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Abstract

Proteomics facilities accumulate large amounts of proteomics data that are archived for documentation purposes.
Since proteomics search engines, e.g. Mascot or Sequest, are used for peptide sequencing resulting in peptide hits that
are ranked by a score, we apply ranking algorithms to combine archived search results into predictive models. In this
way peptide sequences can be identified that frequently achieve high scores.  Using our approach they can be pre-
dicted directly from their molecular structure and then be used to support protein identification or perform experi-
ments that require reliable peptide identification.

We prepared all peptide sequences and Mascot scores from a four year period of proteomics experiments on Homo
sapiens of the Proteome Center Tuebingen for training. To encode the peptides MacroModel and DragonX were used
for molecular descriptor computation. All features were ranked by ranking-specific feature selection using the Greedy
Search Algorithm to significantly improve the performance of RankNet and FRank. Model evaluation on hold-out test
data resulted in a Mean Average Precision up to 0.59 and a Normalized Discounted Cumulative Gain up to 0.81.

Therefore we demonstrate that ranking algorithms can be used for the analysis of long term proteomics data to
identify frequently top scoring peptides.
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Abbreviations

FTICR  Fourier Transform Ion Cyclotron Resonance 
GSA  Greedy Search Algorithm 

HPLC  High Performance Liquid Chromatography 
MAP  Mean Average Precision 
MRM  Multiple Reaction Monitoring 

MS  Mass Spectrometry 
NDCG  Normalized Discounted Cumulative Gain 

SMILES  Simplified Molecular Input Line Entry Specification 
SVM  Support Vector Machine 
XML  Extensive Markup Language 
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Introduction

Proteomics facilities archive data for documentation pur-
poses and may wonder, whether this data can be used to
improve their service. Intuitively, their data contains a lot
of information about their experimental quality. The prob-
lem is that this data originates from diverse experiments
and therefore cannot be analyzed as a whole by classical
statistics. Statistical tools for classification and regression
are often built on the assumption of independent and iden-
tically distributed random variables, which does not hold
for this data. However, often all these experiments share
the same experimental protocol.

In most proteomics experiments proteins are first digested
using a specific protease, e.g. trypsin or LysC. After that

the resulting peptides are chromatographically separated by
High-Performance-Liquid-Chromatography (HPLC) and
then detected using mass spectrometry (MS). Then a data-
base search engine, as Mascot or Sequest (Perkins et al.,
1999; Yates et al., 1995), identifies possible peptide se-
quences that could have produced the obtained spectrum.
For this task, the search algorithm compares the acquired
spectrum with a set of theoretical spectra that were com-
puted from a sequence database. At least one confidence
score for each comparison is computed by the search en-
gine, indicating how likely the theoretical spectrum and its
peptide have produced the detected one. Using this score to
order peptide sequences, a ranking of peptides is obtained
for each database search.

Ranking algorithms like RankNet (Burges et al., 2005) or

Figure 1: Using ranking algorithms to learn from search engine results
This figure illustrates the idea of our ranking approach to identify frequently top ranking peptides. During operation of a
proteomics facility many database searches are performed and then archived. They represent a large data set suitable to
generate ranking models for predicting top scoring peptides. To achieve this ranking algorithms construct models that per-
form best on all available queries.
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Figure 2: Data set preparation
This graphic illustrates the training workflow. After extraction from the Mascot XML files, peptide sequences are converted
into molecular descriptor vectors using SMILES, MacroModel and DragonX. These encodings are combined with the ex-
tracted queries for subsequent feature selection. Selected features were used for the training of RankNet and FRank. Finally
all generated models were evaluated on a hold-out test data set.
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FRank (Tsai et al., 2007) allow to generate predictive mod-
els from a collection of rankings. They optimize different
loss functions to obtain a ranking model that performs best
in reproducing the ordering of all given training input. The
input of ranking algorithms consists of a set of rankings,
referred to as queries. During training all elements of a query
can be directly compared with each other and are examples
for the ordering that is learned.

By learning ranking models peptides that frequently
achieve top scores can be identified and predicted. These
peptides then can be considered as being reliably detect-
able with high confidence scores. This property was also
requested by other prediction approaches as described in
other studies (Mallick et al., 2006; Sanders et al., 2007,
Webb-Robertson et al., 2008). Since these methods used
algorithms for classification, they required training on a
curated data set from different facilities, on data obtained
from a standardized experiment or on data that was veri-
fied by extremely sensitive mass spectrometry. Conse-
quently, the obtained predictors were either not specific for
a proteomics facility or required extra costs for calibration
and verification experiments. By applying ranking algo-
rithms predictors can be obtained from data that is already
available (see Figure 1). These predictive models can help
to select those peptides for a focused analysis of proteins,
i.e. MRM experiments, or support protein identification
within an experimental setting. Also measuring the predic-
tion error over time periods could serve as quality control,
since a reliable experimental setup should yield predictable
results. To the best of our knowledge ranking algorithms
have not been applied for this kind of analysis so far.

In this paper we demonstrate how ranking algorithms can
be used to predict top scoring peptides from a long term
data set of Mascot (Perkins et al., 1999) queries (see Figure
2). In our approach peptides are encoded as SMILES
(Weininger, 1988) and prepared by MacroModel to com-
pute molecular descriptors using DragonX (Tetko et al.,
2005). Then we perform ranking specific feature selection
using the Greedy Search Algorithm (Geng et al., 2007) and
train RankNet (Burges et al., 2005) and FRank (Tsai et al.,
2007) models. Finally the generalization performance is
tested on hold-out data sets using the ranking specific evalu-
ation measures precision, NDCG and MAP.

Material and Methods

Our goal was the prediction of the search engine ranking
directly from the peptide sequences. Therefore, we first
extracted the search results from the archived proteomics

data, followed by encoding the sequences as molecular
graphs. Then feature selection, model training and perfor-
mance evaluation were carried out. In this order each of
these steps is described in the following sections.

Data Extraction

The first step in our ranking experiment was to extract
and prepare the training data into queries. This data con-
sisted of mass spectra acquired by NanoHPLC-MS/MS on
an Ultimate-LC (Dionex, Idstein, Germany) coupled online
to a QStar MS (QStar Pulsar i, Applied Biosystems,
Darmstadt, Germany). All experiments were carried out for
Homo sapiens throughout a four year period by the Proteome
Center Tübingen following a similar protocol as described
in (Hala et al., 2008). During this time Mascot 2.2 (Perkins
et al., 1999) was used to generate the protein identifica-
tions. We extracted all database searches encoded as XML
files from the Mascot result page using the “Save as XML’’
option and setting the threshold to 0.0 to avoid filtering.
Next, we extracted all peptide sequences together with their
corresponding Mascot score from each XML file. Each pair
of peptide sequence and score was assigned a unique query
identifier to distinguish its origin for the ranking algorithm.

Peptide Encoding

For training ranking predictors each peptide sequence was
converted into a vector of numerical descriptors represent-
ing its molecular graph by DragonX (Tetko et al., 2005).
DragonX allows for the computation of 1,664 molecular
descriptors for each input structure. These are organized in
20 blocks of different sizes (shown in Table 1) and each
block requires a specific level of detail of the input. For
example, while the [Constitutional] descriptors count only
atom and bond types, the [Geometrical] block requires a
refined molecule description including 3D atom coordi-
nates.1  To compare all the different descriptor blocks, each
sequence had to be converted into a 3D representation of
the peptide.

This was accomplished by encoding each sequence into a
linear Simplified Molecular Input Line Entry Specification
(Weininger, 1988) of the molecular graph and then com-
puting atom coordinates using MacroModel from the
Schödinger Molecular Modeling Suite. The first step was
achieved by replacing each amino acid letter by its substi-
tution SMILES from Table 2. The strings are designed such
that a concatenation forms the peptide bond and in this way
a valid molecular graph is obtained. Next we applied
MacroModel to convert all generated SMILES into the MDL

We embrace DragonX block names by brackets [...].1
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SD file format (Dalby et al., 1992) containing appropriate
atom coordinates. For this reason MacroModel was run
using the OPLS2005 force field to compute energetically
optimized atom positions. After that the SD files were pro-
cessed by DragonX to compute the molecular descriptor
blocks encoding the peptides. Using the generated numeri-
cal descriptors, we encoded each peptide sequence within
each query for feature selection and training.

Feature Selection

To facilitate training and assess the impact of each de-
scriptor, we conducted ranking specific feature selection.
We applied a method proposed by Geng et al. (Geng et al.,
2007), which is named the Greedy Search Algorithm (GSA).
Using this method 10 features from each block were se-
lected, since the [Charge] descriptor block consists only of
14 descriptors. The GSA searches a set of features that is
maximal with respect to a scoring function, but also maxi-
mizes dissimilarity between the selected features. As scor-
ing function the Mean Average Precision (MAP) with the
top 30% of a query to be hits was used. The trade-off pa-
rameter c between maximum score and maximal dissimi-
larity was set to 0.8. To simplify this section, MAP is de-

scribed in section “performance evaluation’’.

Training Ranking Models

We compared the established ranking models RankNet
(Burges et al., 2005) and FRank (Tsai et al., 2007) to set up
a performance baseline.

Memory requirements became also an issue when train-
ing on the large set of queries and using hundreds of de-
scriptors. So experiments using RankSVM (Joachims, 2002)
failed due to the memory requirements of this method, which
prevented loading the complete data set into memory. In
contrast to RankSVM, RankNet as well as FRank are online
learning algorithms that require only scanning through the
data without the need to load it completely. Therefore they
are capable of handling large data sets.

Both algorithms are iterative gradient descent methods
that require a stopping criterion while processing the train-
ing data. We implemented both algorithms to control the
generalization performance on a hold-out evaluation data
set. If the optimized loss function was not decreased on this
data under its minimal value within k subsequent steps, the
iteration was stopped. For our experiments we chose k to
be 30.

To compute the required training and evaluation data sets
as well as a hold-out test data set for the model evaluation,
we randomly split our encoded queries into 60% training
data, 20% evaluation data and 20% test data. The random
splits were computed such that no query was divided dur-
ing this procedure and the available peptide sequences ap-
proximated the 60:20:20 distribution.

The neural network RankNet was trained using the con-
figuration in (Burges et al., 2005) having 10m =  hidden
neurons for a maximum of 1000 epochs each composed of
100 backpropagation iterations. The step-size parameter η
was initially set to 1.0 and was scaled by 1.1 when evalua-
tion performance increased and by 0.9 in the case of a de-
crease. In this way a significant speed up in training time
was achieved. The probability P  that the trained order is
correct was set to 1.0.

The boosting method FRank (Tsai et al., 2007) was run to
select at least 10t =  binary Weak-Learners. Then, further
iterations were allowed until the stopping criterion was ful-
filled. FRank was initialized with 50 precomputed Weak-
Learners per feature that were obtained by selecting equally
distributed thresholds over the feature value range.2  The
probability P  was set to 1.0 as in the case of RankNet.

Descriptor Block Block Size Required
Information 

[Constitutional] 48 0D 
[Atom-centered Fragments] 120 1D 
[Functional Group] 154 1D 
[2D Autocorrelation] 96 2D 
[Burden] 64 2D 
[Connectivity] 33 2D 
[Edge-adjacency] 107 2D 
[Eigenvalue] 44 2D 
[Information] 47 2D 
[Topological Charge] 21 2D 
[Topological] 119 2D 
[Walk and Path Counts]  47 2D 
[3D MoRSE] 160 3D 
[Geometrical] 74 3D 
[GETAWAY] 197 3D 
[Randic] 41 3D 
[RDF] 150 3D 
[WHIM] 99 3D 
[Charge] 14 Other 
[Molecular Properties] 29 Other 

Table 1: DragonX descriptor blocks
Overview of DragonX descriptor blocks and the number of
corresponding features and dimension of the required in-
formation.

This procedure is based on a private communication of CH with the author of FRank.2
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Because of the many combinations and long training
times, which were on the order of days, we trained five
models for each combination of descriptor block, feature
selection and ranking algorithm. Training was performed
on a computing cluster comprising 24 nodes each composed
of AMD Opteron 250 dual-core processors having 2.4 GHz
and 6 GB RAM. All ranking algorithms (RankNet/FRank)
as well as the feature selection method (GSA) were imple-
mented in Java 1.5.  For data preparation a set of PERL
scripts was developed. Our software is available for free
download at www.ra.cs.uni-tuebingen.de/software/.

Performance Evaluation

We evaluated the precision, the Mean Average Precision
(MAP) and the Normalized Discounted Cumulative Gain
(NDCG) as ranking-specific performance measures. The
NDCG was computed according to (Järvelin and
Kekäläinen, 2002) using 2b =  as basis function. Using a
gain function, the NDCG measures the fraction of the opti-
mal gain, which is normalized to 1.0, obtained when exam-
ining the query at a specific position. Since the queries have
different length this position was specified relative to the
top of a query. We evaluated the NDCG at the 10%, 20%,
30%, 40% and 50% position of each hold-out test query.

Additionally to a specified position in a query, the preci-
sion requires also the definition of hits. Hits are the samples
of a query that are considered relevant and therefore should
be ranked at the top. Similarly to the NDCG positions, we
defined the hits to be the top 10%, 20%, 30%, 40% and
50% of a query. Using these position and hit specifications
we evaluated the precision at position n  of a query, which
is defined as

hits within top 
@

n
P n

n
=  (1)

The precision reports the fraction of hits, defined as the
top fraction of a query, within the top fraction of the pre-
dicted ranking. Thus for the precision only positions within
the range of hits were considered. Based on the precision
the most commonly used performance measure for ranking
is the MAP. It averages all precisions with respect to hits
and is defined as

hit at position 

1 @
number of hits i

MAP P i= ∑  (2)

MAP is a measure of the spreading of hits within the pre-
diction.

One Letter Code Substitution SMILES Amino Acid Name 
A N[C@@H](C)C(=O)O Alanine 
V N[C@@H](C(C)C)C(=O)O Valine 
F N[C@@H](CC1=CC=CC=C1)C(=O)O Phenylalanine 
I N[C@@H]([C@@H](C)CC)C(=O)O Isoleucine 
L N[C@@H](CC(C)C)C(=O)O Leucine 
P N1CCC[C@H]1C(=O)O Proline 
M N[C@@H](CCSC)C(=O)O Methionine 
D N[C@@H](CC(O)=O)C(=O)O Aspartic acid 
E N[C@@H](CCC(O)=O)C(=O)O Glutamic acid 
K N[C@@H](CCCCN)C(=O)O Lysine 
R N[C@@H](CCCNC(N)=N)C(=O)O Arginine 
S N[C@@H](CO)C(=O)O Serine 
T N[C@@H]([C@H](O)C)C(=O)O Threonine 
Y N[C@@H](CC1=CC=C(C=C1)O)C(=O)O Tyrosine 
C N[C@@H](CS)C(=O)O Cysteine 
N N[C@@H](CC(N)=O)C(=O)O Asparagine 
Q N[C@@H](CCC(N)=O)C(=O)O Glutamine 
H N[C@@H](CC1=CNC=N1)C(=O)O Histidine 
W N[C@@H](CC1=CNC2=CC=CC=C12)C(=O)O Tryptophan 
G NCC(O)=O Glycine 

 Table 2: Substitution table
Substitution table used to convert one letter code into valid SMILES for MacroModel preparation. Each substitution SMILES
are designed such that a concatenation yields a valid peptide molecular graph. Extending this table could facilitate the descrip-
tor generation for modified peptides, e.g. phosphorylations.
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Since every ranking method has to deal with the problem
of ties, which are samples assigned to the same rank in a
query or prediction. To solve this problem we averaged each
measure 100 times for randomized orderings of each tie.
Finally we averaged all five training replicates on the dif-
ferent test data sets to obtain the final ranking performance.

Results and Discussion

The aim of this study was to apply ranking methods to
identify and predict frequently top scoring peptides for mass
spectrometry based proteomics (see Figures 1 and 2). This
was achieved by training the ranking models RankNet and
FRank on proteomics search engine rankings. To optimize
prediction performance we also conducted ranking-specific
feature selection using the GSA algorithm.

We used a Homo sapiens experimental dataset and ex-
tracted 9,967 peptides as well as the corresponding search
engine scores from 915 Mascot XML files containing search
results to form queries. Each peptide sequence was con-
verted into a numerical descriptor vector using DragonX
(Table 1). This step required the computation of atom coor-
dinates by MacroModel and the conversion of peptide se-
quences into a molecular graph representation. A flexible
method for the latter task was using the substitution Table
2. To reduce computational effort long peptides were fil-
tered out by Ligprep, a wrapper for MacroModel, remov-
ing 20% of all peptides and resulting in 7,973 distinct se-
quences for the remaining experiments. This filtering does
only minimally affect our training because long peptide

sequences achieve in most cases low Mascot scores due to
the limited mass detection range of the QStar MS (m/z <
900).

Next we performed ranking specific feature selection us-
ing the GSA algorithm. The results are summarized in Table
3 in which only those blocks are listed, for which subse-
quently trained ranking models with an optimal generaliza-
tion error for any configuration of feature selection, rank-
ing algorithm and performance measure were obtained. The
column “block usage’’ counts how many optimal models
are based on a specific descriptor block. In this statistic each
model of RankNet and FRank that was either trained with
or without feature selection is considered. Descriptors that
are related to electro-chemistry and polarizability are writ-
ten in bold font, because in former studies these properties
were considered to be relevant for mass spectrometry
(Mallick et al., 2006; Sanders et al., 2007; Webb-Robertson
et al., 2008).

As listed in Table 3 our results show, that three descriptor
blocks performed best to train optimal models as indicated
by the number in the block usage column. (1) The [Edge-
adjacency] descriptor block was best to train optimal mod-
els regardless of ranking method and feature selection (block
usage 35). This block was followed by (2) the [Topologi-
cal] block and the (3) the [Functional Group] block with a
block usage of 25 and 18, respectively. The [Edge-adja-
cency] block consists of descriptors that are computed from
the adjacency matrix and therefore encode the topology,
molecular constitution and connectivity, and they also in-

Table 3: Feature selection results
This table shows the selected features from each DragonX descriptor block. Only blocks that were used by best-performing
models for at least one evaluation measure are listed. The values in the block usage column count how often a descriptor
block is used within Table 4 indicating its importance for model performance. Electro-physical properties are marked by
bold font. Asterisks (*) indicates 3D descriptor blocks.

Selection 
Rank 

Descriptor Block Block 
Usage  1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

[Edge-adjacency] 35 EEig15r EEig01r EEig03r EEig11r EEig02x ESpm01d EEig01x EEig08d EEig02r EEig12r 
[Topological] 25 T(O..O)  Xt SNar  BLI  TI1 Jhetp  MSD  STN  Jhete PW2 
[Functional Group]  18 nCp  nCar  nCs  nCt  nCq nCrs nCrt  nCrq  nCbH nCb- 
[Charge] 6 LDI  qpmax  qnmax  Qpos  Qneg  Qtot  Qmean  Q2  RPCG  RNCG 
[Geometrical]* 4 G(O..O) RCI  J3D  FDI  HOMT  DISPm  PJI3  QXXp  SPAM  H3D 
[Topological Charge]  4 GGI1  JGI3  JGI4  JGI5  JGI8  JGI7  GGI9  JGI2  GGI10  JGI1 
[WHIM]* 4 Tm  P2e  Gs  P1p  P2s  L3v  P1s  P2p  P1u  G1u 
[Atom-centered 
Fragments]  1 N-067 C-024  C-003  O-062  H-047  H-046  H-051  H-052  C-001 H-050 

[Randic]  1 DP01 SHP2  SP01  SP20  DP20  DP02 DP09  SP02  SP19  DP03 
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clude information about the molecular dipole moments. The
[Topological] block provides information about quantify-
ing molecular topology, which is based on the molecular
graph representation encoding chemical information about
atom types or bond multiplicity. These features have been
designed to be sensitive to size, shape, symmetry, branch-

ing as well as cyclicity. Finally, the [Functional Group] con-
tains defined molecule fragments together with informa-
tion about their hybridization state.

A closer look at the selected features reveals that ranking
methods require two kinds of descriptors for good perfor-

(4a) RankNet without feature selection 
Position/Relevant 10% 20% 30% 40% 50% NDCG 
10% 0.2607 0.3981 0.4935 0.5645 0.6283 0.6344 
20% 0.3700 0.4681 0.5398 0.5968 0.6842 
30% 0.4390 0.5159 0.5866 0.7193 
40% 0.5079 0.5763 0.7558 
50% 0.5663 0.7896 
MAP 0.2155 0.3360 0.4271 0.5015 0.5682 

(4b) FRank without feature selection 
Position/Relevant 10% 20% 30% 40% 50% NDCG 
10% 0.1941 0.3279 0.4331 0.5134 0.5765 0.5956 
20% 0.2984 0.4050 0.4892 0.5618 0.6449 
30% 0.3821 0.4747 0.5685 0.6893 
40% 0.4606 0.5695 0.7350 
50% 0.5654 0.7756 
MAP 0.1481 0.2700 0.3680 0.4607 0.5504 

(4c) RankNet with feature selection 
Position/Relevant 10% 20% 30% 40% 50% NDCG 
10% 0.2721 0.4086 0.5125 0.5754 0.6436 0.6526 
20% 0.3593 0.4758 0.5476 0.6147 0.6885 
30% 0.4493 0.5337 0.6043 0.7280 
40% 0.5277 0.5990 0.7682 
50% 0.5937 0.8081 
MAP 0.2221 0.3404 0.4444 0.5188 0.5874 

(4d) FRank with feature selection 
Position/Relevant 10% 20% 30% 40% 50% NDCG 
10% 0.2255 0.3586 0.4764 0.5676 0.6364 0.6270 
20% 0.3317 0.4351 0.5173 0.6087 0.6669 
30% 0.4082 0.5029 0.5961 0.7063 
40% 0.5000 0.5893 0.7501 
50% 0.5824 0.7871 
MAP 0.1938 0.3039 0.3913 0.4833 0.5699 

 Table 4a to 4d: Prediction results for RankNet and FRank
These tables shows the prediction results for RankNet (4a, 4c) and FRank (4b, 4d) with and without feature selection for all
evaluation measures. The headings of each table denotes the query part considered as hits. The first column contains the
evaluation position. The rightmost column shows values for NDCG evaluation, while the bottom row reports the hit-based
MAP values. The center of each table lists the precision values for a given query position and top fraction of hits. All overall
optimal values for a given measure is marked by bold fonts. Each table shows only the optimal performance for a ranking
algorithm trained with or without feature selection.
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mance: (1) descriptors that are related to the target vari-
able, which in this case are the electro-chemistry related
properties. This is supported by the observation that two to
three of ten features belong to this category. And (2) de-
scriptors that discriminate between different molecules,
which is corroborated by the fact that blocks containing
descriptors being sensitive to molecular constitution, e.g.
the [Edge-adjacency] block or the [Topological] block, of-
ten generate optimal ranking models (see also Tables 3 and
4).

We only found two 3D descriptor blocks to be useful for
model training, the [Geometrical] and the [Whim] block
(Table 3). Interestingly, four of ten selected features are re-
lated to electro-chemistry, which is similar to the blocks
discussed above. To summarize our results we assume that
3D information might improve the training of ranking mod-
els to some extend but is neither crucial nor sufficient.

Tables 4a-d summarize the evaluation on hold-out data
of the 400 ranking models. The use of RankNet in combi-
nation with feature selection achieved the best prediction
performance for nearly all measures (Table 4c). Interestingly,
all these results were obtained by training on the [Edge-
adjacency] descriptor block rendering this combination as
most useful. We compared our NDCG and MAP values to
those achieved on other ranking problems. In (Tsai et al.,
2007) MAP values range between 0.13 to 0.25, NDCG val-
ues range up to 0.55 and the precision is below 0.4. In com-
parison we achieve MAP values between 0.14 to 0.59,
NDCG values up to 0.81 and our precision is below 0.6. There-
fore, our results are 1.5 to 2.5fold better than those achieved
in another study on a web-learning problem (Tsai et al., 2007).

Feature selection using GSA significantly improved the
prediction performance of both ranking methods. RankNet
(Table 4c) as well as FRank (Table 4d) achieved better gen-
eralization errors when trained with feature selection for
nearly all measures. This improvement achieved by feature
selection ranges up to 5% for RankNet and up to 31% for
FRank.

Summarizing our results, we have demonstrated that us-
ing a selection of ten [Edge-adjacency] descriptors enables
RankNet to efficiently predict top scoring peptides learned
from Mascot search results.

Similar studies with alternative experiments were per-
formed and published. A predictor employing Gaussian-
Mixture models were used to classify proteotypic peptides
from publicly available data sets (Mallick et al., 2006). Their
predictor identified reliably detectable peptides for up to
60% of all proteins, but was not specific for an experimen-

tal setting. Another approach trains on a specially created
data set using a known protein mixture (Sanders et al., 2007).
They set a threshold on the identification score to define
flyable peptides, being reliably detectable, within this data
set to obtain a balanced data set for neural network classifi-
cation. Their predictor is specific for an experimental set-
ting, but has the drawback to require a standardized experi-
ment for training purposes each time the instrumental setup
changes. In a similar way Webb-Robertson et al. train SVM
classifiers on a large set of MS identifications that were
verified using FTICR MS (Webb-Robertson et al., 2008).
This method yields also facility specific classifiers, but re-
quires an additional verification of the training data.

In contrast to all these published methods, our new ap-
proach has the clear advantage to analyze the protein iden-
tifications made during a time period for learning a ranking
function that ranks top scoring peptides. In this way, our
approach does not require any kind of additional experi-
ments, while resulting in predictors that are specific for a
certain facility. Since these advantages come in with the
usage of ranking methods, a direct comparison to classifi-
cation algorithms are prohibitive due to differences of the
learning problem.

Conclusion

This paper applies ranking methods to predict peptide se-
quences that achieve frequently higher search engine scores
without performing additional experiments or needing ex-
pensive hardware. By using SMILES substitution table
each peptide sequence was encoded into a molecular graph
representation. We evaluated diverse molecular descriptors
sets in combination with feature selection and showed that
RankNet trained on the [Edge-adjacency] block obtained
optimal prediction performance.

Because our approach is independent of the employed
proteomics database search engine a training on queries
obtained from different search engines or eventually con-
sensus scores could easily be integrated and may result in
decreased false-positive rates. Also, our ranking method
would not only increase confidence in normal protein iden-
tification but would also conduct targeted peptide based
experiments, e.g. MRM.

Also, our approach is well suited to address the task of
ranking proteotypic peptides having post-translational modi-
fications by incorporation of phosphorylations or oxidations
into the substitution table.

Future work should compare other methods for peptide
encoding as well as other ranking methods. Additionally,
analysis methods could be developed that exploit the struc-
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ture immanent in rankings, e.g. align ranking predictions
with search engine queries to deduce quality statements.
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