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Introduction
In current clinical practice, human tissue specimens are routinely 

fixed in formalin before histological analysis and archiving. Due 
to the stability of these tissues following fixation, many health care 
organizations have acquired vast archives of Formalin-Fixed, Paraffin-
Embedded (FFPE) tissues. These tissues are typically stored with 
information associated with patient diagnosis and outcome, thus they 
have been viewed as ideal specimens for the identification of biomarkers 
that may aid in disease diagnosis, prognostication and personalizing 
treatment regimens. In addition to their use for identifying biomarkers, 
archival tissues have also been useful in characterizing the biochemical 
and cellular processes involved in disease initiation and progression. 
During fixation, formaldehyde reacts with N-terminal, arginine, 
cysteine, histidine, glycine and lysine amino acids to form methylol 
groups and methylene bridges [1]. Methylene bridges, or covalent 
cross-links, inactivate or immobilize proteins depending on where 
the linkage occurs. Chemical fixation of proteins in tissues presents a 
significant challenge for protein or nucleic acid extraction for research. 
One such area of research presented with this challenge is the high 
throughput analysis of protein levels for the presence of biomarkers 
in disease development. These proteomic approaches for measuring 
protein levels in FFPE tissues have largely relied on label-free mass 
spectrometry as techniques involving chemical labeling are hampered 
by inefficient formaldehyde cross-linking reversal at amino acids 
reactive with chemical labels for proteomic studies.

In this study, we report the most comprehensive to date label-free, 
quantitative mass spectrometric analysis of protein levels in benign 
nevi, primary melanoma and metastatic melanoma from FFPE patient 
tissue samples. Cutaneous malignant melanoma is an aggressive 
neoplasm arising from melanocytes in the skin. While malignant 
melanoma is not the most common form of skin cancer, it is the 
most deadly and incidences have been steadily increasing worldwide 
[2]. According to the American Cancer Society, an estimated 76,250 
new cases of melanoma will be diagnosed in 2012 and approximately 
9,180 people will die because of this disease [3]. This mortality rate is at 

least partially due to the apparent chemoresistance of advanced stage 
melanoma cells [4]. Studies have shown that melanocytes are inherently 
resistant to apoptosis and that melanoma cells acquire additional anti-
apoptotic and pro-survival features during melanoma progression [5]. 
The application of cutting-edge profiling technologies may provide 
new insights into the molecular basis of chemoresistance in melanoma. 
Several profiling approaches have been used to characterize molecular 
features of melanoma cells and tissues, including gene expression 
profiling, proteome analysis and serum proteome profiling [6]. The 
majority of Mass Spectrometric (MS)-based proteomic studies have 
been limited to melanoma cell lines, cultured melanoma cells and 
patient serum samples. Recently, label-free MS proteomic studies 
of FFPE patient melanoma samples have been reported [7-9]. The 
ability to analyze actual patient samples provides the most relevant 
readout of the functional melanoma proteome. In one study, utilizing 
24 patient samples (8 primary and 16 metastatic melanomas), 555 
proteins were identified with a high confidence and a False Discovery 
Rate (FDR) of < 5% and 61 were found to be significantly differentially 
expressed between primary and metastatic melanoma tissues [7]. In 
other studies only one metastatic melanoma [8] or two (one nevus 
and one malignant melanoma) [9] patient samples were analyzed 
resulting in the identification of 935 proteins by Rezaul et al. [8] and 
of 888 proteins by Byrum et al. [9] with a FDR of <1% for both studies. 
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Rezaul et al. [8] validated expression of four identified proteins using 
Immunohistochemistry (IHC) and Byrum et al. validated two [8,9]. 

In the current study, a total of 61 patient samples (25 nevi, 12 
primary and 24 metastatic melanomas) were used for quantitative 
proteomic analysis, making it one of the most comprehensive FFPE 
proteomic studies for melanoma.  We identified 1528 proteins with 
a high confidence (FDR <1%) among these samples, of which 171 
significantly varied in abundance between benign nevi, primary 
melanoma and metastatic melanoma FFPE tissues. Protein levels were 
correlated to reported findings for malignant melanoma in the Human 
Protein Atlas (HPA) database, a repository of Immunohistochemistry 
(IHC) data for a multitude of tissues and cells assembled on tissue 
microarrays [10]. We found that 73% of the proteins identified by our 
quantitative proteomic analysis correlated to the HPA. Additionally, 
41 proteins not analyzed in the HPA were significantly differentiated 
between benign and primary and metastatic melanoma. Of these, 33 
have never been correlated with melanoma and thus may represent a 
panel of new putative markers for melanoma. The proteins identified 
in this study shed light onto the mechanisms of melanoma progression, 
which include melanoma cell proliferation, cell motility and resistance 
to apoptosis.

Materials and Methods
Tissue processing

Archival FFPE tissues were obtained from the University of 
Arkansas for Medical Sciences Department of Pathology. All studies 
reported here using de-identified, archived FFPE human patient 
tissue samples were approved by the University of Arkansas for 
Medical Sciences Institutional Review Board with approval #113003. 
In accordance to IRB approval #113003, all FFPE human patient 
tissue samples were sufficiently de-identified and determined exempt 
from consent as these studies used existing archived pathological 
specimens and not human subjects directly. Human tissue specimens 
were identified by two independent, board-certified pathologists. The 
following FFPE samples from skin biopsies were used for proteomic 
studies: 25 benign, 12 primary melanomas, and 24 metastatic 
melanomas. Cases were selected from original H&E stains. Specimens 
were cut into 10 µm sections on glass slides and then incubated at 
58°C for 60 minutes. Sections were deparaffinized in xylene twice for 
5 minutes then rehydrated in graded ethanol solutions (100% ethanol 
twice for 5 minutes, 85% ethanol twice for 1 minute, and 70% ethanol 
twice for 1 minute) and washed twice in purified water for 1 minute 
then air-dried. Tissue was collected with a needle to ensure that >95% 
of cells collected were cells of interest (i.e., melanoyctes or melanoma 
cells). To extract proteins, tissue was solubilized in 20 mM Tris, pH 7 / 
2% SDS, and incubated at 90°C for 1 hour. Tissues were sonicated for 5 
minutes using a Bioruptor UCD 200 (Diagenode) on high power with a 
30 second on/off cycle. Formalin cross-linking was reversed at 65°C for 
4 hours. Two micrograms of protein for each sample was resolved by 
4-20% SDS-PAGE (Invitrogen pre-cast gels) and Coomassie-stained. 
Gel lanes were cut into 24 sections and subjected to in-gel trypsin 
digestion as described [9]. Protein-containing gel slices were destained 
in 50% methanol, 100 mM ammonium bicarbonate, followed by 
reduction in 10 mM Tris[2-carboxyethyl] phosphine  and alkylation in 
50 mM iodoacetamide.  Gel slices were then dehydrated in acetonitrile, 
followed by addition of 100 ng porcine trypsin (Promega) in 100 mM 
ammonium bicarbonate and incubation at 37°C for ~14 hours.  Peptide 
products were then acidified in 0.1% formic acid.

Mass spectrometry and protein identification

The approach used for mass spectrometric analysis of protein 
samples is largely as reported in Byrum et al. [9], which showed a 
high level of technical reproducibility (Pearson correlation >0.98 and 
p<0.0001). Tryptic peptides were analyzed by nanoflow LC-MS/MS with 
a Thermo Orbitrap Velos mass spectrometer equipped with a Waters 
nanoACQUITY LC system [11,12]. Tryptic peptides were separated 
by reverse phase Jupiter Proteo resin (Phenomenex) on a 100x0.1 mm 
column using a nanoAcquity UPLC system (Waters).  Peptides were 
eluted using a 30 min gradient from 98:2 to 40:60 buffer A:B ratio.  
[Buffer A=0.1% formic acid, 0.05% acetonitrile; buffer B=0.1% formic 
acid, 75% acetonitrile.]  Eluted peptides were ionized by electrospray 
(2.0 kV) followed by MS/MS analysis using collision induced 
dissociation on a Thermo LTQ Orbitrap Velos mass spectrometer.  
MS data were acquired using the FTMS analyzer in profile mode at a 
resolution of 60,000 over a range of 375 to 1500 m/z.  MS/MS data were 
acquired for the top 15 peaks from each MS scan using the ion trap 
analyzer in centroid mode and normal mass range with normalized 
collision energy of 35.0. A total of 1528 proteins were identified by a 
Mascot (version 2.2.03) database search with the following parameters: 
precursor ion tolerance 5 ppm, fragment ion tolerance 0.65 Da, fixed 
modification of carbamidomethyl on cysteine, variable modification 
of oxidation on methionine, and 2 missed cleavages possible with 
trypsin.  We searched the human ‘UniProtKB/Swiss-Prot’ database 
(http://www.uniprot.org/downloads) and we additionally used 
reversed sequences for higher confidence identifications. The Mascot 
results were uploaded into Scaffold 3 (version 3.00.01) for viewing the 
proteins and peptide information. A false discovery rate of 1% was used 
as the cut off value and spectral counts were exported into an Excel 
spreadsheet (Supplemental Table S1).  

Quantitative analysis of protein levels

In order to determine significantly differentiating levels of proteins 
between benign nevi, primary melanoma, and metastatic melanoma, 
a label-free approach based on spectral counting was used [9,13-15]. 
A spectral count is the number of tandem mass spectra assigned to a 
given protein in a single gel lane [9,13]. 

Prior to statistical analysis, the spectral count data were first 
normalized in order to compare between samples, account for 
heteroscedasticity (log transformation), and to account for the relative 
amount of proteins in a given gel lane by calculating a Normalized 
Spectral Abundance Factor (NSAF) [13,16].  
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The NSAF for a protein k is the number of Spectral Counts (SpC) 

identifying a protein, k, divided by the protein’s Molecular Weight 
(MW), divided by the sum of SpC/MW for all N proteins in the gel lane 
[9]. Different proteins were identified among the 61 FFPE tissue samples 
and therefore, some proteins will contain a spectral count of zero for a 
particular sample. In order to allow for log transformation, Zybailov et 
al. [13] previously described a method for dealing with spectral counts 
of zero in the data set by replacing the zero values with a fractional value 
prior to the NSAF calculation. However, in the present study, instead of 
assigning a fractional value and treating the zero values differently from 
the rest of the data values, we opted to shift the entire data set by adding 
0.1 to every value. In this way every value is treated equally prior to the 
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equal, allowing for more robust statistical testing [17]. 

The FFPE tissues were analyzed in three sample groups; benign, 
primary melanoma, and metastatic melanoma. The non-parametric 
Kruskal-Wallis test was employed to determine significantly 
differentiating proteins among the three sample groups (Supplemental 
Table S2). Kruskal-Wallis indicates when a protein is significantly 
different, but does not differentiate where the significance lies between 
groups. Therefore, multiple Mann-Whitney U tests were calculated 
for each Kruskal-Wallis significant protein to determine group 
significance. Mann-Whitney with Bonferroni correction was used to 
test the null hypothesis of no difference between two groups; benign 
and primary, benign and metastatic, and primary and metastatic 
(Supplemental Table S3).  Fold Changes (FC) were also calculated 
using the average normalized spectral counts for each group. A recent 
review by Wu et al. [16] demonstrated the NSAF normalization 
method using spectral counts has greater precision over MS/MS ion 
intensity based calculations; however, fold changes with spectral count 
data are seriously underestimated and should not be the sole indicator 
of protein expression. Therefore, fold changes were used only as a 
filtration method. Proteins with a spectral count ≥ 5, a Mann-Whitney 
p-value < 0.05, and a fold change greater than 2 were considered to 
have the most significance (Supplemental Table S4). Proteins differing 
in levels are illustrated in volcano plots and listed in Supplemental 
Table S5.

Pathway-Express from Onto-Tools (http://vortex.cs.wayne.edu/
projects.htm [18]) was used to identify known pathways containing 

Figure 1: Quantitative proteomic analysis of FFPE melanoma: Melanocytes 
from benign FFPE skin biopsies (25 total) and melanoma cells from primary 
(12 total) and metastatic melanoma (24 total) FFPE biopsies were isolated by 
needle dissection. Protein extracts were resolved by SDS-PAGE, visualized 
by Coomassie staining, excised as 24 bands per lane, and subjected to in-gel 
trypsin digestion. Tryptic peptides were analyzed by LC-MS/MS and relative 
protein levels were determined by spectral counting [9].

Figure 2: Hierarchical cluster of significantly differentiating proteins: An unsupervised cluster of both FFPE biopsies and significant proteins shows clear 
separation among Benign (BS), Primary Melanoma (PM), and metastatic Melanoma (M) patients. A sub-cluster of proteins shows increased expression in the primary 
samples compared with both benign and metastatic (in brackets). Red data points indicate increased protein expression, while green indicates decreased expression. 

calculation of ln(NSAF).  As is commonly done in microarray data sets, 
the data was scaled to ensure the medians of all distributions were equal 
and centered to ensure the standard deviations of all distributions were 
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the proteins of interest. The significant protein list was uploaded into 
Pathway Express along with a reference list containing all of the 1528 
identified proteins from the proteomic data set. The default parameters 
were used for the analysis including a hypergeometric distribution, 
p-value threshold of 5%, impact factor threshold of 50%, and all 
regulatory efficiencies of 1.0 with the exception of inhibition and 
repression of -1.0.   

To further validate our findings, the Human Protein Atlas (HPA) 
database was searched with the significantly differentiating proteins 
to identify their expression in human malignant melanoma tissue. 
The HPA project generates protein expression profiles based on 
Immunohistochemistry (IHC) with 1 to 4 antibodies for each protein 
[10]. They report the IHC staining as strong, moderate, weak, or negative 
as percentages. We added the percentages for strong, moderate, and 
weak and only report positive or negative staining in Supplemental 
Table S6 for proteins determined to be significant from our proteomics 
study. Since the HPA contained IHC results for malignant melanoma 
but not for nevi, we were unable to directly correlate up- or down-
regulation of proteins relative to benign tissues. Up-regulation of 
proteins in primary and metastatic melanoma in the proteomic data set 
was correlated to positive staining in the HPA database and the down-
regulation of proteins was correlated to negative staining. 

Results
The present study is a comprehensive proteomic analysis using 

patient FFPE tissues to study relative protein levels in different stages of 
melanoma. Proteins were isolated and relative levels were determined 
by label-free mass spectrometry between benign nevi, primary 
melanoma, and metastatic melanoma archival samples (figure 1). High 
resolution mass spectrometry identified 1528 proteins with a high 
confidence  (FDR < 1%) from 61 patient samples (Supplemental Table 
S1 and Supplemental Figure S1), where abundances of 171 proteins 
were found to be significantly different between the three sample 
groups by Mann Whitney (p-value < 0.05), fold change > 2, and spectral 
count ≥ 5 (Supplemental Table S4). Relative to the proteomic study by 

Huang et al. [7] that identified 61 proteins significantly differentially 
expressed between primary melanoma and metastatic melanoma, we 
identified 5 (HNRPL, FTL, COX4I1, DCN, LUM) of the 61 proteins 
as differentially expressed and also observed 166 additional proteins 
as differentially expressed. Our study is the largest proteomic data set 
reported thus far for FFPE melanoma and offers many insights into the 
progression of the disease from benign nevi to primary melanomas and 
finally to the most aggressive form, metastatic melanoma. 

A hierarchical cluster of all 61 samples and their significant proteins 
clearly separated the benign nevi, primary melanoma, and metastatic 
melanoma tissues into three distinct clusters (Figure 2). Interestingly, 
a discrete cluster of proteins showed increased expression in primary 
melanoma compared to both benign nevi and metastatic melanoma, 
including RAB21, LAMP1, EIF4A3, HEXB, SERPINB1, SLC25A11, 
HNRNPF, EMD, HP1BP3, PTBP1, TPP1, and TUBB2A. These 
proteins may be potential targets for early stage tumorigenesis. A few 
particularly interesting proteins are Rab21, Lamp1, and eIF4A3. The 
small GTPase Rab21 has been shown to positively regulate integrin-
mediated cell adhesion and motility; overexpression of Rab21 also 
stimulates cell migration and adhesion of cancer cells to collagen 
and bone [19]. Lamp1 is a lysosomal membrane glycoprotein that 
has been implicated in melanoma metastasis [20] and that may be a 
target for cancer immunotherapy [21]. eIF4A3 is an ATP-dependent 
RNA helicase, a component of the exon junction complex involved in 
mRNA expression [22] and may be a serum biomarker for pancreatic 
cancer [23]. 

Proteins that were significantly differentiated between each group 
are illustrated in volcano plots (Figure 3). There were 113, 60, and 21 
significant proteins with a Mann-Whitney p-value < 0.01 and a fold-
change > 2 between benign nevi and primary melanoma, benign nevi 
and metastatic melanoma, and primary melanoma and metastatic 
melanoma samples, respectively (Supplemental Table S5). Many of 
these proteins were found to be involved in known pathways involved 
in cancer progression including MAPK signaling, focal adhesion, 
adherens junctions, regulation of actin cytoskeleton, Extracellular 
Matrix (ECM)-receptor interaction, and apoptosis (Figure 4). These 
pathways were identified by Pathway-Express from Onto-Tools, which 
links to the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Figure 3: Volcano plots of significantly differentiating proteins: The 
negative log (base 10) of the Mann Whitney U p-values are plotted on the 
y-axis and the log (base 2) of the fold change are plotted on the x-axis. A) 
Metastatic melanoma versus benign. B) Primary melanoma versus benign. C) 
Metastatic melanoma versus primary melanoma. The red data points indicate 
proteins with a p-value < 0.01 and a fold change > 2. 

Figure 4: Pathways identified for significantly differentiating proteins: 
The number of significantly differentiating proteins associated with each 
pathway is displayed in the bar graph. The pathways with the most proteins 
have the highest mis-regulation. 



Citation: Byrum SD, Larson SK, Avaritt NL, Moreland LE, Mackintosh SG , et al. (2013) Quantitative Proteomics Identifies Activation of Hallmark 
Pathways of Cancer in Patient Melanoma. J Proteomics Bioinform 6: 043-050. doi:10.4172/jpb.1000260

Volume 6(3) 043-050 (2013) - 047 
J Proteomics Bioinform    
ISSN:0974-276X JPB, an open access journal 

database, a collection of databases integrating pathway, genomic, 
proteomic, and ligand data [18,24]. The pathways and their associated 
proteins from the proteomic data set are shown in figure 5. Several mis-
regulated proteins are involved in multiple pathways and therefore, 
have a major impact on tumor progression. Further investigation 
of this data set revealed several other proteins not annotated by 
Pathway-Express including: Proline/Arginine-Rich End Leucine-Rich 
Repeat Protein (PRELP), lumican and decorin, ferritin heavy-chain 
(H-ferritin), membrane-organizing extension spike protein (moesin), 
thymosin beta-10, and Prothymosin-α (PTMA), which are involved in 
proliferation, cell-ECM interactions, cell motility and apoptosis. 

We have been able to identify several proteins involved in pathways 
associated with survival signaling and cell motility in melanoma and 
have validated their expression by IHC data using the HPA database. 
The database contained IHC results for 130 of the 171 significantly 
differentiated proteins identified by our quantitative proteomic study 
(Supplemental Table S6). The patterns of protein levels observed in 
this data set were consistent with 73% (85/116) of the reported IHC 
data. A small group of 14 proteins had about 50% positive staining 
(ranging from weak to strong) and about 50% negative staining in the 
IHC data and so were not conclusive. Interestingly, we also identified 
41 proteins not analyzed by HPA, 33 of which have not previously 
been correlated to melanoma progression. These proteins are currently 
pending analysis in the HPA database and include PRELP, Tmsb10, 
and serpinH1 (Supplemental Table S6). 

Discussion
Metastatic melanoma is an aggressive form of cancer given that 

tumor cells frequently disseminate to multiple organs, such as brain, 
lungs, liver, and/or bone, making surgical treatment ineffective [25,26]. 
Metastatic melanoma is also non-responsive to chemotherapy, which 
is likely a consequence of intrinsic survival pathways in normal 
melanocytes [5] and acquired survival queues in melanoma cells [5]. 

Most epithelial cells respond to DNA-damaging agents or radiation by 
inducing apoptosis or halting the cell cycle until these cells can repair 
damage to their DNA. However, melanocytes are the photoprotectors 
of the skin and in contrast, respond to DNA damage by secreting 
melanin which protects neighboring keratinocytes from further 
damage [5]. Normal melanocytes are long-lived postmitotic cells 
that do not produce mitogens and therefore, depend on the release 
of keratinocyte-derived growth factors to stimulate cell proliferation 
[27]. The Mitogen-Activated Protein Kinases/Extracellular Signal-
Regulated Kinase (MAPK-ERK) pathway plays an important role in 
the progression of melanoma by inducing melanoma cell proliferation 
independent of these growth factors and enhances cell survival 
and resistance to apoptosis [28-30]. Induced by ras oncoproteins, 
the MAPK-ERK signaling pathway activates a number of growth-
promoting genes, confers anchorage independence and loss of contact 
inhibition [31].  We found an inhibitor of MAPK activation, Gng12, 
to be expressed in benign nevi and significantly decreased in primary 
or metastatic melanoma. This small GTPase is a negative regulator 
of ras activity [32], and presumably inhibits the activation of the 
MAPK signaling cascade in nevi [33,34]. Decreased levels of Gng12 
in primary and metastatic melanoma samples represent the loss of ras 
inhibition, possibly contributing to sustained ras signaling in these 
tissues.  Gng12 was not analyzed by HPA and is unique to our dataset. 
Additionally, Mapk1 was found to be up-regulated in primary and 
metastatic melanoma samples relative to nevi, which is consistent with 
previous findings that the MAPK pathway is an important component 
of melanoma progression [35], immune evasion [36] and inhibition of 
apoptosis downstream of cytochrome c release [30] (Figure 5). Mapk1 
was also validated by HPA with 89% positive staining for malignant 
melanoma.

Oncogenic ras mutations activate both MAPK-ERK and the 
phosphatidylinositol-4,5-bisphosphate 3-kinase/ serine/threonine 
protein kinase  (PIK3-AKT) pathways. MAPK-ERK is also activated 

Figure 5: Detailed pathways identified for significantly differentiating proteins: The major pathways that are mis-regulated in benign nevi, primary melanoma, and 
metastatic melanoma and their associated proteins are shown as a pathway map modified from the multiple KEGG pathways. The pathway map highlights proteins up-
regulated in benign nevi in blue, primary melanoma in green, and metastatic melanoma in red. 
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by mutations in the BRAF gene, while PI3K-AKT is activated by loss 
of the tumor suppressor gene PTEN. These mutations occur early 
in melanoma pathogenesis and are preserved throughout tumor 
progression [37]. The binding of receptor kinases at the plasma 
membrane activates PI3K, which converts PIP2 to PIP3. PIP3 then 
activates protein kinase B (PKB) - AKT with downstream effects on 
multiple targets involved in cell proliferation, migration, and survival 
[5]. Survival signals are induced by several receptors mediated mainly 
by the PIK3/AKT pathway. Therefore, up-regulation of this pathway 
may contribute to metastatic melanoma resistance to chemotherapy 
and drug treatments [38] (Figure 5). We identified upstream regulators 
of this pathway that were unique to our proteomic data set including 
Gng12, Gna12, and Rac3. 

In addition to the growth-stimulatory effects of MAPK-ERK and 
PIK3-AKT activation, Mapk1 also plays a role in the melanogenesis 
pathway, which is responsible for the synthesis of melanin. Mapk1 
induces Mitf, which promotes the transcription of Tyrosinase (TYR), 
Tyrosinase-Related Protein 1 (TYRP1), and Dopachrome Tautomerase 
(DCT) proteins in order to convert tyrosine to melanin, where melanin 
is transferred to keratinocytes (Figure 5). Melanin is a photoprotectant 
that absorbs harmful UV-radiation, transforms the energy into heat, 
and protects cells from indirect DNA damage that is responsible for 
metastatic melanoma [39]. However, melanin can also produce active 
radicals that can damage DNA. The protective aspect of melanin in dark 
skin is a result of the high concentration and densely packed organelles 
that shield the nucleus. Conversely in light skin, the production of 
radicals supports the development of metastatic melanoma [40].  
MAPK-ERK, PIK3-AKT and melanogenesis promote cell survival, 
likely contributing to drug resistance in melanoma. 

The inactivation of apoptosis is a hallmark of cancer [31] and also 
leads to enhanced melanoma cell survival and increased resistance to 
chemotherapeutic agents [5]. Melanoma cells also likely benefit from 
autocrine- and paracrine-induced survival signaling [41] resulting in 
cancer cells with extreme drug resistance. In the current proteomic 
data set we have identified three pro-survival and anti-apoptotic 
factors, L- and H-Ferritin and PTMA, at increased levels in primary 
and metastatic melanoma relative to benign nevi. H-Ferritin showed 
100% positive staining in malignant melanoma by HPA; however, 
L-Ferritin only showed 36% positive staining. PTMA was not analyzed 
by HPA and is unique to our proteomic data set. PTMA has previously 
been shown to inhibit apoptosome formation and ferritin functions 
to increase resistance to oxidative stress. Ferritin is a globular protein 
which functions as the major iron storage component of mammalian 
cells [42]. Ferritins are composed of both L- and H-ferritin subunits 
which are assembled in different proportions, likely in a tissue-specific 
manner [43], to form various ferritin isoforms. Interestingly, ferritin 
(particularly L-ferritin) has been shown to contribute to melanoma 
cell growth and insensitivity to oxidative stress [44]. Up-regulation 
of H-ferritin by NF- κB has been shown to inhibit apoptosis by 
suppressing reactive oxygen species accumulation [45]. We have also 
identified increased levels of anti-apoptotic PTMA in primary and 
metastatic melanoma tissues. PTMA is a nuclear oncoprotein that 
inhibits procaspase-9 activation by preventing apoptosome formation 
[46]. Initially referred to as a “thymic peptide,” PTMA is a ubiquitously 
expressed regulator of cell cycle and immune response [47]. PTMA 
has been found to be overexpressed in human bladder cancer and its 
overexpression is associated with poor prognosis in breast, gastric, 
liver, prostate and head and neck cancers [47]. 

The regulation of actin polymerization and ECM-receptor 
interaction pathways may help prepare melanoma cells for tumor 
migration by disrupting cell-to-cell contact and by increasing cell 
motility [48]. Actin polymerization, a major component of cell motility, 
drives the extension of a protrusion and depends on the availability 
of actin monomers [49-51].  In this proteomic data set thymosin 
beta-4 (Tmsb4x) and thymosin beta-10 (Tmsb10), which function to 
sequester actin monomers for the process of actin polymerization [52], 
were found increased in primary and metastatic melanoma samples 
compared to nevi. Increased expression of Tmsb10 has been identified 
in melanoma cell lines and was correlated with metastatic potential 
[53,54]. After cell extension, new adhesions are formed to stabilize the 
protrusion, including the binding of collagen, laminin, and fibronectin 
to the Extracellular Matrix (ECM) [49]. Fibronectin has been implicated 
as a major player in metastatic melanoma and cell motility and was 
found up-regulated in the metastatic melanoma samples [55] (Figure 
5). Additionally, the Ezrin-Radixin-Moesin (ERM) family protein 
moesin was found up-regulated in primary and metastatic tissues. 
Moesin functions as a cross-linker between the plasma membrane 
and actin cytoskeleton, regulating cell protrusions and movement 
[56]. It has been shown to play a role in melanoma cell polarization 
and contributes to invasion and metastasis [57]. We also detected a 
decrease in decorin and lumican in primary and metastatic samples, 
two abundant proteoglycan components of the skin ECM. Decorin 
has growth-suppressive activity which occurs via up-regulation of the 
CDK inhibitor p21 [58]. Lumican has been shown to inhibit melanoma 
progression in mouse models by regulating cell migration, proliferation 
and apoptosis [59]. Moesin, decorin, and lumican were all validated by 
HPA. Our findings suggest there is increased cytoskeletal remodeling 
and altered ECM in primary and metastatic melanoma tissues relative 
to benign nevi, which indicates that melanoma cells in these tissues, 
may be more mobile and have a greater potential for invasion and 
metastasis [60].  

In conclusion, we present the most comprehensive to date 
proteomic study for melanoma progression using patient samples. 
Using an unbiased, high-throughput and quantitative label-free mass 
spectrometric approach for the identification of proteins from benign 
nevi, primary melanoma, and metastatic melanoma FFPE tissues, 
we identified a total of 1528 proteins. Of these proteins, 171 proteins 
were significantly differentiated between the three groups and the vast 
majorities (73%) of the proteins were validated by the HPA staining 
in malignant melanoma tissues. These proteins are involved in several 
pathways known to play major roles in cancer tumorigenesis. In primary 
and metastatic melanoma FFPE tissues, we identified decreased levels 
of proteins associated with cellular-ECM interactions and detected 
increased levels of proteins that promote cell motility, proliferation 
and survival. Our extensive study of archived human melanoma tissues 
presents a vast amount of putative biomarkers that may help clinicians 
with diagnosis, prognosis and treatment of metastatic melanoma. 
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