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Introduction 
Solid tumors are frequently infiltrated by immune cells, including 

T- and B-lymphocytes, natural killer (NK) cells, NK-T cells, dendritic 
cells, macrophages, neutrophils, eosinophils and mast cells, that 
contribute to the tumor microenvironment [1]. Indeed, infiltration 
with CD8+ T cells and a higher ratio of CD8+ to CD4+ T cell in tumor 
are associated with an improved outcome and decreased metastasis in 
multiple cancer lineages indicating that infiltrating immune cells can 
have anti-tumor activity [2-10].

Cytotoxic CD8+ T cells and natural killer cells induce cell death, 
at least in part, through activation of the extrinsic apoptosis pathway 
upon binding of FasL (also known as CD95L) and TNF-related 
apoptosis-inducing ligand (TRAIL), members of the tumor necrosis 
factor (TNF) family, to death receptors (DR) at the cell surface [1,11]. 
FasL and TRAIL trigger apoptosis through binding to Fas (CD95) and 
DR4 (TRAIL-R1) and/or DR5 (TRAIL-R2) respectively. Upon binding, 
the death receptors recruit the adaptor molecule Fas-associated death 
domain (FADD), and the apoptosis-initiating protease caspase-8 into 
a death-inducing signaling complex (DISC), which in turn engages the 
intrinsic apoptosis pathway [12]. Both FasL and TRAIL have entered 
clinical trials with limited efficacy. Cancer cells can acquire resistance 
to TRAIL-induced apoptosis through multiple mechanisms including 
loss of functional DR4 and DR5 at the cell surface [13], O-glycosylation 
status [14], and elevated expression of antiapoptotic proteins including 
c-FLIP [15,16], Bcl-2 [16], or IAP family proteins [17]. 

Tumor necrosis factor receptor superfamily member 11b, also 

known as osteoprotegerin (OPG), is a secreted glycoprotein belonging 
to the TNF receptor superfamily that plays a key role in the regulation of 
bone turnover via acting as a decoy receptor for RANKL and preventing 
interaction of RANKL with the RANK receptor [18]. In addition to its 
role in bone metabolism, OPG can also maintain cell survival by acting 
as a soluble decoy receptor for TRAIL and preventing its interaction 
with DR4 and DR5 death receptor [19,20]. The importance of OPG–
TRAIL interactions in resistance to TRAIL is underscored by the 
finding that at physiological conditions OPG can bind TRAIL with an 
affinity similar to that of RANKL [21]. Hence, release of OPG by tumor 
cells represents a potential mechanism of resistance to TRAIL-induced 
apoptosis. 

Bypass of cell death mechanisms represents one of the hallmarks 
of cancer [22]. Thus, an understanding of the mechanisms underlying 
bypass of cell death could lead to new therapeutic approaches aimed 
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Abstract
Background: Expression of Rab25, which is located in the 1q amplicon present at high frequency in many 

cancer lineages, promotes cancer cell survival under multiple stress conditions. While Rab proteins play essential 
roles in all stages of vesicle trafficking, the functions and endogenous cargoes for Rab25 remain to be fully 
elucidated. Osteoprotegerin (OPG) is a secreted glycoprotein that binds the tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) thus preventing it from activating the TNF-family death receptors. In the present study, we 
demonstrated that Rab25 regulates OPG at both the transcription and secretion level. 

Methods: The effect of Rab25 on OPG expression and its effect on TRAIL-induced cell were examined in both 
ovarian and breast cells. Signal transduction pathways regulation of OPG expression was examined in cells using 
pharmacogenetic approaches.

Results: Expression of Rab25 to levels similar to those in tumors with RAB25 amplification, increased OPG 
mRNA expression and secretion from ovarian and breast cancer cell lines, whereas down regulation with Rab25 
specific siRNA decreased OPG secretion and sensitized cells to TRAIL-induced cell death. Critically, exogenous 
OPG mimicked the effects of Rab25 on cell death supporting the contention that Rab25-induced accumulation of 
OPG protects cancer cells from the effects of TRAIL. Rab25 cooperates with EGFR-mediated MAPK signaling to 
increase TRAIL production and release. Importantly, priming cells with EGFR inhibitors increased sensitivity to 
TRAIL-induced cells death regardless of the Rab25 background. 

Conclusion: Increased OPG expression induced by Rab25 may provide a mechanistic advantage for cancer 
development and progression.
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at killing cancer cells. Expression of the Rab25 small G protein, which 
is a target of the 1q amplicon in multiple cancer lineages, is sufficient 
to increase cell survival under stress conditions including nutrient 
withdrawal, anoikis, UV-radiation, and paclitaxel [23,24]. In the 
present study, we demonstrate that Rab25 protects tumor cells from 
death induced by TRAIL, but not FasL, through the production and 
action of OPG.

Materials and Methods 

Cells and culture conditions 

The human ovarian HEY, SKOV3 and breast MCF7 cells were 
maintained in RPMI 1640 medium supplemented with 5% fetal bovine 
serum 5% CO2 at 37oC. IOSE80ht cells were maintained in 1:1 ratio 
of M199: MCDB105. Rab25 expressing cells and pcDNA empty vector 
transfected cells were established as described previously [23,24]. 
Cells were treated with the indicated concentration of FasL or TRAIL 
for 24 h. Cells were pretreated with PI3K/AKT or MAPK inhibitors 
30min before addition of TRAIL. For EGFR inhibitor studies cells were 
cultured in the present of Lapatinib, Gefitinib or Neratinib for 60min 
before addition of TRAIL, FasL or EGF.

Reagents 

FasL (Cat #S8689) was obtained from Sigma and reconstitute 
in 50 μl of water to a 100 μg/ml stock. Further dilution (working 
concentration 200 ng/ml) was made with cell culture median 
containing 5% FBS. Recombinant OPG (Cat #805-OS) and Human 
Osteoprotegerin/TNFRSF11B ELIZA kit were purchased from R&D 
systems. Human recombinant TRAIL was purchased from Calbiochem 
(San Diego, CA), dissolved in phosphate-buffered saline at 100 µg/
ml, and stored at –80°C. ZD1839 (Gefitinib, Iressa; cat # S1025), 
Lapatinib (Cat # S2111) and Neratinib (HKI-272; cat# S2150), PI103 
(Cat # S1038), PD98059 (Cat # S1177), AG1478 (Cat # S2728) and 
U0126 (Cat # 1102) were purchased from Selleckchem (Houston, TX). 
EGF (E9644), TGFα (T7924), IGF (I3769) and PDGF (P8147) were 
purchased from Sigma Chemical Co. (St. Louis, MO). All reagents were 
diluted in fresh media before each experiment. On Target Plus siRNA 
specific to Rab25 and OPG as well as non-target siRNA control were 
purchased from Dharmacon (Thermo Scientific). siRNA transfection 
was carried out using DharmaFECT reagent (Thermo Scientific) 
following manufacturer suggested protocol. Gene expression level after 
siRNA knockdown was measured by either western blotting or qPCR 
as reported previously [23-25]. 

Cell death assays 

Apoptosis cells were determined by Cell Death Dectetion ELISAplus 
(Cat# 1774425; Roche Apploied Science) according to the manufacturer 
protocol by measuring the optical density (OD) reading. Cell viability 
was detected using Cell Titre-Blue® Cell Viability Assay obtained from 
Promega (Madison, WI). 

Messenger RNA and protein expression 

Total RNA isolated was carried out using Qiagen RNeasy kit 
(Valencia, CA). We determined OPG and Rab25 mRNA levels by 
Taqman real-time reverse transcription-PCR using the ABI PRISM 
7700 Sequence Detection System (Applied Biosystems) through 40 
cycles. GAPDH was used as internal reference for Rab25 expression 
calculation and total RNA quality. Western blotting analysis was 
carried out as described previously [23,25]. Antibody against 2238 
Phospho-EGF Receptor (Ser1046/1047) (Cat #$2238S), EGF receptor 

(Cat#2085S), Phospho-Akt (Ser473) (Cat#4058S), Akt (pan) (11E7) 
Rabbit mAb (cvat#4685S), Phospho-p44/42 MAPK (Erk1/2) (Thr202/
Tyr204) (D13.14.4E) XP® Rabbit mAb (Cat#4370S), and total p44/42 
MAPK (Erk1/2) (137F5) Rabbit mAb (Cat#4695S) were purchased 
from Cell Signaling Technology (Danvers, MA).

Statistical analysis

Experimental data obtained were statistically evaluated by 
ANOVA or Student’s t-test using GraphPad Prism V.5 (San Diego, 
CA). Differences were considered significant if p<0.05. All experiments 
were independently repeated at least three times. Data are expressed as 
mean ± SD of represented experiment.

Results 
OPG expression decrease TRAIL induced cell death

A dose-dependent study revealed that parental ovarian cancer HEY 
cell (express very low level of endogenous Rab2523 was sensitive to both 
FasL and TRAIL (Figure 1A). Expression of Rab25, to the level present 
in patient tumors with amplified RAB25, did not alter sensitivity of 
HEY cells to FasL-induced cell death (Figure 1B). In contrast, Rab25 
expression in HEY cells significantly reduced TRAIL-induced cell death 
(Figure 1C). Gene expression analysis (Supplementary Table 1) did not 
demonstrate detectable changes in the expression of death receptors 
(DR4 and DR5), decoy receptors (DcR1 and DcR2), and downstream 
signaling molecules proposed to mediate the action of TRAIL but not 
FasL in cells expressing Rab25. In agreement with the gene expression 
data, on western blotting DR4 and DR5 protein levels were not altered 
by Rab25 expression (Supplementary Figure 1). 

OPG, a soluble decoy receptor for RANKL, also binds TRAIL as a 
decoy receptor and blocks its ability to activate death receptors [20]. 
Hence, we measured the effect of Rab25 on levels of OPG in culture 
media. Strikingly, secreted OPG levels were significantly higher in 
Rab25 expressing cells (Figure 1D), while down regulation of Rab25 
expression by Rab25-specific RNAi decreased OPG levels, suggesting 
that Rab25 expression could either increase OPG production and/or 
release. Similar to the observations from HEY cells, expression of Rab25 
in IOSE80ht and SKOV3 reduced cell death induced by TRAIL, but not 
by FasL (Supplementary Figure 2). Thus the ability of Rab25 to increase 
release of OPG could result in inactivation of TRAIL and decreased 
TRAIL-induced cell death in Rab25 expressing cells. Indeed, addition 
of 100 ng/ml of exogenous OPG to the culture media significantly 
reduced cell death induced by TRAIL in HEY cells transfected with 
empty vector, while only modest and non-significant effects were 
observed in Rab25 expressing HEY cells, which already produced high 
levels of endogenous OPG (Figure 1E). Consistent with the lack of 
effect of Rab25 on FasL-induced death, addition of exogenous OPG 
did not block FasL-induced cell death suggesting that OPG neutralizes 
TRAIL but not FasL action consistent with the ability of OPG to bind 
TRAIL and not FasL (Figure 1E).

Rab25 regulates both OPG expression and secretion

The elevated OPG levels in culture media from Rab25 expressing 
cells could be due to increased transcription and translation, altered 
protein stability and/or increased secretion. We have recently 
reported the mRNA expression profile of A2780 cells expressing 
Rab25 (GSE28299) [24]. Based on this dataset, Rab25 induced a 1.7 
fold increase in OPG mRNA expression. To further evaluate the 
relationship between Rab25 and OPG mRNA expression, we examined 
OPG mRNA levels in four addition cell lines stably expressed Rab25 
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[23]. Although all of the Rab25 expressing cell lines demonstrated 
increased OPG in culture supernatants (Figure 1D), mRNA levels as 
assessed by transcriptional profiling were only increased in HEY and 
MCF7 cells (Supplementary Table 2). Thus in a subset of cell lines that 
release OPG into the media, Rab25 is able to increase mRNA levels.

As assessed by qPCR, Rab25 increased OPG mRNA levels in HEY 
cells (Figure 2A) consistent with the ability of Rab25 to increase OPG 
transcript levels (Supplementary Table 2). Although OPG and Rab25 
mRNA levels are low in pcDNA expressing HEY cells (Figure 2A), they 

were effectively decreased by OPG RNAi and Rab25 RNAi, respectively 
(Supplementary Figure 3). However, as OPG levels in pcDNA 
expressing cells are below the detection limit of the OPG assay, these 
siRNAs did not detectably alter OPG production (data not presented). 
In contrast, siRNA knock down of OPG in Rab25 expressing HEY cells, 
effectively decreased both OPG mRNA levels (Figure 2B) and OPG 
release into culture media (Figure 2C). In Rab25 expressing HEY cells, 
Rab25 siRNA only modestly decreased Rab25 mRNA levels with Rab25 
mRNA levels in siRNA treated cells still being much higher than Rab25 
levels in parental HEY cells (Figure 2B). The degree of knockdown of 
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Rab25 by Rab25 siRNA in Rab25 expressing HEY cells was not sufficient 
to decrease OPG mRNA levels (Figure 2B); however, it was sufficient to 
modestly decrease OPG protein levels in cell supernatants (Figure 2C). 
Thus Rab25 may independently regulate OPG mRNA levels and OPG 
secretion. The decrease of OPG in the culture media induced by OPG 
and Rab25 siRNA resulted in an increased sensitivity toward TRAIL-
induced cell death, whereas there was no effect on FasL induced cell 
death (Figure 2D). Further, addition of exgenous OPG to the OPG and 

Rab25 RNAi transfected HEY cells reduced the degree of cell death 
induced by exogenously added TRAIL (Figure 2E), supporting OPG 
as a mediator of the ability of Rab25 to inhibit TRAIL induced death.

The majority of secretory proteins in eukaryotic cells share a 
common biosynthetic and secretion process with an origin in the 
rough endoplasmic reticulum (RER), followed by transport to the 
Golgi complex. In the trans-Golgi network (TGN), proteins destined 
for secretion are sorted and directed to the classical secretory pathway 
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[26]. As seen in Figure 2F, OPG secretion was inhibited by monensin 
that disrupts the protein translocation within TGN or BFA that inhibits 
protein transport from the ER to the Golgi. As knock down of Rab25 
expression decrease OPG secretion (Figure 2C) and monensin can trap 
OPG in the golgi apparatus (Figure 2F), Rab25 likely plays a role in 
trafficking OPG from the Golgi to cell membrane. Together, our data 
suggest that depending on the cell context, Rab25 can both increase 
transcription and faciltate release of OPG from the cell. 

To assess the generalizability of the role of Rab25 in regulating OPG 
and protecting cells from the effects of TRAIL, we utilized MCF7 breast 
cancer cells as a model, as they express both Rab25 and OPG (Figure 
1D, Supplementary Table 1 and 2). Similar to the results obtained 
with HEY cells, transient transfection of MCF7 cells with Rab25 
siRNA decreased Rab25 mRNA levels, but not OPG mRNA levels 
(data no shown). Again consistent with HEY cells, Rab25 knockdown 
in MCF7 cells decreased OPG levels in the media (Figure 3A), which 
was associated with an increase in sensitivity to TRAIL-induced cell 
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augmented by decreasing expression of OPG and Rab25 in MCF7 cells. a, p < 0.01 vs no drug NT siRNA transfected control, b p < 0.05 vs NT siRNA transfected 
TRAIL treated samples. (C) QPCR detection of OPG and Rab25 mRNA level in MCF7 Rab25 stably knockdown cells (MCF7 sh Rab25). The OPG and Rab25 
expression level in HEY pcDNA was set to 1 for comparison. a, p < 0.01 vs HEY pc DNA control, b,  p < 0.05 vs MCF7 shRNA control (MCF7 sh Cont). (D) Addition 
of exogenous OPG decreased MCF7 cells sensitivity to TRAIL-induced cell death. *, p < 0.05 vs no TRAIL control. (E) OPG and Rab25 mRNA expression in breast 
cancer cell line with respect to TRAIL sensitivity. *, p < 0.05 vs TRAIL sensitive cells.
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death (Figure 3B). Importantly Rab25 knockdown did not alter the 
sensitivity of MCF7 cells to FasL-induced cell death. In support of the 
role of Rab25-mediated OPG expression in the protection of MCF7 
cells from TRAIL-induced cell death, stable Rab25 shRNA knockdown 
(MCF7 shRab25) cells showed a significant decrease of Rab25 mRNA 
level as well as a slight reduction in total OPG mRNA levels (Figure 
3C). As expected from the siRNA data (Figure 3A), stable knock down 
of Rab25 expression resulted in a reduction of OPG levels in culture 
media (Figure 1D). Importantly, Rab25 shRNA increased sensitivity to 
TRAIL- but not FasL-induced cell death (Figure 3D). Critically, addition 
of exogenous OPG (100ng/ml) to the culture media decreased TRAIL-
induced cell death in the Rab25 shRNA expressing MCF7 cells. Thus 
in MCF7 and likely in HEY cells, Rab25 appears to primarily decrease 
OPG trafficking and release. Furthermore, the Rab25-mediated release 
of OPG protects cells from the effects of TRAIL but not FasL. 

We analyzed the expression of OPG and Rab25 mRNA levels in 
18 breast cell-lines with known sensitivity to TRAIL [27]. As seen in 
Figure 3E, TRAIL-resistant cells had higher Rab25 mRNA levels than 
TRAIL-sensitive cells consistent with a role for Rab25 in resistance 
to TRAIL. Interestingly, TRAIL-resistant cells also had modestly 
increased TRAIL mRNA levels (Supplementary Figure 4). However, 
OPG mRNA levels were modestly decreased in TRAIL-resistant cells 
(Figure 3E). Hence, resistance to TRAIL across breast cancer cell lines 
could potentially be due to Rab25-induced OPG secretion as seen in 
our HEY and MCF7 models. 

Signal transduction pathway regulates OPG expression
AKT has been implicated in exocytosis/secretion and we have 

previously reported that Rab25 activates the AKT signal transduction 
pathway, at least in part, by directly binding AKT [23,24]. To examine 
the role of the phosphatidylinositol 3 kinase (PI3K)/AKT pathway in 
Rab25-mediated OPG expression, we measured the effect of PI3K/
AKT pathway inhibition on OPG secretion in HEY cells expressing 
Rab25 based on the high level of OPG production by these cells (Figure 
1D). As seen in Figure 4A, PI3K-AKT inhibitors, including PI103, 
LY294002, GDC0941, MK2206, and SB216763, did not alter OPG 
secretion indicating that PI3K/AKT pathway activity is not required for 
the ability of Rab25 to increase OPG release. In contrast, OPG release 
was significantly reduced by MEK inhibitors including PD98059 and 
AZD6244, indicating that MAPK pathway activity is required for Rab25 
to regulate OPG production (Figure 4B). In terms of generalizability 
the MEK/MAPK pathway inhibitors, but not the PI3K inhibitor, PI103, 
decreased OPG release from MCF7 cells (Figure 4C). 

EGF stimulates OPG expression
EGF, which activates both AKT and MAPK pathways, plays an 

important role in both ovarian and breast cancer pathophysiology [28]. 
Indeed, EGF increased both AKT and MAPK phosphorylation in HEY 
cells Rab25 expression increased both the duration and magnitude 
of EGFR signaling (Figure 5A). In agreement with the prolonged 
activation of EGFR in Rab25 expressing HEY cells, down-regulation 
of Rab25 expression in MCF7 cells reduced both the magnitude and 
duration of EGF-induced AKT and MAPK phosphorylation (Figure 
5B). EGF modestly if at all increased secretion of OPG by HEY cells 
with or without Rab25 expression (Figure 5C). However, in both the 
presence and absence of EGF, PD98059, but not PI103, decreased 
OPG release (Figure 5C). In contrast to HEY cells, EGF markedly 
enhanced OPG secretion by MCF7 cells (Figure 5D). Knock down of 
Rab25 diminished effect of EGF on OPG accumulation in cell media 
(Figure 5D). Again, the effect of EGF on OPG secretion was mediated 
through the MAPK pathway as addition of MEK inhibitors, including 

PD98059, AG1478 and U0126, essentially reversed the effect of EGF 
on OPG secretion (Figure 5D). In contrast, blocking the PI3K pathway 
did not alter OPG production induced by EGF. Interestingly, TGFα, 
gand, but not IGF1 or PDGF, increased OPG release by MCF7 cells 
independent of Rab25 levels (Figure 5E). As expected, EGF-induced 
OPG release is dependent on EGFR activation as both Lapatinib and 
Gefitinib, abolished the effect of EGF on OPG release (Figure 5F). 
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Figure 4:  Signal transduction pathways regulation of OPG expression. (A) 
Effect of PI3K-AKT pathway inhibitor in ovarian HEY cells OPG secretion. 
Cells were treated with PI3K inhibitors (10mM of LY294002 or PI103), AKT 
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Inhibition of the EGFR enhances TRAIL sensitivity 

Since inhibition of EGFR signaling decreased OPG production 
(Figure 5), we tested whether pan-EGFR family inhibitors, Lapatinib 
and Neratinib, could alter effects of TRAIL in HEY and MCF7 cells 
that express both EGFR and HER2, as detected by qPCR and western 
blotting analysis (Figure 6A). As shown in Figures 6B and 6C, pre-
treating HEY and MCF7 cells with either Lapatinib or Neratinib 
enhanced cell death induced by TRAIL independent of the presence 
or absence of Rab25. Again, in agreement with the role of OPG as an 

inhibitor of TRAIL-induced cell death, addition of exogenous OPG 
(100ng/ml) reduced the sensitivity of HEY and MCF7 cells to TRAIL. 

Discussion 
Rab small G proteins represent the largest family of the Ras 

superfamily of monomeric G proteins, with over 60 mammalian gene 
products. Rabs play essential roles in all stages of vesicle trafficking 
including internalization, targeting and cargo selection [29]. The 
Rab11 subfamily, consists of Rab11a, Rab11b and Rab25 (aka 
Rab11c/CATX), are involved in regulating recycling of internalized 
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Figure 5: Rab25 expression enhances EGF activation of AKT and MAPK pathways. (A) Western blotting analysis of EGFR, AKT and MAPK activation after EGF 
stimulation. Ovarian HEY Cells stable Rab25 expression and its control cells (pcDNA) were treated with 100ng/ml EGF for indicated time before protein isolation. Fold 
increase in phosphorylated protein (compared to 0 min EGF stimulation) after normalization of total protein was shown below the figure. (B) Decrease activation of 
AKT and MAPK signal transduction in MCF7 cells stable knockdown Rab25. (C) MAPK inhibitor PD98059 (10mM) but not by PI3K inhibitor PI103 (10mM) blocked 
OPG expression. a, p < 0.05 vs no stimulation control; b, p < 0.05 vs PD98059 alone. (D) Inhibition of MAPK signal transduction abolished EGF stimulation of OPG 
secretion in MCF7 cells. MCF7 shRNA control or Rab25 stably knockdown cells (shRab25) were pretreated with 10mM of PD98059, 1mM of AG1478 or 1mM of U0126 
for 60min before addition of 100 ng/ml of EGF. a, p < 0.01 vs no stimulation control; b, p < 0.01 vs MCF7 sh Control. (E) Stimulation of OPG secretion by 100ng/ml of 
EGFR ligands. a, p < 0.01 vs no stimulation control; b, p < 0.01 vs MCF7 sh Control. (F) Inhibition of EGF stimulated OPG secretion by EGFR inhibitors. MCF7 cells 
were pre-treated with either 1mM of Lapatinib or Gefitinib for 60min before addition of 100ng/ml EGF. Media concentration was measured 24h posted addition of EGF. 
*, p < 0.05 vs no drug control.
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membrane proteins and movement of membrane proteins between 
polarized surfaces of epithelial cells [30]. To date several Rab GTPase 
family members have been shown to participate in regulating cellular 
secretion including members of the Rab11 subfamily [31]. Rab11a 
has recently been identified to play a role in cytokine release [32], in 
addition to its canonical role in regulating apical vesicle recycling [33]. 
Similarly, Rab11b regulates insulin secretion [34]. Unlike Rab11a and 
11b, Rab25 is less well characterized and the endogenous cargoes for 

Rab25-dependent trafficking remain generally unclear. In the present 
study, we demonstrated that Rab25 plays a role in regulating OPG 
release providing a survival advantage for cancer cells in the presence 
of TRAIL. 

OPG binds TRAIL produced by tumor infiltrating monocytes, 
with high affinity [20]. TRAIL binds and induces apoptosis of tumors 
cells while having modest effects on normal cells [35] making it a 
potential therapeutic option. Preclinical studies in mice demonstrated 
that recombinant TRAIL suppresses the growth of multiple human 
tumor xenografts with no apparent systemic toxicity [10]. Recently, 
recombinant TRAIL has entered clinical trials for the treatment 
of cancer [11,36]. Although phase 1 and 2 studies have indicated 
tolerable levels of toxicity, therapeutic efficiency was unfortunately 
disappointing [37]. It is now known that not all tumor cells are 
sensitive to TRAIL despite the expression of the death receptors on the 
surface [38]. Resistance to TRAIL has been proposed to occur through 
multiple mechanisms including: low expression or loss of function of 
TRAIL-R1 and -R2, increased levels of DcR1 or DcR2, elevated levels 
of negative regulators of apoptosis such as cFLIP, upregulation of 
cell survival and proliferation pathways, through mitogen-activated 
protein kinases (MAPK) and nuclear factor-κB (NF-κB) activation, 
and production of OPG [13-16,39]. Our data demonstrated that Rab25 
expression to levels found in human tumors with RAB25 amplification, 
which is associated with aggressiveness of breast and ovarian cancer 
[23], increases OPG levels in the supernatant of cancer cells. The 
release of OPG is sufficient to inhibit TRAIL-induced apoptosis. In 
addition to its function in antagonizing TRAIL-mediated apoptosis, 
recent studies have demonstrated that OPG can promote cancer and 
endothelial cell survival independent of anti-TRAIL effect and also 
induce angiogenesis [18]. Further OPG synthesized and released from 
breast cancer cells exhibits pro-metastatic activity and promotes bone 
specific colonization potential, which is independent of its anti-TRAIL 
and RANKL activity [18]. Hence, the ability of Rab25 to increase OPG 
expression in a subset of cancer cell lines and to increase OPG release 
by the majority of cancer cell lines assessed, suggests that amplification 
of Rab25 may provide survival advantages for cancer cell independent 
of TRAIL and RANKL. Indeed, OPG serum levels have been reported 
to be significantly higher in patients with advanced cancer and those 
with cancer metastatic to bone [18]. In addition, recent studies have 
detected the expression of OPG in ovarian cancer patient ascites 
[40], which protected the ovarian cancer cells from TRAIL-induced 
cell death [41]. Whether elevated Rab25 levels due to chromosome 
1q amplification contributes to the elevated OPG levels in ascites of 
ovarian cancer patients remains to be determined. 

EGF has been reported to block TRAIL-induced apoptosis 
through activation of AKT and subsequent inhibition of cytochrome 
c release, downstream caspase 8 activation and cleavage of BID [42]. 
However, in the cells studied, herein, the major pathway involved in 
OPG release appears to be due activation of the MEK/MAPK pathway. 
Both positive and negative effects of EGF mediated EGFR activation 
on OPG expression have been reported with, EGF stimulating OPG 
expression in prostate LNCaP cells [43], but inhibiting OPG expression 
in oesteoblastic cells [44]. We demonstrated that EGF increased 
OPG production particularly in cells with high levels of Rab25. The 
prolonged activation of the AKT and MAPK pathways induced by 
EGF when Rab25 levels are elevated may be due to increased Rab25 
mediated EGFR recycling to the membrane [29]. However, this also 
renders Rab25-expressing cells more susceptible to pan-EGFR family 
inhibitors as higher cell death was induced by TRAIL in the presence 
of Lapatinib or Neratinib [45]. EGFR inhibitors also increased TRAIL-
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Figure 6: EGFR inhibitor promotes cell death induction by TRAIL. (A) 
Expression of EGFR and ERBB2 in HEY and MCF7 cells was detected by 
qPCR and western blotting analysis. EGFR level in MCF7 cells was set to 1 
for comparison; *, p < 0.05 HEY vs MCF7 cells. EGFR inhibitors increased cell 
sensitivity to TRAIL-induced cell death in ovarian HEY (B) and breast MCF7 
(C) cells. Cells were pre-treated with either 1mM of Lapatinib or Neratinib for 
8h before addition of TRAIL in the present or absent of OPG (100ng/ml). a, p 
< 0.05 vs no drug control; b, p < 0.05 vs TRAIL only without EGFR inhibitor; c, 
p < 0.05 vs TRAIL alone in the present of Lapatinib or Neratinib. 
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induced apoptosis in lung [28] and bladder [46] cancer cells suggesting 
that this may be a generalizable process. Chemotherapeutic agents 
and/or radiotherapy have been found to restore or enhance TRAIL 
sensitivity in a range of tumors including breast [47], prostate [48] and 
lung cancers [49], and in a number of cases a synergistic effect could 
be achieved. 

In summary, increased OPG release in the presence of high 
endogenous Rab25 levels may provide a survival advantage for cancer 
cells and contribute to selection of tumors with elevated Rab25 levels 
[23]. Rab25 may increase OPG production, at least in part, through 
increasing responsiveness to EGFR ligands. Whether a combination of 
TRAIL with EGFR inhibitors will be effective in patients with tumors 
expressing high levels of Rab25 warrants further investigation. 
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