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Cancer is the leading cause of death worldwide [1]. In 2008, it was 
estimated that almost 12.7 million new cancer cases were diagnosed 
and 7.6 million cancer deaths occurred worldwide [1,2]. Cancers of 
lung, colon, breast, liver and prostate alone account for almost half of 
all the deaths [1,2]. Despite advances in surgical procedures, diagnostic 
and therapeutic monitoring technologies, the patient survival rate 
is poor for most cancers [3]. Early diagnosis of cancer can increase 
patient survival rate [4] and is the most promising way to cure cancer 
[5]. Non-invasive plasma or serum based screening of cancer specific 
biomarkers can be an effective diagnostic tool [6,7].

Biomarkers
Biomarkers are measurable indicators of a specific biological state 

[8] and have the potential to enhance patient survival rate dramatically.
Ideally, biomarkers can be used for diagnostic, prognostic, predictive
and pharmacodynamic purposes [7,9]. Whilst diagnostic biomarkers
would aid in the identification of a disease state, prognostic biomarkers
would predict the course of a disease, including its severity. Predictive
biomarkers would gauge response to therapy and pharmacodynamic
biomarkers would allow measurement of near-term effects of drugs,
and assist in dosage selection. While metabolites and antibodies are
used as biomarkers, primarily they are of genomic, transcriptomic
and proteomic origin. Genomic biomarkers exploit DNA aberrations
[10] at the level of chromosomes (e.g., Philadelphia chromosome)
[11], gene amplification events (e.g., ERBB2 amplification in primary
breast cancer tumors [12] and MYCN amplification in neuroblastoma
[13]) and somatic mutations affecting individual base pairs (AKT1
mutations in many cancer types [14]). Even though genomic analyses
are useful, in many instances, changes at these levels are not reflected
at the RNA and protein levels. In addition, epigenetic changes, post-
transcriptional and post-translational modifications have the potential
to drastically alter RNA and protein amounts. Since proteins and
RNAs to a certain extent can be detected in circulating bodily fluids
and are most readily affected by disease, medication and recovery; they
are considered to be promising candidates as biomarkers [3,15]. As the
majority of biomarker analysis are based on the proteins/RNA that can
be detected in bodily fluids, the mechanisms by which proteins and
RNA are secreted/released by cancer cells are discussed below.

Cancer Secretome and Protein Secretion Pathways
Cancer secretome can be defined as the total set of proteins released 

by classical and non-classical secretory pathways from cancer cells 
into the surrounding microenvironment. In the classical secretory 
pathway [16-18], proteins are synthesized with signal peptides which 
target them to lumen of the endoplasmic reticulum (ER). After the 
protein is translocated through the ER membrane, its folding, sorting 
and covalent modifications occur in the ER and Golgi [19]. Secretory 
vesicles containing the protein bud off from the Golgi apparatus and 
fuse with the plasma membrane (PM) to release the contents through 
the process of exocytosis (Figure 1). In contrast to the classical 
secretory pathway, proteins released by the non-classical secretory 
pathways (Figure 1) are devoid of signal peptides and are independent 

of the ER and Golgi [20]. Currently, at least five non-classical secretory 
mechanisms are characterized i, exosomes ii, shedding microvesicles 
iii, ectodomain shedding iv, membrane transport channels, and v, flip 
flop.

Exosomes are 40-100 diameter membranous nanovesicles that are 
released into the microenvironment upon fusion of the multivesicular 
bodies (MVBs) with the PM [21]. They are involved in intercellular 
signaling and contain both luminal and membrane proteins from the 
host cell [22]. Ectosomes or shedding microvesicles (SMVs) are large 
membranous vesicles (50-1000 nm diameter) that are shed directly 
from the PM of a wide variety of cell types [23-26]. Following blebbing 
(outward protrusion) of the PM, fission of the PM stalk detaches the 
cytoplasmic protrusions resulting in the formation of SMVs [27]. 
Another well documented mechanism of extracellular protein release 
is ectodomain shedding [28]. Proteolysis on the exosomes, SMVs 
and cell surface, releases ectodomains of membrane proteins into 
the extracellular microenvironment [29,30]. In an unconventional 
manner, proteins such as fibroblast growth factors-1 and -2 are capable 
of translocating from the cytoplasm directly through the PM into the 
extracellular space [31-33]. Finally, the flip flop mechanism mediates 
secretion of proteins (e.g., HASPB) anchored to membrane through 
dual acylation in the N-terminus [34,35]. Proteins translocating 
to the extracellular space through the flip flop mechanism lacks 
transmembrane spanning domains or glycosylphosphatidylinositol 
anchor [34]. Even though the unconventional PM based transport 
channel and the flip flop mechanisms are documented in the literature, 
they are still not studied thoroughly in different cell models.

Current State of Biomarker Studies 
Since the ultimate goal of biomarker discovery is to develop a 

non-invasive blood test, it is only natural that blood be the sample 
of choice. As blood is thought to contain a sampling of every single 
tissue in the body, it is considered ideal for mining biomarkers [7]. 
Unfortunately, for the very same reason, blood is complex and difficult 
to work with as they contain an abundance of core proteins from 
albumin to cytokines which must be depleted prior analysis [8]. To 
overcome the complexity of blood, alternative biomarker discovery 
approaches have been pursued, including proteomic analysis of cancer 
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cell lines, cancer tissues and proximal body fluids. Cancer secretome 
studies are often performed for the quest of identifying biomarkers 
that can potentially allow clinicians to diagnose cancer patients in non-
invasive manners. In case of colorectal cancer (CRC), CEA is the most 
widely used biomarker associated with CRC screening. However, the 
lack of sensitivity and specificity of the test renders it unsuitable for 
clinical screening. Elevated serum levels of CEA are not only detected 
in CRC patients but also in lung, cervix [36], breast [37], gastric [38] 
and pancreatic [39,40] cancer patients. With the increase in diagnostic 
screening efficiency, these studies prompt the use of biomarker 
panels rather than one protein marker to improve the sensitivity and 
specificity of the test.

Wu et al. [41], profiled the secretome of 21 cancer cell lines from 12 
cancer types including leukemia, nasopharyngeal, cervical, epidermoid, 
ovarian, uterine, pancreatic, colon, bladder, hepatocellular, lung and 
breast cancers. Comparative proteomic analysis of 21 cancer cell line 
secretomes resulted in the identification of collapsin response mediator 
protein-2 (CRMP2) as a potential biomarker for CRC. Sensitivity of 
CRMP2 in CRC patient plasma was found to be 60.5% superior to 
the sensitivity of CEA which was found to be 42.9%. Interestingly, 
combination of the CEA and CRMP2 increased the sensitivity from 
42.9% to 76.8%. Similarly, Kulasingam et al. [42], compared the 
secretome profile of three breast cancer cell lines (MCF-10A, BT-

474 and MDA-MB-468). Comprehensive comparative proteomic 
analysis resulted in the identification of activated leukocyte cell 
adhesion molecule (ALCAM) as a potential biomarker. Validations 
were performed on a set of 150 normal and 150 cancer patient serum 
samples. Area under the curve (AUC) was recorded as 0.78 for ALCAM 
outperforming classical markers such as CA15-3 (AUC:0.70) and CEA 
(AUC:0.63). Again in this study, combination of CA1503 and ALCAM 
increased the diagnostic efficiency (AUC:0.81) compared to the use of 
one marker alone.

Exploiting the Topography of a Cancer Cell - Driver 
and Passenger Mutations

Cancer arises as a consequence of accumulated mutations in key 
proteins that regulate cell proliferation, differentiation and death 
[43,44]. Recent studies involving genome-wide analysis for all somatic 
mutations revealed that ~40-100 amino acid mutations can be detected 
in a complex cancer genome [40,45,46]. When plotted on a two-
dimensional map where each gene is represented by one point, these 
formed 'mountains'. The majority of mutated genes however, only 
formed 'hills' (mutated in only a few cancers). This discovery leant 
weight to the theory that most cancers are not caused by just a few 
mutations, rather by a large number of mutations, and each one brought 
its own fitness advantage [47]. Such somatic mutations are popularly 

Figure 1: Classical and non-classical protein secretion pathways. Classical and non-classical modes of protein secretion are depicted. In the ER/Golgi dependent 
classical secretory pathway (denoted as 1), proteins are synthesized with signal peptides which target them to lumen of the ER. Secretory vesicles containing the 
protein bud off from the Golgi apparatus and fuse with the PM to release the contents through the process of exocytosis. Proteins released by the non-classical 
secretory pathways are devoid of signal peptides and are ER/Golgi independent. SMVs are large membranous vesicles (50-1000 nm diameter) that are shed directly 
from the PM of a wide variety of cell types (denoted as 2). Proteins such as fibroblast growth factors-1 and -2 are capable of translocating from the cytoplasm directly 
through the PM into the extracellular space in an unconventional manner [31-33] (denoted as 3). Proteolysis on the exosomes, SMVs and cell surface, releases 
ectodomains of membrane proteins into the extracellular microenvironment (denoted as 4). Exosomes, 40-100 diameter membranous nanovesicles, are released into 
the microenvironment upon fusion of the MVBs with the PM (denoted as 5). Flip flop mechanism mediates secretion of proteins (e.g., HASPB) anchored to membrane 
through dual acylation in the N-terminus [34,35] (denoted as 6).
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referred to as 'drivers'. Cancerous cells also accumulate somatic 
mutations which do not confer any particular growth advantage to the 
cell, but are present merely because they happened to be present when 
a driver became active. Such mutations are termed 'passengers'. Most 
importantly, driver mutations, by their very role in tumor progression, 
are uniquely positioned to be the promising biomarkers. They give 
the much needed specificity for cancer, only tumor cells will produce 
mutant proteins or RNA, and by virtue of their function, they can 
potentially direct attention to malfunctioning pathways.

Mutant Proteins as Biomarkers
Recently, Wang et al. showed that altered protein products 

of somatic mutations could be identified and quantified by mass 
spectrometry (MS) [48]. Using MS-based selected reaction monitoring 
(SRM), they were able to distinguish between normal and mutant 
forms of the KRAS protein (G12D) without the use of mutant-specific 
antibodies in cell lines, tissues samples and bodily fluids. The study 
showed that the SRM technique could easily be used on complex 
biological samples which are routinely encountered in clinical setups. 
In addition, the study revealed that the technique is sensitive enough 
to detect minute quantities of mutant forms, as little as 10 fmol. The 
advantages of SRM include high specificity, readily available reagents 
and allows for analysis of multiple proteins, unlike DNA based 
approaches, thereby saving precious sample material. Moreover, the 
technique requires no antibody against the mutant form and can be 
used to assay proteins with multiple mutations. One of the drawbacks 
of the technique is the amount of sample required which may be too 
high for practical use in clinical settings. While the technique can be 
reproduced using many different proteins, the authors quantified 
mutant KRAS, an intracellular protein, in biopsies. However, the use 
of secreted mutant proteins might increase the usability as it can be 
assayed in non-invasive manners.

Another recent study by our group focussed on the identification 
of mutated proteins from the secretome of 18 cell lines representing 
different stages and underlying mutation status of colorectal cancer, 
using a technique that we termed 'iMASp' [49]. Because MS-based 
protein identifications often rely on search engines with existing 
sequence databases [50], if the mutated sequence is not present in the 
database, the mutation will be undetected. For this reason, we employed 
an integrated genomics and proteomics strategy to create a Human 
Protein Mutant Database (HPMD), against which experimentally-
derived secretome peptide spectra were searched. HPMD was created 
using publicly available datasets of known functional mutations (31,479) 
and SNPs (140,440 mutations) from UniProt [51], Protein Mutation 
Database, OMIM and SysPIMP [52]. Using iMASp, we detected 112 
putative mutated tryptic peptides (corresponding to 57 proteins) from 
a panel of 18 human CRC cell line secretome data. The technique, when 
applied to publicly available MS-based CRC tissue homogenates, was 
able to detect 3 mutations that were also detected in CRC cell lines. 
Among the 112 mutations, 8 mutations were validated by RT-PCR and 
cDNA sequencing. Whilst the method has the potential to uncover 
many functional mutations at the protein level, we emphasise caution 
in interpreting the results as the use of large sequence databases and MS 
datasets has a very high correlation with increased false discovery rates 
[53]. Validations at the genomic/transcriptomic levels are needed to 
confirm the identified mutations. The iMASp technique is transferable 
to the analysis of cancer tissue samples as well. Though it is a proof-of-
principle study, the study showed that many of the mutant proteins 
are secreted by cancer cells. The possibility of an altered extracellular 

localization of a mutated protein affords unparalleled opportunity to 
exploit such mutant proteins as cancer biomarkers. If such mutant 
proteins are also drivers, it provides the specificity that seems to lack 
from wild type proteins.

Exosomes and Ectosomes are Treasure Chests for 
Biomarker Discovery

Extracellular vesicles (EVs) are membraneous vesicles released by a 
variety of cells into the extracellular microenvironment [21,54]. Based 
on the mode of biogenesis, EVs can be classified primarily into ectosomes 
or SMVs and exosomes [21]. Exosomes are 40-100 nm diameter 
extracellular organelles of endocytic origin that are released by various 
cell types [55]. Inward budding of endosomal membranes results in the 
progressive accumulation of intraluminal vesicles (ILVs) within large 
MVBs. Whilst the transmembrane proteins are incorporated into the 
invaginating membrane, the cytosolic components are engulfed within 
the ILVs [56]. The MVBs can either traffic to lysosomes where they are 
subjected to proteosomal degradation or fuse with the PM to release 
their contents (ILVs) into the extracellular space as ‘exosomes’. The 
density of exosomes varies from 1.10 - 1.21 g/ml and the commonly 
found markers of exosomes are Alix, TSG101, tetraspanins and heat 
shock proteins [57]. SMVs are large EVs ranging between 50 – 1000 nm 
in diameter [58]. They are shed from cells by outward protrusion (or 
budding) of a plasma membrane followed by fission of their membrane 
stalk [23,27]. SMVs are released by a variety of cells including tumour 
cells, polymorphonuclear leucocytes and erythrocytes [27]. The 
expression of phosphatidylserine (PS) on the membrane surface has 
been shown to be one of the key characteristic features of SMVs [27,58].

As exosomes and SMVs are secreted/released into the extracellular 
microenvironment and can be assessed in bodily fluids, significant 
interest have been created on these bioactive vesicles as possible 
reservoirs of biomarkers [15,59,60]. Additionally, exosomes and SMVs 
contain proteins, RNA and lipids that are reflective of the host cell 
[22,58]. Exosomes released by CRC cells have been shown to contain a 
CRC tissue-specific signature and also contained proteins of the cancer 
hallmarks [22,61]. Exosomes were observed in vivo in blood plasma of 
ovarian cancer [59] and lung cancer [62] patients. Interestingly, these 
studies revealed that plasma-exosome levels were increased in patients 
with advanced disease (e.g., mean 2.85 mg/mL exosomes for lung 
cancer adenocarcinoma patients compared with 0.77 mg/mL exosomes 
in the blood of normal volunteers [62]). In a recent study, Nilsson et 
al. detected the fusion gene TMPRSS2:ERG in exosomes isolated from 
the urine of prostate cancer patients [60]. Similarly, oncogenic receptor 
EGFRvIII is shown to be released by microvesicles [15,25,63].

Conclusions
Decades of discovery phase biomarker studies have identified 

numerous potential biomarkers for cancer. Some of the biomarkers 
translated into clinical settings often lack the required specificity and 
sensitivity for a routine clinical test. Whilst there is general agreed 
consensus that a panel of biomarkers will increase the diagnostic 
efficiency, the current protein/RNA based biomarker analyses often 
assay for wild type forms. Except for two recent studies, the mutant 
forms of the proteins that are indicative of oncogenesis are assayed 
in limited conditions. Assaying for protein mutations as disease 
biomarkers provides the required specificity for a biomarker test as 
mutant proteins are encoded by disease cells. Such mutant proteins 
can be assayed non-invasively in bodily fluids (in soluble secreted and 
EV fractions) and in tissue biopsies for intracellular mutant proteins. 
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Additionally, mutant RNA can be assayed in EVs in bodily fluids. 
Perhaps already used biomarkers such as CEA and PSA can be used in 
conjunction with mutant proteins/RNA to increase the specificity and 
sensitivity of the test.
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