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Abstract
Ionising radiation causes damage at various levels in the exposed cell. The initial injury and the resulting cellular 

response to the damage involve complex crosstalk between the regulators of the DNA damage response recognition 
signalling and repair pathways. System-level research is required to gain more insight into these pathways. In this 
study we have used an in silico method to connect the altered proteome and miRNAome networks after radiation 
exposure by using Ingenuity Pathway Analysis tool and further verification for seed sequence matches by manually 
searching in microrna.org, mirDB, mirwalk, miRBase, and Targetscan databases. The endothelial cell was used 
as a model system as the endothelium is one of the main cellular systems damaged by ionising radiation. The 
interaction analysis revealed that changes at the miRNA level occur shortly after irradiation (4 and 12 hours) and thus 
often precede the alterations in the proteome that mostly take place later (24 hours). The two networks are closely 
intertwined emphasizing the regulatory role of miRNAs in the protein expression. Beside the well described pathways 
of the initial radiation response, such as oxidative stress and mitochondrial dysfunction, additional pathways such 
as Rho signalling (Rho family GTPases, Rho GDI and RhoA signalling) are involved in the endothelial response. In 
conclusion, the in silico analysis presented here is a valuable tool for identification of radiation targets and biomarkers 
for further validation. Furthermore, it can be used for any cellular or tissue model of interest. 
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Introduction
MicroRNAs (miRNAs) are small non-coding RNAs that play an 

important role in regulating most cellular processes, including those 
triggered by stress response [1,2]. They can regulate their target genes 
in a direct manner, where distinct miRNAs can target one messenger 
RNA (mRNA) or single miRNAs can target multiple mRNA transcripts, 
facilitating fine tuning and control over a wide range of cellular 
functions. miRNAs function by inhibiting protein synthesis, both by 
repressing translation and by facilitating deadenylation and subsequent 
degradation of mRNA targets [3]. Consequently, investigating the 
miRNAome-proteome interaction is essential for understanding both 
the process and extent of cell response to radiation injury.

Ionising radiation damages cells primarily by inducing ionisation 
and DNA damage that directly and indirectly trigger alterations in the 
expression levels of miRNAs [4-6] and proteins [7,8]. The regulatory 
network of miRNAs has been shown to be essential for cells to respond 
and repair the damage caused by radiation exposure [4,9]. Global 
suppression of miRNA expression leads to reduced cell survival, 
suggesting that their role is largely restorative [4]. Several studies have 
shown radiation-induced alterations in protein expression in tissues, 
primary cells, and cell lines [8,10-15]. Some of these occur in the 
immediate aftermath of exposure and are directed to damage repair 
and survival [8]. However, a number of other pathways less obviously 
involved are also rapidly activated by irradiation [8,14,16]. In order 
to quantify the contribution of translational repression by miRNAs 
in radiation response, the use of proteomics techniques is crucial, 
as miRNAs are able to regulate their targets at the translational level 
without affecting mRNA abundance, and are hence undetected by 
classical transcriptome analyses.

The endothelium is one of the main cellular systems damaged by 
ionising radiation [17-19]. It is responsible for normal tissue sensitivity 

to irradiation that limits the doses that can be applied to tumours 
[20,21]. We have previously shown altered expression levels of 
miRNAs [4,9] and proteins [8,14] in primary endothelial cells and cell 
lines exposed to gamma radiation. Even low doses of ionising radiation 
had a significant impact on miRNA expression that was directly related 
to protein expression alterations [14]. 

Several studies in the recent past have focussed on in silico analyses 
using bioinformatics tools to establish relationships and regulation 
patterns between miRNAs and proteins [14,22-24]. Prompted by our 
previous data we aimed in this current work to systematically investigate 
the in silico interactions between radiation-induced alterations in the 
miRNA and protein levels in the endothelial cell line EA.hy926 [4,8,9]. 

Methods
Cell culturing, harvesting, irradiation and microRNA 
expression analysis

Endothelial cell line EA.hy926 was used for the irradiation 
experiments as follows. The cells were irradiated with a dose of 2.5 Gy 
using a 137Cs-γ source and harvested at 12 hours for miRNA analysis. 
Cell culturing for was done as described by Kraemer et al. [4]. The 
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miRNA expression level analysis was carried out using TaqMan® arrays 
and single primer assays [4]. The significance of the fold change in the 
miRNA (± 2.0) and protein expression (± 1.3) at 4 hours and 24 hours is 
expressed as p-values and calculated in our previous publications [4,8]. 
For the miRNA changes at the 12-hour time point p-values are shown 
in the Supplementary Figure 2. Data are based on three independent 
experiments with standard error of the mean (SEM). Significance of 
n-fold changes was calculated by using the one sample t-test. 

Bio informatics analysis

Ingenuity Pathway Analysis (IPA), a knowledge database generated 
from peer-reviewed scientific publications, was used to obtain 
information about relationships, biological mechanisms, functions and 
pathways [25]. All differentially regulated miRNAs and proteins with 
their corresponding Swiss-Prot accession numbers were imported into 
the IPA including the fold changes of both [25,26].

Proteins and miRNAs found to be deregulated in our previous 
studies [4,8] were uploaded into the IPA software in the following 
order:

1)	 4-, 12-, 24-hour miRNAs with 4- and 24-hour proteins

2)	 4-hour miRNAs with 4-hour proteins

3)	 4-hour miRNAs with 24-hour proteins

4)	 12-hour miRNAs with 4-hour proteins

5)	 12-hour miRNAs with 24-hour proteins

6)	 24-hour miRNAs with 24-hour proteins

The proteins and miRNAs were connected using the build tool 
in the IPA software. Based on the databases TarBase, TargetScan and 
miRecords the IPA software predicted targets of the miRNAs. The 
connections were filtered to have only direct interactions and further 
sorted for only negative regulations. Interactions were only considered 
valid if and only if the analysis showed both a miRNA that was down-
regulated and its target protein that was up-regulated or vice versa. 
The miRNA targets were chosen based on the total context score. A 

total context score below 0.4 was considered to be significant (Figure 
2) (http://www.targetscan.org/fish_62/docs/context_score.html) [27]. 
These interactions were further verified for seed sequence matches by 
manually searching in microrna.org, mirDB, mirwalk, miRBase, and 
Targetscan databases (Figures 3-5) [28-39]. Supplementary Table 1 
shows the miRNA and protein interactions verified by each database.

Results and Discussion
Proteomic and miRNA alterations

The proteomic alterations observed using the SILAC and 2D-DIGE 
methods in the EA.hy926 cells after 4 and 24 hours after the dose of 2.5 
Gy have been published previously [8]. Fifty-eight proteins at 4 hours, 
and 136 proteins at 24 hours, were significantly deregulated. 

The miRNA alterations were studied in the same cell line using the 
same radiation dose and time points as for the proteomics analysis. 
These data have been published previously by Kraemer et al. [4,9]. To 
further demonstrate the transient nature of miRNA regulation after 
irradiation we additionally measured altered miRNA expression levels 
12 hours after irradiation. The numbers of altered miRNAs and shared 
miRNAs at the different time points are shown in the Venn diagram 
in Figure 1A. The numbers of deregulated and shared proteins are 
shown in Figure 1B. The list of deregulated miRNAs at 12 hours after 
irradiation is shown in Supplementary Table 2. The lists of miRNAs 
and proteins found to be differentially regulated at 4 hours and 24 
hours are published in our previous studies [4,8].

The existence of distinct phases of the response is indicated by the 
fact that only one protein, desmoplakin, or two microRNAs, miR-323-
3p and miR-517b, are shared among the significantly deregulated at the 
4 h and 24 h time points [4,8]. 

Relationship between deregulated miRNAs and proteins-in 
silico analysis 

All miRNAs that were found to be differentially expressed at the 
time points 4, 12, and 24 hours together with proteins found to be 
deregulated at 4 and 24 hours after irradiation were uploaded into the 
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Figure 1: Venn diagrams showing the overlap between radiation-responsive miRNAs or proteins in EA.hy926 cells at different time points. The overlap between 
miRNAs at 4 hours, 12 hours and 24 hours after irradiation is shown in A and between proteins at 4 hours and 24 hours after irradiation in B.
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IPA. Their interactions are shown in Figure 2. 

For an initial less stringent analysis no further manual database 
verification of potential miRNA-target interactions was done as we 
wanted to create a general network of all possible interactions (Figure 
2). The most significant radiation-induced toxic pathway (TX) was 
the oxidative stress pathway. Canonical pathways (CP) found to be 
affected by radiation exposure were mitochondrial dysfunction, nitric 
oxide and ROS production, Rho GDI signalling and Rho A signalling. 
The Rho signalling and oxidative stress pathways were also found to be 
affected in the proteomics analysis as shown in our previous study [8]. 

Of the 22 miRNAs and 59 proteins found to be deregulated at 
4 hours a more stringent verification of potential miRNA-target 
interactions was done as described in Materials and Methods. This 
showed that five proteins were predicted to be the direct targets of 
five individual miRNAs (Figure 3). The predicted miRNA-protein 
interactions were as follows:

a) miR-146a and miR-146b-5p () with LIN7C ()

b) miR-331-5p () with RRM2 ()

c) miR-101-3p () with DIDO1 ()

d) miR-518d-5p () with RAB23 ()

e) miR-323-3p () with HMGCS1 ()

() () represent down- and up-regulation, respectively.

As the expression level alteration of miRNAs is expected to precede 
the alteration in their target protein level, we combined the data from 
miRNAs found to be differentially regulated at 12 hours and proteins 
deregulated at 24 hours after irradiation. Direct regulation of ten 
proteins by seven miRNAs was observed (Figure 4). 

a)	 miR-101-3p () with HYPK ()

b)	 miR-124-3p () with FAF2 ()

c)	 miR-193a-3p () with MRPL22 ()

d)	 miR-194-5p () with MGLL (), ATP6V1F () 

e)	 miR-339-5p () with HNRNPK, MYO1C (both )

f)	 miR-516b-5p () with ATP6V1F ()

g)	 miR-628-5p () with CCT6A, MYL6, CALM1 (all )

() () represent down- and up-regulation, respectively

As expected, no predicted interactions were found between the 

CP:  Signaling by Rho Family GTPases
CP:  Mitochondrial Dysfunction

CP:  Production of Nitric Oxide
and Reactive Oxygen Species

CP:  RhoA Signaling

Tx:  Oxidative Stress
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Figure 2: Predicted interactions of miRNAs deregulated at 4, 12 and 24 
hours and their target proteins deregulated at 4 and 24 hours after radiation 
exposure of 2.5 Gy. Differentially up- or down-regulated molecules are 
marked in red and green, respectively. TX, toxic pathway; CP, canonical 
pathway.
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Figure 3: Predicted interactions of miRNAs and their target proteins 4 hours 
after radiation exposure of 2.5 Gy. Differentially up- or down-regulated 
molecules are marked in red and green, respectively.
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Figure 4: Predicted interactions of miRNAs found to be differentially regulated 
at 12 hours and proteins deregulated at 24 hours after irradiation (2.5 Gy). 
Differentially up- or down-regulated molecules are marked in red and green, 
respectively.
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Figure 5: Predicted interactions of miRNAs and their target proteins 24 
hours after radiation exposure of 2.5 Gy. Differentially up- or down-regulated 
molecules are marked in red and green, respectively.
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All the pathways found in this in silico analysis make biological 
sense, starting from the programmed cell death and pathways 
associated with early events (apoptosis, autophagy), progressing 
towards pathways characteristic to endothelial dysfunction (NO 
bioavailability, increased ROS production) [40]. Recent data indicate 
a close crosstalk between NO signalling and Rho signalling [41] in the 
endothelial dysfunction. Rho family proteins regulate several cellular 
functions including cytoskeletal organisation, membrane trafficking, 
cytokinesis, cell proliferation, cell motility and transcriptional 
regulation. Rho signaling pathways have been shown to be responsive 
even to low-dose radiation [16,42] and their activation is associated 
with the development of cardiovascular disease [43].

To date none of the protein–miRNA interactions predicted 
by our model is experimentally validated. This is not surprising 
knowing the multitude of putative interactions compared to the small 
portion of validated interactions within a cell [3]. However, we used 
highly stringent prerequisites for the identification of miRNA target 
interactions including the use of several prediction algorithms. This, 
together with the consideration of an inverse correlation of miRNA and 
protein expression, suggests a high plausibility for these predictions 
[44]. Especially the TargetScan algorithm used in this study proofed its 
high prediction capacity in analysing miRNA effects on the proteome 
level [45,46]. 

Thus, our in silico study provides interesting candidate miRNA-
target protein interactions and biological pathways for experimental 
validation that is necessary for elucidating radiation effects on the 
endothelium. We conclude that the expression alterations of miRNAs 
and proteins shown here are time-dependent, closely related and 
intertwined. Rapid radiation-induced decrease or increase in the 
miRNA levels may trigger subsequent alterations in several target 
proteins belonging to distinct cellular pathways. This emphasises the 
essential role of miRNAs as central regulators of the cellular response.
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