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Introduction
Water cycling and fluid processes in subduction zones have been 

studied based on various observational, experimental and theoretical 
approaches. Stability fields of hydrous minerals in the subducting 
slabs, which have been constrained by the high-pressure experiments 
and thermodynamic estimates [1,2] are thought to primarily control 
the fluid supply at depth. Migration and re-distribution of the slab-
derived fluids (hereafter referred to as slab-fluid) has been predicted by 
numerical modeling [3-5]. Existence of such fluids has been examined 
by seismic studies along the subducting slabs and within the overlying 
mantle wedge [6,7], and by petrological studies of arc magmas that 
fingerprint the geochemical characteristics of slab-derived fluids 
[8,9]. Relatively well-constrained trace element behaviors upon slab 
dehydration [10-12], as well as heavy isotope tracers (such as Sr, Nd and 
Pb isotopic ratios) that are not fractionated through the processes of 
subduction and dehydration, have been utilized to successfully quantify 
the amount and composition of slab-fluids [13-15].

In addition to these constraints on the fluid processes in subduction 
zones from the deep side (i.e., dehydration of subducted slabs), several 
evidences have been accumulated from the surface side, including 
studies on fluid inclusions in volcanic phenocrysts and pluton-
metamorphic rocks [16-18], and thermal waters and gases [19]. Within 
this context, the Arima-typebrine, which is a type of non-volcanic hot 
spring water with high chlorine content (~40000 ppm) and oxygen-
hydrogen isotopic ratios similar to magmatic/metamorphic thermal 
waters [20], has been argued to have originated from deep-seated brine 
[20-22]. The Arima-type brine may provide in valuable information 
concerning a slab-fluid in a fore-arc region where no magmatic 
information is available [23,24]. High 3He/4Heratios and large fault 
zones associated with the Arima-type brine suggest their deep origin, 
e.g., in the subducting slab and/or the mantle [25-27].

However, in order to discuss the origin of Arima-type brine,
in particular its connection to the slab-fluid, better geochemical 
characterization is required, including Sr-Nd-Pb isotopic analyses 
which have not been done so far. This study aims mainly at 
developing an analytical method for the brine, including rare earth 
element abundances and 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb 

and208Pb/204Pb ratios. High salinity and low abundances of the target 
elements and isotopes (except for Sr) in the brine require specific 
analytical procedures to be developed. Based on the newly obtained 
data, we then briefly discuss the relationship between the slab-fluid and 
the Arima-type brine. 

Geological Setting of the Studied Area
The Arima hot springs, a typical locality of the Arima-type brine, 

are located in the southwest Japan arc (Figure 1a), where two oceanic 
plates, the Pacific plate and the Philippine Sea plate, subduct beneath 
the area from the east with a velocity of 9 cm/year for the former and 
from the southeast with a velocity of 4 cm/year for the latter. The depth 
of the slab surface beneath the Arima area is ~400 m for the Pacific slab, 
whereas 50 to 80 km with a large uncertainty for the Philippine Sea slab 
[28,29]. In spite of the active subduction, a Quaternary volcano is not 
formed here because the Pacific slab is too deep and the Philippine Sea 
slab is too shallow (Figure 1a) to fulfill the physiochemical conditions 
for arc magma generation [30].

In southwest Japan, there are many faults striking in NW-SW or 
NW-SE slipping dextrally associated with the Median Tectonic Line 
[31]. The Arima-Takatsuki Tectonic Line (ATTL in Figures 1a and 
Figure 1b) is one of these strike-slip faults that have formed in the 
latemid-Miocene [31]. The average slip rate for the eastern range-front 
segment of the tectonic line is estimated to be 0.5- 1.5 mm/year dextrally 
and 0.1-0.8 mm/year vertically during the late Quaternary period [32]. 
As shown in the geological map of this area (Figure 1b), the basement 
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around the Arima area is composed of late Cretaceous felsic volcanic 
rocks (rhyolite) of the Arima Group, granitic rocks (Rokko Granite), 
and late Eocene to early Oligocene non-marine sedimentary rocks with 
rhyolitic tuff layers of the Kobe Group [33]. The Arima Group directly 
covers the Rokko Granite in the south of ATTL and the sedimentary 
rhyolitic rocks in the north of ATTL in the Arima area [34].

The Arima-type brines occur typically in the Arima area, as well 
as the Osaka and Kii areas broadly in the Kinki region of southwest 
Japan. In the Arima area, the brines seem to upwell through ATTL 
and the subsidiary faults [35], with at least seven hot spring sources, 
i.e., Ariake, Gosha, Gokuraku, Kinsen, Tansan, Tenjin, and Uwanari. 
These hot spring waters exhibit a wide compositional range, which can 

be explained by mixing of two types of meteoric waters and a “deep 
brine” component [21,22]. The deep brine component is characterized 
by high solute concentrations (i.e., high Na, Cl, K, etc.), distinct from 
the meteoric waters. Based on the high salinity, we focus on the hot 
spring water from “Ginsuiso Kinsen” with ~40000 mg/L Cl from a 
600 m depth pipe [23], which is composed primarily of the deep brine 
component, and analyze its composition for REEs and isotopic ratios 
as below.

Chemical Analysis
Sample description

The “Kinsen” water sample, together with other spring waters in 

450

130° 140° 150°

30°

38°

46°

NE Japan

Central Japan

Kurile

Izu-Bonin

Ryukyu

Kurile
 Trench

Ja
pa

n 
Tr

en
ch

Iz
u-

 B
on

in
 T

re
nc

h

Nankai Trough

Ryu
ky

u 
Tr

en
ch

Shikoku Basin

Kyusyu Palau Ridge

Nishi - Schito Ridge

Pacific Plate
130~140 Ma

Philippine Sea Plate

> 50 Ma 15~27 Ma 40 Ma

40
0 

km

30
0 

km

20
0 

km

100 km

80
 k

m
60

 k
m

20
 k

m

40
 k

m

10
0 

km

100 km

20 km
40 km
60 km

80 km

8~9 cm/y

3~4 cm/y

50
0 

km

ISTL

MTL

ATTL

Figure 1: Tectonic and geologic maps of the Arima area. (a) the map showing distribution of the Quaternary volcanoes (red circles) and geometry of the subducting 
Pacific and Philippine Sea slabs, with Itoigawa-Shizuoka Tectonic Line (ISTL) and Median Tectonic Line (MTL). The pinkish contour lines indicate the depth of the upper 
surface of Pacific slab (50 to 300 km depth with 50 km interval), while the purplish contour lines indicate that of Philippine Sea slab (10 to 200 km depth with 10 km 
interval). The aseismic parts are shown by the dotted line. (b) The geologic map around the Arima area after Maruyama et al. [31].
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the Arima area, was collected in December 2010, directly from the 
well pipe before the water is pooled in an approximately 3×3×3 m 
tankto be oxidized and colored ‘gold (Kin-iro)’ for commercial use. 
Our sample water is visibly colorless, implying that it is less oxidized 
and has a lower propensity to precipitate the solutes. Kusuda et al. [23] 
have analyzed “Ginsuiso Kinsen” sample (which is the same brine with 
“Kinsen”, although the sampling date is different), 12 solute elements/
components and isotopic ratios of H, He, C, O: e.g., ~40000 mg/L Cl, 
~20000 mg/L Na, 51.0 mg/L Li, δ18O=5.0‰, δD=-34.1‰, which is 
close to the estimated “deep brine” composition on the tritium-free 
basis [21-23].

Analytical method for rare earth element composition in 
high salinity brine

The high salinity and solute concentrations in the brine may disturb 
quantitative analyses of the rare earth elements due to the matrix effect. 
Moreover, in several water samples, there are some visible particles (or 
un dissolved materials). Accordingly, for determining the precise REEs 
composition, we have tested several preparation procedures as follows:

(1) raw and filtrated brine samples were first dried up, respectively. 
The condensed materials were chemically digested in the same 
way as the dissolution of silicate rocks after Yokoyama et al., 
and then diluted with HNO3 suitable for ICP-MS analysis.

(2) raw and filtrated brine samples were centrifuged, and their 
supernatant liquids were pretreated straight for ICP-MS 
analysis; whereas, the precipitates were chemically digested in 
the same way as above, and then pretreated with HNO3 for ICP-
MS analysis.

The ICP-MS analysis was conducted at the Department of Earth 
and Planetary Sciences, Tokyo Institute of Technology. In order to 
quantify the matrix effect due to high salinity, we synthesized thirty 
standard solution samples with the NaCl concentration from 0.0 to 5.0 
wt.% with 0.5% increment, and the REEs concentration of 0, 0.1, 1 ppb 
by adding the standard solution XSTC-1 (SPEX CertiPrep Co. Ltd.). 
All the combination of NaCl and REEs abundances have been analyzed 
by ICP-MS under the same tuning condition. The results show linear 
correlations between the REEs concentration and the signal intensity (in 
count per second (cps) unit) for each NaCl concentration from 0 to 5% 
(Figure 2). The results also show that the intensity drastically decreases 

when the NaCl concentration exceeds 1% (Figure 2). Accordingly, we 
have diluted the unknown samples of 0.2 mL with 1.7 mL pure water, 
and have applied the standard addition method with addition of XSTC-
1 (0.1 ml) by 0, 0.1, 1 and 10 ppb to the diluted sample. As a result, the 
final diluted sample contained ~0.6 wt% NaCl.

In Figure 2, even for a specific NaCl content, a slight (less than ~5%) 
deviation from the perfect linear relation is recognized, indicating a 
complex matrix behavior that may also depend on the concentration 
of the target element. We therefore have performed ICP-MS analysis 
with the standard addition method using three combinations of XSTC-
1 concentrations ((I) 0-1 ppb, (II) 0.1-1 ppb and (III) 0.1-10 ppb). As 
will be shown, the results show good reproducibility, confirming a weak 
nonlinear matrix effect when NaCl content is relatively low. It should 
be noted that Eu was not quantitatively measured due to significant 
interference from Ba oxide, which unfortunately prevents us from 
discussing the Eu anomaly.

Heavy isotopic composition in high salinity brine

We have analyzed the isotopic compositions of Sr, Nd and Pb 
(87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb and208Pb/204Pb ratios) for 
the “Kinsen” brine. The target elements, i.e., Sr, Nd and Pb, have been 
extracted and separated from the brine sample by a co-precipitation 
method with iron (III) hydroxide (Figure 3). First, a sufficient quantity 
of highly purified and concentrated HNO3 is added to the sample to 
dissolve, any existing precipitates (Figure 3a). Then, highly concentrated 
aqueous ammonia is added to neutralize the sample. When pH is 
between 7 and 8, some visible but dispersed precipitates occur, after 24 

 

Figure 2: Matrix effect of brine in ICP-MS measurement. Intensity (count per 
second) of ICP-MS measurement of La in synthetic standard solutions (0, 0.1 
and 10 ppm) as a function of NaCl content (0.0 - 5.0% with 0.5% interval). The 
inset shows a magnified view near the origin.
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Figure 3: Summary of pretreatment method for isotope analysis. (a) a 
brine sample added with concentrated original HNO3 solution to dissolve all 
ingredients. (b) minor visible and dispersed precipitation occur after adding 
ammonia solution at pH 7-8. (c) the dried-up sample of the precipitate of (b). 
(d) the final solution.
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hours which form a deposit that contains rare earth elements (Figures 3b 
and 3c). The recovery percentage of this method is more than 95% [36]. 
We have successfully obtained approximately 0.3 g precipitate from 500 
ml brine. We dissolve the precipitate with HNO3 (7M) (Figure 3d) [37] 
from which Sr, REEs and Pbare extracted by column separation (Figure 
4). The extracted Sr, Nd and Pb werefinally analyzed by MC-ICP-MS 
installed at Earthquake Research Institute, The University of Tokyo.

Results and Discussions
REEs pattern of Arima brine

The results are listed in Table 1 and plotted in Figure 5a as 
compositional patterns normalized by depleted MORB mantle (DMM). 
The REEs abundances of the “Kinsen” brine (three lines with bluish 

colors) are approximately three times lower than those of DMM, and 
show a flat pattern with a slight increase to both the left for light REEs 
and the right for heavy REEs. The results are fairly consistent with those 
from the previous study, shown as a black line in Figure 5a [38], in 
terms of the overall level and a slight increase towards the left for light 
REEs, although the previous result shows a slight decrease from middle 
to heavy REEs.

We now compare the results with the REEs abundances of possible 
“deep brine”, in particular the slab-fluids, and examine whether the 
slab-fluids could be a source of deep brine. Figures 5b and 5c show 
estimated REEs compositions of aqueous fluids dehydrated from the 
major constituent materials of a subducting slab: i.e., altered oceanic 
basaltic crust (AOC) and sediment. In Figure 5b, the REEs abundances 
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Figure 4: Flow chart of separation method for isotope analysis.
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of AOC-derived fluids (“PHS” derived from the Philippine Sea slab 
and “PAC” from the Pacific slab) beneath volcanic arc exhibit high 
concentrations [39], whereas those dehydrated at lower temperatures 
beneath the fore-arc region exhibit significantly lower abundances due 
to the large temperature dependence of partition coefficient between 
fluid and residual solid [12,15,40].

Likewise, the estimated REEs compositions of the sediment-

derived fluids beneath the volcanic region exhibit high concentrations 
(Figure 5c) [39]. However, unlike the AOC system, the temperature 
dependence of partition coefficients between fluid and sediment is 
not well constrained. Therefore, we assume that, with a temperature 
decrease, the same degree of REEs concentration reduction occurs in 
the sediment system (Figure 5c) as in the basaltic system (Figure 5b). 
This is a crude assumption, and these results (shown by dotted lines in 

Analyzed abundance in Figure 
5(a) (ppb) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Kinsen(i) 0.9294 0.9744 0.1157 0.5044 0.3272 - 0.5618 0.087 0.6556 0.1491 0.5306 0.0753 0.6393 0.1154
Kinsen(ii) 0.8872 0.986 0.1379 0.4779 0.3224 - 0.5676 0.1206 0.6779 0.1809 0.4995 0.0996 0.5758 0.1435
Kinsen(iii) 0.7629 0.8493 0.0915 0.4096 0.2542 - 0.456 0.0774 0.566 0.1301 0.4093 0.0554 0.4725 0.0953
Calculated abundance in Figure 
5(b,c) (ppm) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

AOC-derived fluid (PAC) 151.36 414.95 61.435 242.5 38.134 8.4499 22.231 1.8234 20.621 3.8322 5.339 - 7.1975 0.58
AOC-derived fluid (PHS) 232.71 572.69 74.414 264.01 38.134 8.2564 20.817 1.3685 18.401 2.7819 4.405 - 5.9307 0.48
sediment-derived fluid (PAC) 230.08 362.17 85.083 323.08 44.178 10.018 48.357 5.8506 43.223 2.8905 16.724 1.1356 13.7 2.0647
sediment-derived fluid (PHS) 62.399 120.05 - 295.5 6.908 1.4089 6.1252 0.87162 4.5372 - 1.8066 - 3.4 0.5368
Estimated abundance in figure 
5 (b,c) (ppb) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

AOC-derived fluid (PHS) at 360 0.0061 0.0106 - 0.0258 0.0093 0.0039 0.0138 - 0.0849 - 0.0879 - 0.0911 0.0251
AOC-derived fluid (PHS) at 400 0.0444 0.0746 - 0.1396 0.0438 0.0171 0.057 - 0.2477 - 0.2198 - 0.2173 0.0548
AOC-derived fluid (PHS) at 450 0.3905 0.6343 - 0.8844 0.2398 0.0858 0.269 - 0.7991 - 0.5996 - 0.5625 0.129
AOC-derived fluid (PHS) at 510 3.6742 5.7647 - 5.9399 1.3845 0.4521 1.3336 - 2.6747 - 1.688 - 1.5002 0.3119
AOC-derived fluid (PHS) at 600 59.511 89.436 - 63.279 12.221 3.5623 9.7439 - 11.997 - 6.1057 - 5.074 0.9335
sediment-derived fluid (PHS) 
at 360 0.0001 0.0001 - 0.0006 0 0 0 - 0.0001 - 0.0001 - 0.0001 0

sediment-derived fluid (PHS) 
at 400 0.0005 0.0005 - 0.0033 0.0001 0 0.0001 - 0.0002 - 0.0001 - 0.0002 0.0001

sediment-derived fluid (PHS) 
at 450 0.004 0.0046 - 0.0211 0.0004 0.0001 0.0003 - 0.0007 - 0.0003 - 0.0006 0.0001

sediment-derived fluid (PHS) 
at 510 0.0373 0.0414 - 0.1416 0.0025 0.0005 0.0017 - 0.0022 - 0.001 - 0.0017 0.0003

sediment-derived fluid (PHS) 
at 600 0.6038 0.6429 - 1.508 0.022 0.0039 0.0123 - 0.01 - 0.0035 - 0.0056 0.001

Compiled data used in Figure 
5 (ppb) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Kinsen_Ginsuiso [38] 0.87 1.3 0.16 0.7 0.25 0.04 0.51 0.11 0.91 0.21 0.66 0.092 0.54 0.078
river water [41] - 0.204 - 0.392 0.098 0.0045 0.108 - 0.0907 - 0.0458 - 0.039 0.006
river water [41] - 0.0688 - 0.177 0.0437 0.0024 0.0607 - 0.0631 - 0.0356 - 0.0267 0.0037
river water [41] 0.024 0.0062 - 0.0373 0.0101 0.0016 0.0179 - 0.0275 - 0.0345 - 0.0511 0.0124
river water [41] 0.0407 0.0202 - 0.0346 0.00638 0.00068 0.00612 - 0.00606 - 0.00315 - 0.00309 0.00051
river water [41] 0.205 - - 0.189 0.0364 0.0038 0.0382 - 0.0325 - 0.0198 - 0.0131 0.0018
river water [41] 0.405 0.0228 - 0.0326 0.00635 0.00069 0.00652 - 0.00698 - 0.00662 - 0.0108 0.0019
river water [41] 0.0282 0.00791 - 0.0351 0.0074 0.0011 0.0121 - 0.0152 - 0.0204 - 0.0351 0.0082
river water [41] 0.0445 0.0127 - 0.034 0.00698 0.0009 0.00718 - 0.00621 - 0.00452 - 0 0.00066
river water [41] 0.049 0.00388 - 0.0325 0.0054 0.00083 0.00574 - 0.00524 - 0.00422 - 0.00398 0.00071
river water [41] 0.316 0.951 - 0.466 0.081 0.0096 0.0959 - 0.0827 - 0.0447 - 0.042 0.00634
river water [41] 0.513 0.171 - 0.54 0.121 0.0101 0.115 - 0.0979 - 0.0737 - 0.0975 0.0157
DMM (ppm) 0.192 0.55 0.107 0.581 0.239 0.096 0.358 0.07 0.505 0.115 0.348 0.06 0.365 0.058
Mixed fluid in Figure 6 (ppb) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
among slab-derived fluid and 
river water 4.9804 6.042 - 18.1577 0.353 - 0.288 - 0.579 - 0.3702 - - 0.0839

among slab-derived fluid and 
river water - 0.13 - 0.691 0.021 - 0.024 - 0.09 - 0.079 - 0.0937 0.0236

among slab-derived fluid and 
river water - 0.122 - 0.6298 0.024 - 0.029 - 0.087 - 0.0739 - 0.0857 0.0213

Table 1: Rare earth element abundances of the Arima hot spring water “Kinsen” brine are listed in the “Analyzed abundance” row. Analytical precisions for all elements 
are below 2% (2SD). The compositions of AOC-derived fluids and sediment-derived fluids are calculated forwardly starting from the compositions of raw materials before 
subduction for Pacific and Philippine Sea plates, respectively, as shown in the “Calculated abundance” row [39]. The estimated compositions of fluids derived from 
subducting slab at low temperatures for Philippine Sea plate, are shown in the “Estimated abundance” row. The compiled data used in this study are also listed in the 
“Compiled data” row. The optimized data to the analyzed abundance by a mixing among slab-derived fluid and river water are listed in the “Mixed fluid” row.
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Figure 5c) should be regarded as preliminary estimates.

In any case, deep brine must mix with the near-surface water, as 
evidenced by δ18O- δD- tritium systematics [20-22]. In Figure 6, we 
estimate a best fit composition of fluid that mixes a slab-fluid (that consists 
of a mixture of AOC-derived fluid (Figure 5b) and sediment-derived 
fluid (Figure 5c) and the river waters in the Rokko Mountains (Figure 
5d) [41]. The preliminary result suggests that the REEs abundances of 
the “Kinsen” sample (Figure 5a) may be broadly explained by the mixing 
of approximately 81-92% fluid derived from the Philippine Sea slab (at 
400ºC) or 56% at 510ºC (Figure 6), with the addition of river water, being 
consistent with the previous studies based on the δ18O- δD- tritium 
systematics, although the misfit is rather large at this stage.

Heavy isotopic composition of Arima brine considered in arc 
systems

The results of Sr-Nd-Pb isotopic analyses are listed in Table 2. In 
addition to the “Kinsen” brine, “Tenjin” and “Tansan” have been also 

analyzed for examining heterogeneity among the hot spring sources in 
the Arima area. In order to test the slab-origin hypothesis, the isotopic 
compositions are compared with the isotopic compositions of the slab-
fluids (PHS-fluid and PAC-fluid), as well as the subducted materials 
of AOC and sediment (Figure 7). The “Kinsen” data are plotted in the 
range of slab-fluid derived from the Philippine Sea slab (PHS-fluid), 
being consistent with the REEs arguments in the last section. It is noted 
that the PHS-fluid is mainly derived from sediments [9] and therefore 
resembles the sediment in isotopic composition.

While the 207Pb/204Pb vs. 143Nd/144Nd diagram is sufficiently 
sensitive to resolve the type of slab-fluids (Figure 7), the Sr and Nd 
isotopic diagram is useful to discuss the contribution from the crustal 
rocks, especially the granitoids that form the basement of the Arima 
area. Figure 8 shows the Sr-Nd isotopic compositions of the basement 
granitoidsin the southwest Japan arc [42,43], as well as those of slab-
fluids (PHS-fluid and PAC-fluid) and the subducted AOC and sediment. 
The “Kinsen” data appear to be plotted near the PHS-fluid composition. 

(d)

)b()a(

600℃

510℃

450℃

400℃

360℃

AOC-derived fluid (PAC)

AOC-derived fluid (PHS)

(c)

sediment-derived fluid (PAC)

sediment-derived fluid (PHS)

510℃

450℃

400℃

360℃

(ii) (a,b)=(0.1,1)
(i) (a,b)=(0,1)

(iii) (a,b)=(0.1,10)

AOC-derived fluids & estimated fluid at low-T

sediment-derived fluids & estimated fluid at low-T

Analyzed composition of Arima hot spring water

river water

Figure 5: DMM (depleted MORB mantle)-408 normalized REE compositions. (a) Arima hot spring waters (blue lines, this study; black line from Tsuji et al. [38]. Blue lines 
correspond to three combinations of XSTC-1 in the standard addition method ((I) 0-1 ppb, (II) 0.1-1 ppb and (III) 0.1-10 ppb). (b) AOC-derived fluid beneath volcanic 
arc [39] and the estimated composition of fluid derived from eclogite at low temperature (lower five lines). The partition coefficients are obtained by extrapolating those 
of high-temperature experiments at 700-1000 ºC with 4 GPa [12,40]. (c) sediment-derived fluid beneath volcanic arc (top line) and the estimated composition of fluid 
derived from sediment at low temperatures (lower five lines).  (d) river water near the studied area [41].
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At the same time, the data are included in the broad compositional range 
of the basement granitoids, although the basement granitoids in areas 
adjacent to Arima (box coded in dark purple in Figure 8) deviate from 
the “Kinsen” data, and we may not identify the unique source material 
of “Kinsen” in this case. However, considering the high 3He/4He ratio of 
the Arima brine [27], it is likely that the Arima brine is related to the 
PHS-fluid deep in the mantle and the subducted slab.

Conclusion
The new analytical procedures for REEs and Sr-Nd-Pb isotopic 

compositions have been presented in this study, based on which typical 
Arima-type brines have been analyzed. The most plausible interpretation 
for both the REEs abundance and the isotopic ratios is that the deep brine 
has been derived from a subducted Philippine Sea slab, being consistent 
with the oxygen, hydrogen and helium isotopic compositions. This may 
indicate that slab-fluids may ascend in the fore-arc region, in addition to 
the volcanic region where the slab-fluid triggers arc magmatism, possibly 
through a large fault zone along the tectonic line. Several Arima-type 
brines with high 3He/4He ratios in other areas along the Median Tectonic 
Line in southwest Japan (e.g., Kazahaya et al. this special issue) may also 
suggest a similar origin, which provides invaluable information on slab-
fluid in non-volcanic regions.
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