 
NFE2L2 expression through the oncogene, JUN. Although direct 
relationships between p53 and NFE2L2 have not been demonstrated, 
p53 acts on MAPK8 and CDKs (Cyclin Dependent Kinase), which are 
essentially needed to phosphorylate NFE2L2, thus having an indirect 
role in NFE2L2 functions [43]. It has been also suggested that p53 and 
NFE2L2 act on different pathways in neuroblastoma cells and their 
activities depend on the type of oxidative stress a cell faces, such as 
diamide or H2O2 [29,44]. Diamide activates the NFE2L2 antioxidant 
system that protects the cell from oxidative stress, but p53 induces 
apoptosis when exposed to H2O2. 

Master regulatory genes could also act on Non-ARE 
containing antioxidant genes to reduce ROS  

However, all antioxidant genes do not posses ARE sequences at 
their promoters, and are not regulated by the NFE2L2-KEAP1 system. 
The extensive networking suggests that anticancer agents inducing 
master regulatory genes could also interact with other antioxidant 
modulatory genes (Figure 5). Here we observe that MAPK8 directly 
regulates peroxiredins (PRDX5) and CAT, ARHGEF6 interacts with 
SOD2 through PAK2, APEX1 interacts with PRDX6 and the NFKB 
complex interacts with many antioxidant producing/regulatory genes 
such as SOD1, PRDX2, PRDX4, GPX4, SOD2, CAT etc. Thus, the ROS 
regulation system in cancer cells is not limited by only NFE2L2-KEAP1 
antioxidant system and master genes could also regulate non-ARE 
containing genes to reduce total cellular ROS in the cell.

Advanced chemotherapy by modulation of ROS

Modulation of ROS in combination with the drug is a useful strategy 
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Figure 2: Role of ROS in different stages of cancer cells. Normal cells have 
lower ROS content and the ROS level increases in cancer cells for inducing 
tumorigenesis. However, anticancer agents induce apoptosis through ROS 
generation and prolonged treatment of the same drug reduces ROS level to 
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for ‘combinational chemotherapy’. ROS level could be modulated in 
several ways: 

i) by targeting mitochondrial ROS generation and maintenance, 
such as, optimal concentration of catalase inhibitor, 
3-aminotriazole (3-AT) could increase ROS level in the 
cell [30]. Copper chelating complex, casiopeinas induce 
mitochondrial damage and increase ROS generation in lung 
cancer cells, eventually lead to apoptosis [45]. 

ii) by modulating ROS regulatory genes, such as, NFE2L2 or 
KEAP1 have significant impact in modulating ROS level, thus 
could be helpful for overcoming drug resistance. The function 
of these target proteins could be impaired by designing or 
screening small molecules. SiRNA or triplex oligo mediated 
gene silencing could also be useful for knocking down 
antioxidant genes that would elevate ROS level in the cell. 
Efficient delivery of oligo through lipoplexes and polyplexes 
has recently been developed to be useful for efficient gene 
silencing [46]. Systematic knockdown of KEAP1 by siRNA 
confers resistance to carboplatin treated epithelial ovarian 
cancer cells [32]. However, it is not known whether KEAP1 
downregulation overcomes complete resistance in these 
cells. It would be worthwhile to modulate other antioxidant 
regulatory genes upstream of NFE2L2 such as ARHGEF6, 
p53, MAPK8, CDK6 or CYR61 to overcome complete drug 
resistance in cancer cells. It would also be useful for combined 
manipulation of several genes that would be necessary for 
overcoming complete resistance in drug treated cancer cells. 
As most cancers share common pathways for antioxidant 
regulation to induce apoptosis, these strategies could be useful 
for developing advanced chemotherapy for many cancers. 

iii) by direct delivery of ROS into tumor cells through designing 
nanoparticles conjugated with ROS generating enzymes that 

increases ROS level in cancer cells and induces apoptosis [47]. 

In summary, I discussed here that tumorigenesis depends on the 
level of ROS in the cell and that positive ROS signaling is necessary 
during initial tumor development. Advanced tumor cells try to lower 
ROS level through the NFE2L2-KEAP1 antioxidant system. Anticancer 
agents induce apoptosis in most of the cancer cells through excess 
ROS generation by activating a few master genes which act upstream 
of antioxidant system maintaining genes, such as NFE2L2-KEAP1. 
Prolonged treatment with the same drug reduces ROS level in resistant 
cells and confer resistance to the drug. A set of master regulatory genes 
controls the ROS level in drug resistance cancer cells and reduces 
the ROS level to confer drug resistance. Manipulating these master 
regulatory genes could help to overcome drug resistance in most of the 
cancer cells. 
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