

Quantitative Taxonomy of Osmanthus fragrans Cultivars in Jingzhou

Sun Taoze, Dongling L, Mu Hongna*

College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China

ABSTRACT

This investigation had been implemented for checking *Osmanthus fragrans* Resources. In this paper, 29 classified characters were selected based on our preliminary research foundation of O. *fragrans* in Jingzhou city parks, then O. *fragrans* quantitative classification of 24 cultivars was carried out by SPSS analysis. The results showed principal component contribution rate was scattered, which is not an ideal method for quantitative classification of O. *fragrans* cultivars. The method of Walder was the best among seven clustering methods. The clustering results showed that there was a long relationship between autumn *Osmanthus* and Asiaticus Group. In addition, flowering season, flower color and fertility were very important for O. *fragrans* cultivars classification should not be too entangled with their color, but mainly based on flowering date. The comprehensive evaluation of inflorescence type, flower color, leaf color and other morphological characteristics played necessary reference role for the traditional variety classification method.

Keywords: Osmanthus fragrans; Quantitative classification; Principal component analysis; cluster analysis

INTRODUCTION

Osmanthus fragrans is a species of Oleaceae family. It is one of the well-known flowers in China for its wonderful meaning, pleasant aroma and good economical values in food, medicine, industry and landscape architecture [1-5]. Because the origin and distribution center of *O. fragrans* locates in China, there are plenty of cultivars, which composed of colorful and fragrance cultivars [6] and color-leaves [7]. Different characteristics for every Cultivars Group. Luteus Group is more suitable for food processing, nutrition and health products development. Asiaticus Group plays vital important role in offsetting flower gap in winter. It was necessary to find out the current situation of *O. fragrans* cultivars in local areas, which had theoretical and practical significance for improving the effect of urban greening and beautification.

Quantitative taxonomy, as a frontier discipline, has developed rapidly in recent years with the development of computer technology, especially with the emergence of various statistical software. Quantitative taxonomy has gradually become an important method for studying variety classification [8,9]. The study on quantitative classification of *O. fragrans* cultivarshad great significance to the improvement of *O. fragrans* classification system in future [10-12].

MATERIALS AND METHODS

This research was carried out based on the tradition classification of *O. fragrans* in Jingzhou [13]. All the materials were distributed in Mingyue Park, Sanguo Park, Zhongshan Park and Binjiang Park respectively. All materials, *O. fragrans* tree, were listed in Table 1.

Selection and coding of classified characters

Through the observation and analysis of *O. fragrans* cultivars, 29 relatively stable traits reflecting the differences of characteristics among cultivars were selected as quantitative classification traits. Five of them were binary traits (abbreviated as "two"), 16 were polymorphic traits (abbreviated as "many"), and eight were continuous numerical traits (abbreviated as "number"). The detailed information was presented in Table 2.

Statistics and analysis

The principal component analysis and cluster analysis had been carried out by SPSS 25.0 software according to those selected 29 classical traits of *O. fragrans*. As for cluster analysis methods, the Wald method and Square Euclidean distance had been chosen, and then operations were carried out. Intergroup connection, Intragroup connection, nearest element, Farthest neighbor element, Centroid clustering and Median clustering were utilized

Correspondence to: Mu Hongna, College of Horticulture and Gardening, Yangtze University, Jingzhou, China, Tel: 8615927891434; E-mail: 523320612@qq.com

Received: May 16, 2019; Accepted: May 30, 2019; Published: June 07, 2019

Copyright: © 2019 Taoze S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Taoze S, Dongling L, Hongna M (2019) Quantitative Taxonomy of Osmanthus fragrans Cultivars in Jingzhou. J Hortic 6: 258. doi: 10.35248/2376-0354.19.06.258

Table 1: Cultivar names of Osmanthus fragrans in Jingzhou.
--

Number	Cultivars name	Investigation sites	Number	Cultivars name	Investigation sites
1	Sijigui	MY	13	Taoyehuang	SG
2	Dahua Zaoyingui	MY	14	Jiaorong	SG
3	Zhaoxia	SG	15	Juye Sijigui	SG
4	Chi Dangui	SG	16	Chuizhihuang	ZS
5	Zhusha Dangui	SG	17	Yinsu	ZS
6	Zidangui	SG	18	Dayehuang Jingui	ZS
7	Chenghong Dangui	SG	19	Daye Yingui	ZS
8	Wuhan Qiancheng	SG	20	Zigeng	ZS
9	Jinqiugui	SG	21	Xiaoye Sijigui	ZS
10	Hongshizi	SG	22	Duanbingzi Yingui	ZS
11	Boye Jingui	SG	23	Jiangnanliren	BJ
12	Daye Sijigui	SG	24	Liuyesugui	BJ

Note: MY-Mingyue Park; SG-Sanguo Park; ZS-Zhongshan Park; BJ-Binjiang Park

Table 2: The characters and codes of Osmanthus fragrans cultivars.

Number	Traits	Coding type	Coding value					
1	Crown tightness	Many	dense crown(0); middle(1); Sparse crown(2)					
2	Branchlet growth	Many	<pre>strong(0); middle(1); slim(2)</pre>					
3	Annual branch length	Number	Short(0) : ≤8cm; middle(1):9-15cm; long(2):≥16cm					
4	Leaf type	Two	single(0); doubles(1)					
5	Leaf shape	Many	Long oval(0); oval (1); wide oval (2); Obovate-oval (3); ovate-oval (4)					
6	Leaf texture	Two	Leathery(0); Thick leathery(1)					
7	Leaf vein	Two	Obvious(0); less obvious(1)					
8	Leaf margin	Many	Entire leaf(0; entire leaf or little serrate(1; exceed 1/2 serrate(2); serrate(3)					
9	Edge curvature	Many	<pre>flat(0); slightly ripple (1); ripple(2)</pre>					
10	Leaf involute	Many	<pre>flat(0); slightly involute(1); V shape(2)</pre>					
11	Leaf apex shape	Many	<pre>acute(0); acuminate(1); mucronate(2); trailing edge(3)</pre>					
12	Leaf base shape	Many	circular(0); broad wedge(1); wedge(2); Leaf base extension(3)					
13	Leaf gloss	Many	glossiness(0); little gloss(1); gloss(2)					
14	Leaf length	Number	short(0) : 6-7cm; middle(1):8-12cm; long (2):17-20cm					
15	Leaf width	Number	Narrow(0) : 2.5-3cm; middle(1) : 3-4cm; wide (2) : ≥7cm					
16	Lateral vein	Number	Few(0) : ≤7pairs; middle(1) : 7-10 pairs; many(2):≥10 pairs					
17	Petiole length	Number	short(0) : ≤7mm; middle(1) : 7-12mm; long(2) : ≥12mm					
18	Blossom season	Two	everblooming (0); Autumn(1)					
19	Blossom period	Many	Early(0) : Mid-late August-early September; middle(1) : Mid-September to Mid-October; late(2): in Mid-October and later					
20	Peduncle	Two	yes(0); no(1)					
21	Peduncle color	Many	Yellow-green (0); apex green and base red (1); red or Purplish red (2)					
22	Petal shape	Many	Narrow (0); Obovate (1); Obovate oval (2); broad rounded (3)					
23	Petal morphology	Many	<pre>flat(0); Oblique(1); slightly involute(2); involute(3); Tai Ge(4)</pre>					
24	Petal color	Many	Creamy yellow(0); orange yellow(1); light orange(2); orange-red(3); golden yellow (4); yellow (5); light yellow (6); dark yellow (7); yellow-white(8)					
25	Ovary development	Many	Development(0); Development but no fruit (1); degeneration(2)					

26	Flower numbers	Number	few(0) : ≤5 ; middle(1):6-7; many(2) : ≥8
27	Peduncle length	Number	short(0):<7mm; middle (1) : 7-11mm; long (2):>11mm
28	Flower diameter	Number	small(0) : <7mm; middle(1):7-9mm; big(2):>9mm
29	Fruit shape	Many	No (0); egg shape(1); ellipsoid(2); sub-globose(3)

as reference. Next comparison and analysis had been implemented between the former and the latter.

RESULTS AND ANALYSIS

After the standardization of the original data, the total variance explanations of 29 principal components of traits (some of the principal components involved in the analysis are listed in Tables 3 and 4) and the tree clustering maps of Q-type clustering of 26 traits are obtained by SPSS software operation (Figures 1 and 2).

Results of principal component analysis

10 principal components were extracted from the principal component analysis, with a cumulative contribution rate of 84.985% (Table 3). This result illustrated that the contribution rate of principal components was relatively scattered, and the principal component analysis method was not feasible in the study of quantitative classification of *O. fragrans*. However, it also showed the characteristics diversity and the complexity of *O. fragrans* cultivars. It also showed that *O. fragrans* cultivars were evolving in many directions, which resulted in different branching groups. The principal component analysis method provided a quantitative basis for the evolution of *O. fragrans*.

In addition, the contribution rates of the top four principal components were 14.348%, 12.729%, 12.621% and 10.091% respectively Tables 3 and 4. Among them, flowering season (0.832), annual branch length (0.690), flowering period (0.637), and other characteristics were more important composition of the

first principal component. Branchlet growth (0.905), pedicel color (0.723), leaf margin (0.516) had more contribution to the second principal component than others. Similarly, traits with higher contribution to other principal components can be identified also. According to the results of principal component analysis, when classifying O. *fragrans* cultivars, priority should be given to the characteristics of flowering period, pedicel color, petal shape, petal color, leaf shape, leaf texture and leaf gloss.

Results of cluster analysis

Although the same data, the analyzed outcomes would be varied in pace with different clustering methods. Before clustering data analysis had been done, clustering analysis methods should be compared and taken a decision [10]. This paper compares intergroup join, intra-group join, nearest neighbor element, farthest neighbor element, centroid clustering, median clustering and Walder method (Figures 1 and 2). Cluster map reflects the distance of the genetic relationship of sample materials, the earlier they gather together, the closer the genetic relationship. From the graph, we can see that different clustering methods have different results.

We chose the Walder method, which had the best clustering effect for analysis, after comparing with all the others clustering graph illustrated in Figure 3. Twenty-four O. *fragrans* cultivars were grouped into five groups when L1 (lambda=16.992) was taken as the binding line (Figure 1). The first group consisted of two cultivars of Asiaticus Group ('Citrus leaf Sijigui', 'Big leaf Sijigui'); the second group consisted of three cultivars of Asiaticus ('Sijigui', 'Xiaoye Sijigui', 'Dongxianghong'); the third group consisted

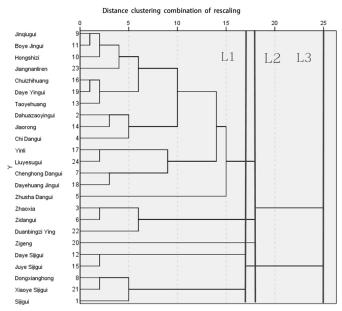

Component		Initial eigenvalue		Extracting Square Sum of Load				
	Total	Variance Proportion	Accumulate (%)	Total	Variance Proportion	Accumulate (%)		
1	4.018	14.348	14.348	4.018	14.348	14.348		
2	3.564	12.729	27.077	3.564	12.729	27.077		
3	3.534	12.621	39.697	3.534	12.621	39.697		
4	2.826	10.091	49.789	2.826	10.091	49.789		
5	2.359	8.426	58.215	2.359	8.426	58.215		
6	2.064	7.370	65.585	2.064	7.370	65.585		
7	1.821	6.502	72.087	1.821	6.502	72.087		
8	1.370	4.894	76.981	1.370	4.894	76.981		
9	1.233	4.402	81.383	1.233	4.402	81.383		
10	1.009	3.602	84.985	1.009	3.602	84.985		

Table 3: Interpretation of total variance of partial traits

T .					Comp	onent				
Traits	1	2	3	4	5	6	7	8	9	10
Crown dense	.322	440	.277	.351	.354	239	075	030	281	.161
Branchlet growth	.099	.905	.084	131	010	229	.024	109	037	.022
Annual shoot length	.690	.380	048	.328	.110	.276	.017	.020	.077	050
Leaf type	832	.095	.280	266	.095	.266	152	004	037	112
Leaf shape	575	.096	052	.243	.214	222	052	.064	.307	.466
Leaf texture	072	584	245	.241	040	.249	.428	.311	.216	240
Leaf vein	129	461	250	466	.055	207	.407	244	.202	.154
Leaf margin	.350	.516	.022	428	.157	154	.135	.100	.008	322
Edge curvature	.029	002	.441	.297	.287	010	106	.251	618	011
Leaf involute	210	.015	.367	.265	.545	039	.398	.268	.077	145
Leaf base	258	317	477	.057	060	569	.082	241	144	028
Leaf apex	.168	.084	.573	198	257	286	.303	137	086	.185
Leaf gloss	170	.498	419	.082	.298	.499	019	107	.053	.257
Leaf length	.267	102	.758	021	358	.216	.217	114	.144	.144
Leaf wide	.267	102	.758	021	358	.216	.217	114	.144	.144
lateral vein pairs	.268	.140	261	.247	051	.576	172	441	087	.112
Leaf petiole	117	.143	.552	.577	.246	.047	082	.144	.217	.085
Flowering season	.832	095	280	.266	095	266	.152	.004	.037	.112
Flowering period	.637	012	328	.464	.061	142	.125	.030	.115	.070
Peduncle color	.071	.723	124	.052	054	081	.462	.154	.163	209
Petal shape	.218	604	109	141	.219	.254	180	.331	.290	.047
Corolla shape	106	156	382	.174	607	.467	.192	.099	262	118
Petal color	.109	.343	354	.080	302	255	450	.389	.181	.168
Ovary development	547	.104	.076	.645	319	211	.025	078	.084	223
Flower numbers per Inflorescence	.070	025	012	.017	.709	.102	.067	516	.214	201
Peduncle length	.263	094	.389	330	167	074	577	.049	.358	217
Corolla diameter	.327	296	.113	.250	.020	163	395	283	.041	357
Fruit shape	.451	076	083	674	.353	.118	.049	.268	197	.108

 Table 4: Partial trait component matrix.

Note: extraction method: a. Ten principal components were extracted.

Pedigree diagrams using Ward connections

Figure 1: The Walder Cluster Map for 24 Osmanthus fragrans cultivars in Jingzhou city

Figure 2: Other 6 kinds Clustering results for 24 Osmanthus fragrans cultivars in Jingzhou city

of purple stalks clustered into a single group, the fourth group consisted of two Aurantiacus Group ('Seed Dangui', 'Zhao Xia') and one Albus Group (Short stalk Seed Silver Gui); the remaining 15 cultivars included Luteus Group (6) and Albus Group (4) and Aurantiacus cultivar groups (5) were clustered into the fifth group.

When L2 (lambda=18.031) was taken as the binding line, 24 O. *fragrans* cultivars were clustered into four groups. The first group was Asiaticus cultivar group, which included 5 Asiaticus cultivars. The second, third and fourth groups are the third, fourth and fifth groups when L1 is chosen as the dividing line. When L3 (λ = 24.991) was taken as the binding line, 24 O. *fragrans* cultivars were clustered into two groups. The first group consisted of five cultivars of Asiaticus, and the second group included 19 cultivars such as 'Jinqiugui', 'Red Cross' and 'Jiangnan Liren'.

Based on the above analysis results, it can be concluded that the genetic relationship among Autumn *Osmanthus* (Jingui, Dangui and Yingui) was more close than between Asiaticus Group and Autumn *Osmanthus*. At the same time, on the three lambda, different blossom seasons of *O. fragrans* were aggregated separately, which reflected that took the flowering season as a high-level criterion for classification of *O. fragrans* cultivars is more appropriate.

CONCLUSION

The characters selected by the system clustering were quantified according to certain criteria, which avoided the influence of

J Hortic, Vol. 6 Iss. 2 No: 258

subjective factors to a certain extent and makes up for the shortcomings of traditional morphological classification. Based on the quantitative classification of *O. fragrans* cultivars in Jingzhou Park, the feasibility of principal component analysis (PCA) of *O. fragrans* cultivars was discussed. The significance of florescence, pedicel color, petal shape and other characteristics was discussed by Q-type clustering, and some useful conclusions were obtained.

(1) Although the quantitative classification method based on phenotypic traits has limitations in practical application, such as strong subjectivity in the selection and coding of traits, the results obtained by different treatment methods are generally different. However, the method can synthesize various traits from different sources, a general classification system can be obtained, which can be compared with the traditional classification method. The two classification methods can do complements each other.

(2) The evolution of *O. fragrans* flower color should be complex and multi-way. Besides the evolution direction of "Albus (white) - Luteus (yellow) - Aurantiacus (orange yellow, orange red)", there should be other ways. Therefore, the classification of *Osmanthus* cultivars should not be too entangled with flower color. We conclude flowering stage, and comprehensive evaluation of inflorescence type, flower color, leaf color and other morphological characteristics should be taken into account mainly, while encounter classification of *O. fragrans* cultivars.

Figure 3: Identified Osmanthus fragrans cultivars in Jingzhou (illuminated some cultivars)

1 Daye Yingui, 2 Jiangnanliren, 3 Liuyesugui, 4 Sijigui, 5 Zhaoxia, 6 Chi Dangui, 7 Zidangui, 8 Chenghong Dangui, 9 Dahuazaoyingui, 10 Dongxianghong, 11 Jinqiugui, 12 Hongshizi, 13 Boye Jingui, 14 Taoyehuang, 15 Juye Sijigui, 16 Houban Yingui, 17 Yinsu, 18 Dayehuang Jingui.

Taoze S, et al.

OPEN CACCESS Freely available online

ACKNOWLEDGEMENT

Thanks for the assistance of Zhao Fei, Shi Tingting and Liao Lulu in the investigation process. Thanks for the support of the Doctoral Research Initiation Fund of Yangtze University (801190010129).

REFERENCES

- 1. Yang XL, Song JN, Zhao F, Wang NG. Effects of cold storage on major nutrients of five *Osmanthus fragrans* cultivars. Southwest China J Agri Sci. 2014;27(6):2720-2722.
- Ye C, Zhang L, Wang P, Shang YZ, Wang LM. Comparative study on contents of amino acids and trace elements of 4 Osmanthus fragrans Cultivars. J Food Ind. 2013;34(6):203-205.
- Sheng YZ, Yu LJ, Wang LM. Screening and evaluation of natural food preservatives. Food Sci Technol. 2009;34(8):204-207.
- Yin W, Yu Y, Ma QL, Chen T, Zhang GS. Study on chemical constituents and antitumor activities of leaves of Osmanthus fragrans. J Tropical and Subtropical Botany. 2018;26(2):178-184.
- Shi TT, Yang XL, Wang LG. Study on the aroma component emission pattern of Osmanthus fragrans 'Boye Jingui'. J Nanjing Forestry University (Natural sciences Edition). 2018;42(2):97-104.

- **6**. Zang DK, Xiang QB, Liu YL. Notes on cultivar classification in Osmanthus. Scientia Silvae Inicae. 2006;42(5):17-21.
- Yu L, Li JH, Bai WF, Nie DL, Wu SZ, Yi JX. A New Osmanthus fragrans cultivar Caihong. Acta Horticulturae Sinica. 2018;45(5):207-208.
- Liu LC, Xiang QB. Study on numerical taxonomy of sweet osmanthus cultivars. J Fujian College of Forestry. 2004;24(3):233-236.
- 9. Tang DQ. A study on numerical classification of the cultivars of sweet osmanthus (Osmanthus fragrans (thunb.)lour.). J Nanjing Forestry Univ. 1998;22(1):37-42.
- Duan YF, Wang XR, Lliang LL, Xiang QB, Yi XG. A numerical classification of the sweet *osmanthus* cultivars in xian'ning of Hubei Province. J of Hubei Univ for Nationalities (Natural Science Edition). 2010;28(3)289-293.
- 11. Zeng MY. Study on quantitative classification of Osmanthus *fragrans* cultivars in Sichuan province. South China agriculture. 2009;3(2):68-70.
- 12. Zhao XM, Chen ZF. Studies on the numerical taxonomy of *Osmanthus fragrans* Lour cultivars in Wuhan. J Hubei Institute for Nationalities. 1998;6:11-15.
- 13. Sun TZ, Zhao F, Li DL, Mu HN. Variety identification and landscape application of *Osmanthus fragrans* in Jingzhou City. J Hortic. 2019;6(1):1-4.