MATERIALS SCIENCE \& ENGINEERING: Quantum alphabet of matter language - Eugene Machusky - National Technical University of Ukraine "Kyiv Polytechnic Institute", Ukraine

Eugene Machusky

Abstract

For the first time, quantum physics was interpreted as a system of information communication, combining calculations and measurements in the framework of differential geometry and the inverse topology of an oscillating 137 polyhedron. As a result, only the functional relationships of the two transcendental numbers PI and E with three unique integers A, R, B were necessary and sufficient for the analytical determination of basic quantum units with practically unlimited accuracy $1 / 10 \wedge$ 64: $A=137$ (integer of Sommerfeld), $\mathrm{R}=105456978$ (integer of Dirac), $\mathrm{B}=$ 602214183 (Avogadro's integer). The key to quantum computations is the squared sum of arithmetical, geometrical, harmonic and rms: SMS [PI...E] $=\left[\operatorname{Sqrt}\left(\left(\mathrm{PI} \wedge 2+\mathrm{E}^{\wedge} 2\right) / 2+(\mathrm{PI}+\mathrm{E}) / 2+\operatorname{Sqrt}\left(\mathrm{PI}{ }^{*} \mathrm{E}\right)+2^{*} \mathrm{PI} * \mathrm{E} /(\mathrm{PI}+\mathrm{E})\right]^{\wedge} 2\right.$ $=[136.9938985020083593]$ that very close to $137=$ A. Four matrix equations describe the inverse geometry of simultaneously pulsating and rotating polyhedron: Relative inverse eccentricity of Sommerfeld $[\mathrm{A}]=\left(100^{*}([\mathrm{R}]-1) / 2\right.$. $\mathrm{E}) /\left(1+\operatorname{Sqrt}\left(2^{*} \mathrm{PI}^{*} \mathrm{E} / 100\right)\right)$. Relative inverse radius of Dirac $[\mathrm{R}]=$ $1+2 / 100^{*}\left(\mathrm{E}+[\mathrm{A}]^{*}\left(1+\operatorname{Sqrt}\left(2^{*} \mathrm{PI}^{*} \mathrm{E} / 100\right)\right)\right.$). Relative inverse perimeter of Planck $[\mathrm{P}]=2^{*} \mathrm{PI}^{*}[\mathrm{R}]$. Relative density of perimeters of Newton $[G]=[P]^{*}(1+[A])$. Six matrix equations describe dynamics of threedimensional wave fronts motion: Relative velocity $[\mathrm{V}]=[\mathrm{R}]^{\wedge} 64^{*} 10^{\wedge} 7$. Relative energy $[\mathrm{W}]=$ $1+[\mathrm{V}] \wedge 2$. Relative amplitude displacement $[\mathrm{MM}]=12-[\mathrm{A}] / 10$. Relative phase displacement $[\mathrm{KB}]=\operatorname{Cos}[\mathrm{MM}]-\operatorname{Sin}[\mathrm{MM}]$. Relative information entropy [NA] = $\left\{\operatorname{Sqrt}\left(8^{*} \mathrm{PI}{ }^{*} \mathrm{E} /\left(8^{*} \mathrm{PI}^{*} \mathrm{E}+\mathrm{A}^{\wedge} 2\right)\right) /\left(1+2^{*}[\mathrm{~A}] / 1000\right) \quad+5 / 10^{\wedge} 8\right\} / 10$. Relative inverse information entropy $[\mathrm{DA}]=1 /[\mathrm{NA}] / 100$. Ten scaling units coordinate binary [0...1], quantum binary [0.00000000>...1.11111111>], decimal [0...10], quantum decimal [0,00000000>...9.99999999>], alpha [0...137] and quantum natural [0...SMS] computations: Integral rotational speed of Maxwell $\mathrm{C}=\left(\mathrm{R} / 10^{\wedge} 8+4^{*} \mathrm{PI}{ }^{*} \mathrm{C} / 10^{\wedge} 18\right)^{\wedge} 64^{*} 10^{\wedge} 7=$ [299792457.86759134]. Integral of Sommerfeld A1 $=1 / \mathrm{A}=$ Sum\{729927/10^(8*N) $=[0.0072992700729927]$.

Inverse integral of Sommerfeld $A S=1 / 100 / \operatorname{Sum}\{[\mathrm{A}+(\mathrm{A}$ $\left.\left.100)^{*} \mathrm{~N}\right] / 10^{\wedge}\left(3^{*} \mathrm{~N}+2\right)\right\}=\quad[0.00729]$. Fine eccentricity of Feynman $\mathrm{AF}=1000 /$ Integer $\left\{1000 * \operatorname{Sqrt}\left(\mathrm{~A}^{\wedge} 2+\mathrm{PI} \wedge 2\right)=\right.$ [0.0072973525205056]. Integral of Avogadro BS = $\operatorname{Sum}\left\{\mathrm{B} / 10^{\wedge}\left(3^{*} \mathrm{~N}+11\right)\right\}=[0.00602817]$. Entropy limit of Avogadro $\mathrm{NB}=\mathrm{B} /\left(1+4^{*} \mathrm{PI} / 10^{\wedge} 8\right) / 10^{\wedge} 11=$ [0.0060221410732354]. Background temperature limit of Kelvin $\mathrm{K}=\mathrm{E}+\mathrm{AS}+\mathrm{BS}=[2.7315999984590452]$. Displacement factor of Wien $\mathrm{X}=\operatorname{Root}\left\{\mathrm{X}^{*} \mathrm{E} \wedge \mathrm{X} /(\mathrm{E} \wedge \mathrm{X}-1)=5\right\}=$ [4.9651142317442763]. The functional relations of PI and E generate thirteen basic "consonant" of quantum alphabet: Upper parabolic limit of eccentricity A4 =. $\left(\mathrm{PI}^{*} \mathrm{E} / 100\right)^{\wedge} 2+\left(1 / \mathrm{A}-\left(\mathrm{PI}^{*} \mathrm{E} / 100\right)^{\wedge} 2\right)=0.0073189621138002$. Upper hyperbolic limit of eccentricity $\mathrm{AH}=1 /\left(16^{*} \mathrm{PI} *\right.$ E) $=$ 0.0073187289405399 . Upper elliptic limit of eccentricity $A(N B)=0.0073131309589000$. Upper logarithmic limit of eccentricity $\mathrm{AL} \quad=\quad 1 /\left(\operatorname{Ln}(\mathrm{E})+59^{*} \operatorname{Ln}(10)\right)=$ 0.0073071361524362 . Hyperbolic symmetry point of eccentricity $\mathrm{A} 1=.1 / \mathrm{A}=0.0072992700729927$. Biquadratic symmetry point of eccentricity $\mathrm{AF}=0.0072973525205056$. Parabolic symmetry point of eccentricity $\mathrm{A} 0=.\left(\mathrm{PI}^{\star} \mathrm{E} / 100\right)^{\wedge} 2=$ 0.0072927060593902 . Qubit symmetry point of eccentricity AS $=1 / 100 /(1.111111111111>)^{\wedge} 3=0.0072900000000000$. Upper limit of nuclear radius $\mathrm{RC}=\mathrm{R} / 10^{\wedge} 8+4^{*} \mathrm{PI}{ }^{*} \mathrm{C} / 10^{\wedge} 18=$ 1.0545697837673031. Upper median of nuclear radius $\mathrm{RE}=$ $R / 10^{\wedge} 8+1 / E / 10^{\wedge} 8=1.0545697836787944$. Lower median of nuclear radius $\mathrm{RA}=\mathrm{R} / 10^{\wedge} 8+1 /(\mathrm{E}+\mathrm{AS}) / 10^{\wedge} 8=$ 1.0545697836787944. Lower limit of nuclear radius RK $\mathrm{R} / 10^{\wedge} 8+1 /(\mathrm{E}+\mathrm{AS}+\mathrm{BS}) / 10^{\wedge} 8=1.0545697836608581$. Lower limit of eccentricity $\mathrm{AX}=5 / \mathrm{X}-1=0.0070261763632109$. Medians of "consonants" generate "vowels" of the quantum alphabet: Background ('relic") temperature TBG = [2.72525432756]. Vibrational tempo $T=$ [2.99792456086] * $10{ }^{\wedge}+8$.

This work is partly presented at International Conference on MATERIALS SCIENCE \& ENGINEERING

June 25-26, 2019

[^0]
[^0]: Eugene Machusky
 National Technical University of Ukraine "Kyiv Polytechnic Institute", Ukraine, E-mail: sivera@ukr.net

