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Introduction
Organic light-emitting diodes (OLEDs) have received considerable 

interest due to their promising applications in the large-area flat-panel 
displays and solid-state lighting [1-6]. The devices using organic materials 
have shown several advantages over their inorganic counterparts, for 
example, light weight, potentially low cost, capability of thin-film, large-
area, and flexible device fabrication, and wide selection of emission 
colors via molecular design of organic materials. However, the lower 
efficiency of OLEDs is a thorny obstacle to the application of efficient 
light-emitting devices. Since the first report on OLEDs in 1987, the light 
generation efficiencies of OLEDs have been steadily increased by using 
novel materials and the different device structures [7-9]. Unfortunately, 
most OLEDs emitters are still not satisfactory. Therefore, the design and 
synthesize for new emitting materials with high efficiency and thermal 
stability remain one of the most active areas of the studies. A number of 
studies demonstrate that the interplay between theory and experiment 
is capable of providing useful insights into the understanding of the 
the nature of molecules [10,11]. Among the various kinds of OLEDs 
materials, 1,8-naphthalimide (NI) derivatives usually exhibit strong 
fluorescence and good photostability [12-14]. They have been widely 
used as the most important materials for fabrication of OLEDs. 
Furthermore, NI derivatives have high electron affinity and excellent 
transport property due to the existence of an electron-deficient centre. 
Thus, NI derivatives have been extensively applied in many fields such 
as coloration and brightening of polymers [15], potential photosensitive 
biologically units [16], fluorescent markers in biology [17], light 
emitting diodes [18,19], fluorescence sensors and switchers [20], and 
electroluminescent materials [21]. A large variety of auxochromic 
groups in NI derivatives may be easily grafted to fine tune the 
absorption and emission wavelengths. Naphthalimides comprise a class 
of fluorophore whose electronic absorption and emission depend upon 
the properties of the surrounding medium. The emission spectrum 
can be tuned by introducing different electron-donating substituent 
groups, such as N-substituted groups [22], C-substituted groups [23], 
and O-substituted groups [24]. Furthermore, substitution of electron-
donating groups usually increases the intensity of the fluorescence 

emission, particularly when a methoxy or amino group at C-4 position 
is used. Recently, some starburst amorphous molecules 1,3,5-Tris(1,8-
naphthalimide-4-yl)benzenes have been reported [25]. It was found that 
the devices using these molecules performance are better than using the 
most prevalent tris(8-quinolinato)aluminum (Alq3) as a counterpart.

With the above considerations, in this work, we investigated a series 
of star-shaped molecules with benzene as core and NI derivatives as end 
groups for OLEDs applications (Scheme 1). An in-depth interpretation 
of the optical and electronic properties of these compounds has been 
presented. Several derivatives (1–6), as shown in Scheme 1, have been 
designed to provide a demonstration for the rational design of novel 
luminescent and charge transporting materials for OLEDs (Scheme 1).

Computational Methods
All calculations have been performed using Gaussian 09 code 

[26]. Generally, the B3LYP method appeared notably adapted to NI 
derivatives [27-31]. Therefore, The geometry optimization of designed 
molecules in ground states (S0) were carried out by the B3LYP method 
using the 6-31G(d,p) basis set. The corresponding geometry in the first 
excited singlet state (S1) were optimized using the TD-B3LYP with 
6-31G (d,p) basis set. The harmonic vibrational frequency calculations
using the same methods as for the geometry optimizations were
used to ascertain the presence of a local minimum. The absorption
and fluorescent properties of 1–6 have been predicted using the
TD-B3LYP/6-31G(d,p) method based on the S0 and S1 optimized
geometries, respectively. To investigate the influence of solvents on
the optical properties for the S0 and S1 states of the molecular systems
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in chloroform (dielectric constant: 2.0906) solvent, we performed the 
polarized continuum model (PCM) [32] calculations at the TD-DFT 
level.

The stability is a useful criterion to evaluate the nature of devices 
for charge transport and luminescent materials. To predict the stability 
of 1–6 from a viewpoint of conceptual density functional theory, 
the absolute hardness, η, of 1–6 were calculated using operational 
definitions [33,34] given by:

2

2
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2 2 2
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N N
µη
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Where, μ is the chemical potential and N is the total electron 
number. In this work, the values for IP (ionization potential) and EA 
(electron affinity) were determined according to the equation IP = Ecr 
- Ep and EA = Ep - Ear, where p, cr, and ar indicate the parent molecule 
and the corresponding cation and anion radical generated after electron 
transfer.

Results and Discussion
Frontier molecular orbitals

To characterize the optical transitions and the abilities of electron 
and hole transport, it is useful to examine the frontier molecular orbitals 
(FMOs) of the compounds under investigation. The origin of the 
geometric difference introduced by excitation can be explained, at least 
in qualitative terms, by analyzing the change in the bonding character 
of the orbitals involved in the electronic transition for each pair of 
bonded atoms. An electronic excitation results in some electron density 
redistribution that affects the molecular geometry [35]. We calculated 
the distribution patterns of FMOs for 1–6 in S0 (Figure 1). The total 
and partial densities of states (TDOS and PDOS) on each fragment 
of the investigated molecules around the HOMO – LUMO gaps were 
calculated based on the current level of theory. The FMOs energies 
EHOMO and ELUMO, HOMO – LUMO gaps, and the contributions of 
individual fragments (in %) to the FMOs of 1–6 are given in Table 1. As 
shown in Figure 1, the S0 → S1 excitation process can be mainly assigned 
to the HOMOs → LUMOs and HOMOs-1 → LUMOs transitions, which 

correspond to a π–π* excited singlet state. For 1, 2, and 5, the HOMOs 
are distributed on the 1,8-naphthalimide (NI) and benzene (BZ) 
moieties, with minor contributions from N-substituent groups (SG). 
The sum contributions of NI and BZ fragments of HOMOs are larger 
than 97.2%, while the corresponding contributions of SG fragments 
are within 2.8%, respectively. For 3 and 6, the HOMOs are mainly 
localized on the SG fragments with only minor contributions from 
NI and BZ fragments. The contributions of SG fragments of HOMOs 
are larger than 95%, while the corresponding sum contributions of NI 
and BZ fragments are within 4.9%, respectively. For 4, the HOMOs 
are distributed on the NI and SG fragments, with minor contributions 
from BZ fragment. However, the LUMOs of 1–6 are mainly composed 

Scheme 1: Geometries of Designed Molecules 1–6.

Figure 1: Electronic density contours of the frontier molecular orbitals for 
investigated derivatives.
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of contributions of NI, with minor contributions from SG and BZ 
fragments. The contributions of NI fragments of LUMOs are larger 
than 92.6%, while the corresponding sum contributions of SG and BZ 
fragments are within 7.4%, respectively. 

The distribution patterns of the FMOs also provide a remarkable 
signature for the charge-transfer character of the vertical S0 → S1 
transition. Analysis of the FMOs indicates that the excitation of the 
electron from the HOMO to LUMO leads the electronic density to 
flow mainly from the SG and BZ fragments to NI fragments for 1, 2, 
4, and 5. The percentages of charge transfer are the differences between 
the contributions of fragments for LUMOs and the corresponding 
contributions for HOMOs in the compounds under investigation. 
The percentages of charge transfer from SG and BZ fragments to NI 
fragments are 7.2, 8.2, 39.2, and 9.1%, respectively. On the contrary, for 
3 and 6, the excitation of the electron from the HOMO to LUMO leads 
the electronic density to flow mainly from SG fragments to BZ and NI 
fragments. The percentage of charge transfer of 3 and 6 are 95.1 and 
98.1%, respectively.

Another way to understand the influence of the optical and 
electronic properties is to analyze the EHOMO, ELUMO, and Eg values. From 
Table 1, one can find that the EHOMO values of 2, 4, and 5 decreases, 
while the corresponding value of 3 and 6 increase compared with 
that of 1. The HOMOs energies are in the order of 3 > 6 > 1 ≈ 2 > 5  
4. However, the values of ELUMO and HOMO–LUMO gaps Eg for 2–6 
decrease compared with those of 1. The sequence of LUMOs energies 
is 1 ≈ 2 ≈ 5 > 3  6 > 4. The Eg values are in the order of 1 ≈ 2 ≈ 5 > 4  3 
> 6. It implies that the introduction of different donor groups to the 1 
leads to the change of the EHOMO, ELUMO, and Eg values for its derivatives. 

The absorption and fluorescence spectra can be tuned by donor groups, 
providing a powerful strategy for prediction of the optical properties of 
novel electroluminophores.

Absorption and Fluorescence Spectra
The absorption λabs and fluorescence λfl wavelengths, main 

assignments, and the oscillator strength f for the most relevant singlet 
excited states in each molecule are listed in Tables 2 and 3, respectively. 
The λabs and λfl values of 1 are all in agreement with experimental results 
[25], the deviations are 5 and 25 nm, respectively. The Stokes shift of 1 
is 36 nm, which is comparable to the experimental 66 nm. Thus, this 
result credits to the computational approach, so appropriate electronic 
transition energies can be predicted at these levels for this kind of 
system.

For the absorption spectra, the excitation to the S1 state corresponds 
mainly to the HOMO-1 → LUMO for 1, while the corresponding 
excitations for 2–6 correspond mainly to the HOMOs → LUMOs and 
HOMOs → LUMOs+1 and/or HOMOs → LUMOs + 2. From Table 2, 
one can find that the λabs values of 1–6 are almost equal to that of 1. 
It suggests that the substituent effects do not significantly affect the 
absorption spectra of 2–6 compared with those of 1. Moreover, 2–6 
have nearly equal values of oscillator strengths, being smaller slightly 
than the value of 1. The oscillator strength for an electronic transition is 
proportional to the transition moment [36]. In general, larger oscillator 
strength corresponds to larger experimental absorption coefficient 
or stronger fluorescence intensity. This implies that these bipolar 
molecules shown large absorption intensity.

For the fluorescence spectra, the HOMO ← LUMO+1 and HOMO-
1 ← LUMO excitations play a dominant role for 1. The fluorescence 
peaks of 2, 3, and 5 are mainly correspond to HOMOs-1 ← LUMOs 
excitations. The λfl value of 2 is almost equal to that of 1, while the λfl 
values of 3–6 show bathochromic shifts 5, 27, 8, and 53 nm compared 
with that of 1, respectively. The Stokes shifts of 3–6 are 41, 58, 44, and 
86 nm, respectively. Furthermore, the f values 2–6 are almost equal 
to that of MEBN, corresponding to strong fluorescence spectra. This 
implies that 2–6 have large fluorescent intensity and they are promising 
luminescent materials for OLEDs. As shown in Table 3, it clearly 
shows that the substituent groups can affect the fluorescence spectra 
of these molecules. The emissions color of molecules can be tuned by 
the N-substituent groups. Furthermore, all the substituted derivatives 
show stronger fluorescence intensity (Tables 2 and 3).

HOMO LUMO
Species EHOMO NIa BZb SGc ELUMO NI BZ SG Eg

1 -6.54 85.5 14.4 0.1 -2.69 92.7 7.3 0.0 3.85
2 -6.54 84.4 14.2 1.4 -2.69 92.6 7.4 0.0 3.85
3 -6.41 4.9 0.0 95.1 -2.77 93.0 7.0 0.0 3.64
4 -6.81 53.6 8.5 37.9 -3.02 92.8 6.9 0.2 3.79
5 -6.59 83.8 13.4 2.8 -2.74 92.9 6.9 0.2 3.85
6 -6.44 1.9 0.1 98.1 -2.87 92.9 7.1 0.0 3.57

a NI: 1,8-naphthalimide moieties; b BZ: benzene moieties; c SG: substituent groups
Table1: The FMOs Energies EHOMO and ELUMO, HOMO–LUMO gaps (eV), and 
HOMOs and LUMOs Contributions (%) of 1–6.

Species λab f Assignment

1 365 0.85 HOMO-1 → LUMO (0.70)
HOMO-1 → LUMO+2 (0.12)

2 365 0.62
HOMO → LUMO (-0.31)

HOMO → LUMO+1 (-0.32)
HOMO-1 → LUMO (0.43)

3 365 0.52 HOMO → LUMO (0.60)
HOMO → LUMO+2 (0.14)

4 370 0.60 HOMO → LUMO (0.59)
HOMO → LUMO+2 (0.12)

5 365 0.57 HOMO → LUMO (0.58)
HOMO → LUMO+1 (0.17)

6 368 0.59
HOMO → LUMO (0.45)

HOMO → LUMO+1 (0.20)
HOMO → LUMO+2 (0.22)

Expa 360
a Experimental data for 1 in chloroform [25].
Table 2: The absorption wavelengths λabs (in nm), the oscillator strength f, and 
main assignments (coefficient) of 1–6 in chloroform obtained at the TD-B3LYP/6-
31G(d,p)//B3LYP/6-31G(d,p) level, along with available experimental data.

Species λflu f Assignment

1 401 0.76 HOMO ← LUMO+1 (0.55)
HOMO-1 ← LUMO (-0.43)

2 399 0.83 HOMO ← LUMO+1 (-0.49)
HOMO-1 ← LUMO (0.49)

3 406 0.52 HOMO-1 ← LUMO (0.67)
HOMO-2 ← LUMO (0.14)

4 428 0.59 HOMO ← LUMO+4 (0.47)
HOMO ← LUMO+3 (0.34)

5 409 0.70 HOMO ← LUMO+5 (0.56)
HOMO-1 ← LUMO (-0.40)

6 454 0.50 HOMO ← LUMO+1 (-0.41)
HOMO-1 ← LUMO (0.67)

Expa 426
a Experimental data for 1 in chloroform [25].
Table 3: The fluorescence wavelengths λflu (in nm), the oscillator strength f, and 
main assignments (coefficient) of 1–6 in chloroform obtained at the TD-B3LYP/6-
31G(d,p)//TD-B3LYP/6-31G(d,p) level, along with available experimental data.
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Charge Transport Properties
The charge transfer rate can be described by Marcus theory [37,38] 

via the following equation:






−





= TkTk

VK
BB 4exp)(

2
1

2 λ
λ

π


                                                 (2)

Where, T is the temperature, kB is the Boltzmann constant, λ 
represents the reorganization energy due to geometric relaxation 
accompanying charge transfer, and V is the electronic coupling matrix 
element (transfer integral) between the two adjacent species dictated 
largely by orbital overlap. It is clear that two key parameters are the 
reorganization energy and electronic coupling matrix element, which 
have a dominant impact on the charge transfer rate, especially the 
former. 

For the reorganization energy λ, they can be divided into two 
parts, external reorganization energy (λext) and internal reorganization 
energy (λint). λext represents the effect of polarized medium on charge 
transfer, which is quite complicated to evaluate at this stage. λint is a 
measure of structural change between ionic and neutral states [39,40]. 
Our designed molecules are used as charge transport materials for 
OLEDs in the solid film; the dielectric constant of the medium for the 
molecules is low. The computed values of the external reorganization 
energy in pure organic condensed phases are not only small but also are 
much smaller than their internal counterparts [41,42]. Moreover, there 
is a clear correlation between λint and charge transfer rate in literature 
[43,44]. Therefore, we mainly study the λint of the isolated active organic 
π-conjugated systems owing to ignoring the environmental changes 
and relaxation in this work. Hence, the λe and λh can be defined by 
equations (3) and (4): [45]

( ) ( )0
0

0
0e E E E Eλ − −

− −= − + −                                                           (3)

( ) ( )0
0

0
0h E E E Eλ + +

+ += − + −                                                              (4)

Where, 0E + ( 0E − ) is the energy of the cation (anion) calculated 
with the optimized structure of the neutral molecule. Similarly, E +

+ (
E −

− ) is the energy of the cation (anion) calculated with the optimized 
cation (anion) structure, 0E + ( 0E − ) is the energy of the neutral molecule 
calculated at the cationic (anionic) state. Finally, 0

0E  is the energy of the 
neutral molecule in ground state. For comparing with the interested 
results reported previously [46,47], the reorganization energies for 
electron (λe) and hole (λh) of the molecules were calculated at the 
B3LYP/6-31G (d,p) level on the basis of the single point energy.

The calculated reorganization energies for hole and electron are 
listed in Table 4. It is well-known that, the lower the reorganization 
energy values, the higher the charge transfer rate [37,38]. The 
results displayed in Table 4 show that the calculated λe values of 1–6 
(0.110 – 0.180 eV) are larger than that of tris(8-hydroxyquinolinato)
aluminum(III) (Alq3) (λe = 0.276 eV), a typical electron transport 
material [46]. It indicates that their electron transfer rates might be 
higher than that of Alq3, suggesting that 1–6 could be good electron 

transfer materials from the stand point of the λe values. On the other 
hand, the calculated λh values of 2–6 (0.292 – 0.328 eV) are larger than 
that of N,N’-diphenyl-N,N’-bis(3- methylphenyl)-(1,1’-biphenyl)-4,4’-
diamine (TPD), which is a typical hole transport material (λh = 0.290 
eV) [47]. It indicates that their whole transfer rates might be lower than 
that of TPD. It indicates that 1–6 can be used as promising electron 
transport materials in OLEDs from the stand point of the smaller 
reorganization energy.

As the stability is a useful criterion to evaluate the nature of devices 
for charge transport and luminescent materials. The absolute hardness 
η is the resistance of the chemical potential to change in the number of 
electrons. As expected, inspection of Table 4 reveals clearly that the η 
values of 2–6 are almost equal to that of values of 1. These results reveal 
that the different π-conjugated bridges do not significantly affect the 
stability of these bipolar molecules.

Conclusions
In this paper, a series of star-shaped molecules with benzene core 

and naphthalimides derivatives end groups have been systematically 
investigated. The FMOs analysis have turned out that the vertical 
electronic transitions of absorption and emission are characterized as 
intramolecular charge transfer (ICT). The calculated results show that 
their optical and electronic properties are affected by their substituent 
groups in N-position of 1,8-naphthalimide. The study of substituent 
effects suggest that the λabs values of 2–6 are almost equal to that of 
the parent compound 1, while the λfl of 2–6 show bathochromic shifts 
compared with that of 1. Furthermore, 2–6 have large fluorescent 
intensity. The different substituent groups do not significantly affect the 
stability of these molecules. Our results suggest that 2–6 are expected 
to be promising candidates for luminescent materials and electron 
transport materials for OLEDs.
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