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Introduction
mRNA expression profiling is now well established and a number 

of techniques are employed for acquiring and analysis of data on a 
sample’s transcriptome or for studying differential gene expression. 
Some of the most widely used methods include qPCR [1] EST 
(Expressed Sequence Tags, early 1990s [2]), SAGE (Serial Analysis of 
Gene Expression) and microarrays (mid 1990s onward [3], and most 
recently, RNA-Seq [4], to name just a few. Growing amounts of gene 
expression data have resulted in the growth of large databases such 
as NCBI’s EST [5], for storing and processing the data and retrieval 
tools such as those hosted by the Cancer Genome Anatomy Project 
(CGAP) [6]. However, the abundance of the data and the absence 
of easily identifiable data quality indicators require stringent quality 
control methods, e.g. for confirming correct annotation, or the identity 
of each library independently of the annotation and the quality of the 
underlying data itself such as bulk non-normalised preparations, or 
the methods used. Such tools would help to resolve many errors in 
expression data annotations such as tissue of origin, disease state or 
protocol used to prepare the library, because even a trivial error in for 
instance library origin might completely invalidate data selection for 
the analysis and the results obtained.

Many such errors arise during experimental stages, e.g. 
cloning artefacts, amplification artefacts and biases, normalisation 
(intentional or unintentional), the use of different RNA extraction 
methods, RT-qPCR (Real-Time quantitative PCR) amplification 
artefacts and shallow depths of sequencing of such libraries, to name 
a few [7]. Errors can also be introduced from the fact that multiple 
polyadenylate repeats are found in a significant percentage of mRNA 
species contain multiple polyadenylation sites, potentially leading 
to multiple transcripts being produced from one mRNA [8]. While 
reverse transcription, which is carried out to prepare the sample for 
amplification, in theory should result in one cDNA molecule for 
each original mRNA molecule, in practice some mRNA may not 
undergo the full set of reactions, introducing a bias into the sample 
in favour of the fully converted cDNAs [7]. The same applies to PCR 

amplifications, where in practice amplification efficiency of different 
cDNAs transcripts may differ leading to under- or overrepresentation 
of a fraction of amplified transcripts [9]. Also, the selection of cDNA 
clones for sequencing is random, which may introduce biases for 
low abundance transcripts. Other groups of errors are due to human 
factors, and such as incorrect data annotation, pooling/contamination 
of tissue samples, and inadequate depths of sequencing. RNA-Seq, 
which uses next generation sequencing, provides a much improved 
depth of sequencing, but artefacts can still be introduced into the 
results, requiring quality control [10].

To be usable for gene expression analysis, one also needs to 
ensure the reported tag counts in EST, SAGE, RNA-Seq, and similar 
other investigations mirror true cDNA abundance levels as closely as 
possible. For this purpose a large proportion of the library must be 
sequenced to achieve deep sequencing. While this becomes less of a 
problem with the advent of RNA-Seq it like all the other methods, will 
still suffer from “noise” (this includes which are of limited biological 
significance [11]) introduced during experimental procedures [12-
15]. Artificial changes in the results are often introduced by the use of 
different preparation procedures and kits. For example, various media 
and kits for RNA extraction, including one kit by Qiagen and another 
by Promega, were analysed and compared, and the choice of materials 
had a major effect on the results [16]. Such errors may lead to false 
positive results or the omission of potential diagnostic biomarkers or 
therapeutic targets from further investigations, which in turn may lead 
to erroneous diagnoses or incorrect treatments. Recent developments 
indicate that quality control measures can be devised for use by the end 
user who often does not have access to the original raw expression data. 
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Here we aim to outline the main issues and recently developed quality 
control methods for testing various types of gene expression data.

Techniques for Measuring Gene Expression Levels and 
Their Limitations

There is a range of different gene expression profiling methods 
available, each of which has its own advantages, disadvantages and 
the different experimental errors and biases affecting the final results. 
An old favourite Northern blotting analysis is still in use today; it is 
carried out by separating a sample of RNA by electrophoresis in 
agarose according to molecular weight and subsequent transfer of 
separated RNAs to a nylon membrane. A fluorescent or radiolabelled 
nucleotide probe complementary to the target gene is then added and 
hybridised to that gene; the strength of the detected signal will indicate 
relevant mRNA concentrations. However, with this technique it is 
only possible to measure the relative abundance levels of a specific 
transcript of interest, whose sequence must also be previously known 
for the probe to be produced. Despite this and the low throughput, 
Northern blotting introduces the fewest errors or biases into the 
data when undertaken using more recent protocols [17] (Figure 1). 
Unfortunately, the limitations of camera detection systems (typically 
the limited dynamic range or limited sensitivity, respectively) and 
some experimental artefacts such as RNase contamination, may still 
lead to some normalisation of the results [17]. A detailed discussion of 
these and other problems is available from [17,18].

Real time quantitative RT-PCR is widely used for measuring mRNA 
levels; it offers unsurpassed sensitivity and moderate throughput, for 
a detailed review see [1]. This technique provides information on the 
relative differences in the abundance of one or more genes of interest 
in different samples after normalisation using e.g. ribosomal RNAs 
as an internal standard. Real time PCR is advantageous compared to 
Northern blotting because of the superior sensitivity and throughput, 
but the threshold at which sample fluorescence is deemed significant 
compared to background is open to interpretation and is not objective.

Furthermore, if the original mRNA is fragmented (as it is likely to 
be from archived samples), use of oligo(dT) as a more specific primer 
to ensure more faithful replication, is less effective [1]. In addition to 
being prone to errors, this method is also less quantitative due to its 
reliance on standard curves for absolute abundance levels. The major 
source of bias for RT- qPCR comes from variations in efficiency of both 
reverse transcription and the PCR amplification itself, which is often far 
from ideal [9], introducing biases into the results towards transcripts 
which are amplified more than others. As a result of chemical kinetics, 
these will often be the transcripts which were more abundant originally. 
Furthermore, long transcripts and/or those which are GC rich, can be 
amplified less efficiently than the other transcripts, due to the increased 
melting point of such transcripts [18]. This results in a GC content bias, 
which also occurs in EST and SAGE (see below). These sources of error 
are often addressed by using an internal standard to obtain absolute 
quantitation. A standard is amplified simultaneously with the target 
and all other values are normalised against it [19].

RNA-Seq uses next generation sequencing equipment often that 
produced by Illumina or Roche [20]. An RNA population is converted 
to a library of cDNA fragments which have adapters ligated to at least 
one end. The library is amplified if necessary before sequencing from 
one or both ends. The fragments and reads are usually in the order of a 
few hundred base pairs in length [21] and are mapped onto the original 
cDNA sequence (Figure 1).The high depth of sequencing eliminates 
the need for normalisation [21] for novel gene discovery. However, 

the results cannot be deemed reliable if used for gene expression 
analysis, without much replication, standardisation and calibration, 
for each protocol has its own biases [22] RNA-Seq requires cDNAs to 
be fragmented, introducing a bias towards fragments taken from the 
3’ end of transcripts, with each fragmentation method introducing its 
own bias. If amplification is required this could introduce artefacts in 
the form of many identical short reads [21]. This is because factors 
such as GC content or mononucleotide repeats which introduces biases 
into the data are largely consistent between lanes of the same run, or 
between multiple runs of the same cDNA concentration [4]. The GC 
content or the abundance of these repeats can be measured to give an 
indication of experimental biases or defects introduced during library 
preparation [23].

DNA microarrays and similar chip-based methods containing 
immobilised nucleotide probes, provide excellent coverage and 
throughput, and usually require prior knowledge of all of the target 
sequences. Differential expression is inferred from relative differences 
in the fluorescence readings which result from differing degrees of 
hybridisation of those probes (oligonucleotides, cDNAs, other DNA 
fragments) with different samples of interest which are applied to the chip 
[24]. Pioneered by Affymetrix [25,26], oligonucleotide microarrays are 
chips containing as many as 1.3 million [27] oligonucleotide sequences, 
enabling greater coverage of the transcriptome. The key advantage of 
microarrays over RT-PCR is the extent of coverage, often allowing 
many more genes to be studied in one experiment [28,29] (Figure 1). 
Unlike real time PCR, microarray based methods measure differential 
gene expression which is inferred from changes in relative fluorescence 
levels between samples whilst absolute levels of gene expression are not 
determined. However a great deal of replication, standardisation (of 
protocols and reporting methods [30] and calibration is required for 
accurate comparison of expression patterns between different arrays 
or when comparing different sources or individual experiments on 
one sample in which different types of chip are used (this particularly 
applies to cDNA microarrays). Furthermore, signal intensity can be 
affected by the length of the immobilised nucleotide probes as well 
as their composition (molecules of more than one molecular species 
in the sample are more likely to hybridise with template molecules of 
one species if that template contains large numbers of repeats) and the 
methods used for generating labelled probes [31]. In order to account 
for these sources of error, replicates are normally performed from the 
same sample, all of which are then normalised to reduce the variation 
between chips [32]. Furthermore, the lack of sensitivity which results 
from a gene being reported as only upregulated or downregulated can 
be addressed through statistical methods such as Principal Component 
Analysis to retrieve the useful data from the noise [33].

Apart from RNA-Seq, the above methods are considered “analogue” 
because they involve the measurement of relative abundance levels. 
RNA-Seq may be considered “digital” because it relies on the tag 
counts. Another “digital” methods in use relies on counting ESTs 
(Expressed Sequence Tags) or Serial Analysis of Gene Expression 
(SAGE). Having been developed in the early 1990s, this approach was 
originally used for novel gene discovery and gene mapping [34-36], but 
the ever-increasing amount of data has subsequently allowed EST data 
to be used to investigate gene expression levels and to study differential 
expression between different tissues or conditions. EST expression 
data are available from NCBI [5]. Some specialised databases e.g. 
CGAP allow user to compare EST expression levels in cancer and 
normal tissue in silico [36]. Traditionally, EST libraries are created by 
sequencing randomly selected transcripts in a cDNA library [37]. These 
are then assembled into longer, overlapping sequences mapped onto 
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the original transcript and a unique UniGene Cluster ID is assigned 
to each transcript. mRNA expression levels are inferred by counting 
the absolute number of tags representing each transcript. EST libraries 
therefore contain a snapshot of mRNAs expressed in the sample from 
which the library was created [38]. However, the sensitivity is often 
reduced compared to northern blotting and real time quantitative 
RT-PCR because the depth of sequencing is lower than with RNA-Seq 
(Figure 1). EST based approached were first developed in the 1990s 
[39] and are still used today and the total EST counts often exceed 
10,000 per library.

Because the purpose of an EST libraries was to assist gene discovery 
rather than to study expression profiling, the EST content of a library was 
often altered to reduce the abundance of transcripts representing genes 
with high expression. To achieve this, EST libraries were normalised or 
subtracted by removing the most abundant or less relevant transcripts 
in order to reduce or eliminate the differences in the relative transcript 
abundances to a narrow range [40-43]. However, any normalisation 

introduces a major bias towards rare transcripts, so such libraries 
are not normally suitable for a fully quantitative gene expression 
profiling. Once a cDNA library has been created, ESTs are produced 
by sequencing randomly selected cDNAs from a library, usually from 
the 3’ end to generate single read fragments which are often longer than 
several hundred base pairs in length. However, the sequencing can be 
performed in a number of different ways, leading to, using the CGAP 
database as an example, three different groups of libraries (CGAP, MGC 
and ORESTES). ORESTES libraries are generated differently from the 
other two by being sequenced from arbitrary points in the middle of 
each cDNA instead of either end [37]. These different methods have 
a multitude of biases and may produce different results. Furthermore, 
smaller EST libraries miss rare transcripts due to shallow sequencing 
[44]; a greater depth of sequencing is required for a better quantitative 
estimate of gene expression in the original sample [45]. Therefore, while 
EST based methods provide wide gene coverage, the sensitivity is often 
low due to the low depth of sequencing of some libraries. Alarmingly, 

Figure 1: Gene expression profiling methods and the differences between them. The raw data output format is shown for each of the six methods.  Reverse 
transcription is not required for the two methods on the left (northern blotting and microarrays), both of which are performed directly on mRNA.  Reverse transcription 
is required for the other four methods. The initial tissue sample can be from any source tissue or organism and can be prepared in a variety of ways (bulk tissue, cell 
line, etc).  Three of the methods (RNA-Seq, ESTs and SAGE) utilise absolute tag counts and are therefore referred to as “digital” methods, while northern blotting, 
microarrays and RT-qPCR are referred to as “analogue” because they measure relative abundance levels (although they can be made absolute through use of 
an internal standard).  The table below the figure summarises individual features of relevant techniques, provides a qualitative comparison of common expression 
profiling methods and compares the likelihood of errors entering the results. Detailed analysis of the individual methods are beyond the scope of this paper and 
we refer readers to original publications and recent reviews of these. See e.g. [138-139] for Northern blotting, [140-141] for microarrays, [142-143] for RNA-SEQ, 
[144-148] for PCR based methods, [149-150] for EST profiling and [151-152] for SAGE profiling methods.
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the existing algorithms used to analyse EST expression data place the 
emphasis on identification of the degree of over/under- expressed for 
tissue/disease-specific genes without fully evaluating the quality of the 
expression data or the origins of the experimental material used to 
produce EST libraries.

A technique called Serial Analysis of Gene Expression (SAGE), 
also involves the production of tags by sequencing a cDNA library 
[46]. However, unlike ESTs, each SAGE tag is a short transcript-
specific sequence of 9 – 26 base pairs in length, and many such tags are 
concatenated together into one cDNA molecule prior to sequencing, 
which improves throughput and the sequencing depth and coverage 
compared to the EST approach. SAGE tagging allowing at least in 
principle 49(i.e. over 262,144) potentially unique sequences. This makes 
SAGE another “digital” high-throughput method of gene expression 
profiling. SAGE requires fewer sequencing runs than ESTs for a 
representative profile of gene expression levels to be produced, leading 
to greater quantitative analysis and a reduction in the introduction 
of errors or biases compared to ESTs (Figure 1). The disadvantage of 
SAGE compared to ESTs is that while the tag length of 9 – 26 base 
pairs is in theory sufficient to identify all transcripts in any mRNA 
sample, in practice individual SAGE tags often map onto multiple 
transcripts [47-54]. For example, out of 130,029 different transcripts 
in UniGene database (as of 13November 2012), in the Cancer Genome 
Anatomy Project Short SAGE Database of 1,048,576 tags, 321,674 
mapped onto a UniGene Cluster, and of these, only 64,412 had one 
tag sequence uniquely mapping onto them [55]. It is because of this 
problem of ambiguity, that quality control is required. In addition to 
the problems stated above for ESTs, the shorter tag length increases 
the risk of ambiguity in the results [31,32,55,56]. However, due to the 
concatenation, the depth of sequencing is greater with SAGE so the 
sensitivity will be higher. Sequencing errors can still arise, and estimates 
of such errors can be generated. Statistical algorithms have been 
created to correct for these errors [57], but no all-inclusive solution to 
these problems have yet been reported for SAGE expression data. An 
ideal method should be able to indicate the degree of normalisation of 
a normalised library or for cancer staging.

Existing Expression Data Quality Control Methods and 
Their Applications

A few studies have been performed into quality control for most 
of the methods discussed in this article. In one investigation involving 
SAGE data [58] three databases were compared – Gene Expression 
Atlas (oligonucleotide microarray data), SAGE map (SAGE libraries) 
and Tissue Info (EST libraries). Because these databases use different 
formats for sample annotation and use different statistical methods 
for data analysis, a method called Preferential Expression Measure 
(PEM) was devised to score differential expression of genes in libraries 
grouped into six different tissue categories (brain, kidney, ovary, 
pancreas, prostate and vascular endothelium) in three databases. Inter-
database correlations were measured and were found to be high for 
brain, prostate and vascular endothelium, but not for kidney, ovary and 
pancreas. However, inter-library correlations have yet to be applied 
as a quality control method within one database [58]. However, the 
invention of PEM shows that quality control of data between databases 
has been attempted and should be explored further while also working 
well for all tissues within a single database.

In another study, data for 8,570 genes across 46 human tissues 
from the Gene Expression Omnibus (an Affymetrix microarray 

data repository) were categorised according to tissue specificity and 
subcellular localisation of their protein product [59]. The authors 
reported that widely expressed genes have higher expression levels than 
genes which are expressed in one or a few tissues [59]. However, only 
a third of the available genes were ever included in the study, which 
means that it would not be possible to utilise this as a quality control 
method for annotating new samples or accurately characterising 
existing less well characterised samples.

In a report by Daley and Smith [60] the problems related to shallow 
sequencing were considered in the context of obtaining sufficient gene 
coverage. A statistical method was proposed to provide an indication 
of the depth of sequencing required to completely sequence a library 
from an initial shallow sequenced sample. This improved on previously 
tested methods where problems arose when attempts were made to 
extrapolate beyond twice the initial run, leading to incorrect predictions. 
The new method was found to correctly predict when saturation would 
or wouldn’t occur [60]. However, the reported method, which utilised 
Bayesian statistics, did not take into account experimental errors or 
biases introduced during procedures prior to sequencing.

The problem of obtaining sufficient gene coverage was addressed 
successfully by the introduction of RNA-Seq, which provides a 
substantially greater depth of sequencing compared e.g. to EST. 
However, this method is still plagued by artefacts, requiring quality 
control to be applied. This has so far extended to the detection of poor 
quality sequence reads [10], which while useful, would not detect, for 
example, contamination of one tissue with another or the degree to 
which gene expression in cancer has diverged from that of the primary 
tumour’s host tissue, which will be significantly greater in a secondary 
metastasis (which may be mislabelled as originating from the primary 
tumour [61]).

As with “digital” methods such as RNA-Seq, “noise” can be 
introduced into oligonucleotide microarrays (also known as “tiling 
arrays”) during steps such as RNA isolation and handling, cDNA 
amplification, labelling and hybridisation, and during scanning of 
the microarrays. Various attempts have been made to indicate the 
statistical significance of results in order to discern signal from this so-
called technical noise [12-15]. However, correction of “noise” will not 
solve problems of sample contamination and mislabelling, which will 
go undetected because tissue-specificity of expression is not taken into 
account.

Attempts made to improve the quality of samples and to control for 
tissue-specificity can be exemplified by the investigations into the effect 
of RNA degradation post-mortem [62,63]. Fixing protocols may prevent 
mRNA decay but have a potential to introduce their own artefacts into 
the results [64,65]. Therefore a quality control test is required that can 
be used to tissue type a sample independently of external information. 
Krzystanek et al. [66] devised the “Biasogram” statistical approach for 
this reason, but this method does not address other pitfalls such as 
source material quality or cross-tissue contaminations, which a quality 
control method needs to in order for it to be useful in elucidating the 
tissue origin of a sample. Methods have also been devised to quality 
control transcript annotations as they are applied to microarray data, 
and these have been included into tools built for transcript annotation 
[67,68]. However, even if the transcripts are correctly annotated, this 
will not be enough to verify correct annotation of the tissue sample as a 
whole. While methods have recently been devised for gene expression 
profiling of a single cell [69], “noise” can still be a problem, and while 
methods have been devised to address this [70], results from studies of 
a single cell will still be incorrectly processed and subsequently studied 
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erroneously if the tissue sample from which that cell was derived was 
wrongly annotated.

Other investigations have compared the results from different 
gene expression profiling methods when applied to the same sample, 
which is important as all the methods are vulnerable to errors or biases 
to some degree. For example, Malone and Oliver [71] compared the 
results obtained from RNA-Seq and microarrays in a study of gene 
expression between the male and female heads of the fly Drosophila 
pseudoobscura. They found the results were the same, but they did 
not use this to create a quality control method which could be used 
to validate the identity of samples. Thus sample contamination would 
remain undetected. Furthermore, this investigation was carried out 
on non-clinical samples, a problem rectified by Turnbull et al when 
they compared microarray and RNA-Seq data from breast cancer 
samples to assess whether it was possible to combine the two types of 
data for further analysis. Though this was found to be possible, it was 
not extended to other tissues, which would have been a prerequisite 
for any attempt to use it as a quality control method for sample tissue 
typing [72]. An opportunity to devise a method for quality control of 
sample annotations was also missed in an attempt to devise software 
for comparing experiments performed using different microarray 
platforms, for the annotations were all entered manually [73], as they 
were for INMEX, software designed to integrate transcriptomic and 
metabolomic data, although the latter did provide a method of verifying 
the consistency of molecular annotation. However, the algorithm did 
not include sample annotation verification [74]. Conversely, storage 
and retrieval of sample metadata, which includes tissue annotation, was 
the focus of a data management package called the eGenVar. Whilst it 
includes scripts for automatically adding the data for many samples 
at once, scripts were not included to verify the annotation based on 
the associated raw data, and the system was only capable of handling 
microarray data [75].

Kadota and Shimizu [76] came close by using groups of genes 
instead of single genes to infer differential gene expression, and they 
ranked the genes for this purpose, but they did not extend this gene set 
enrichment to quality control of sample annotation, allowing sample 
contamination or incorrect annotation to remain undetected and 
unresolved. Similarly, Wen et al. [77] used genes which were common 
detected by different microarray methods as a quality control method 
for comparing the methods, but this was not extended to using a defined 
set of tissue-specific genes to quality control the sample annotations. 
This opportunity was also missed by Zhang et al. [78] when they 
compared the results of statistical analysis of gene expression data 
obtained from a range of microarray platforms. The opportunity to 
study tissue-specific expression in such a comparison was taken by Luo 
et al. [79] but the annotations were assumed to be correct and a quality 
control method to verify this was not devised.

While quality control methods were previously suggested, they 
only focussed on the genome (potentially missing alternatively spliced 
variants that would have been detected by studying the transcriptome) 
[80,81], or on the proteome (potentially missing mRNAs whose 
translation is downregulated by microRNAs [83,84] or covered aspects 
of the data such as GC content [40], noise [12,13] source material quality 
[62,63,67,70,86], different experimental methods [64-66,71-74,76-79] 
or read quality [87-95], with few investigations focusing on the tissue-
specificity issues [75,96], even when two or more methods were used 
in the same study [97-101]. A common shortcoming of many previous 
attempts is that tissue specificity of the genes was reported [102-112], or 
avoided [113-115]. However, no attempts were made to actually use such 

data for quality control or evaluation of the expression data, or if they 
were, it was for cancer analysis within one tissue [116-118] or to study 
the expression of synonymous codons in plants [119]. This is despite 
the fact that questions over the validity of gene expression profiling 
results in breast cancer, for example, have been discussed [120]. Even 
where an attempt has been made to summarise gene expression data, it 
was only applied to microarrays [121,122] and not transferred to other 
types of expression data. What is also needed is a method which, once 
devised, does not require adjustment of sample data for it to work, as 
has been the case previously [123-125]. Moreover, even unique “tissue 
specific genes” might be of little practical use if they are expressed at 
low levels and would therefore be absent in many smaller libraries or 
not detected in smaller size samples, after all, the general tendency is 
to miniaturise the assays and samples with the ultimate goal of single 
cell analysis [126-128]. A greater depth of sequencing would provide 
a better quantitative estimate of gene expression [48] because low-
abundance transcripts are more likely to be included [44], making the 
library more representative of gene expression in the original sample. 
However, a simple extrapolation from shallow test runs may not always 
indicate the true library complexity. The effect of library size on gene 
expression results has been previously studied and/or taken [cancer 
[129-135]. However, despite it being known that library size affects the 
reliability of the results, no comprehensive investigation into quality 
control has been reported [136].

An Internal Quality Control Method Based on Tissue- 
Specific Gene Expression

The amount of effort spent generating and validating expression 
data is vast but there remain a few shortcomings as discussed above. 
Recently a new quality control method based on tissue-specific gene 
expression has been reported [61]. That method does not reply on 
individual so called “tissue specific” genes; instead the identity of the 
sample is based on the overall similarity of gene expression patterns. 
The original quality control expression matrix (QCEM) was developed 
and validate using human EST expression data. Multiple stages of 
selecting suitable candidates for inclusion into the QC matrix were: (i) 
identification of large groups of genes which have similar expression 
patterns, (ii) prioritising for higher abundance transcripts (for the 
ease of detection) and (iii) prioritising for groups of genes with 
highest variability of expression between tissues and organs and lower 
variability of expression within the same tissues. Following original 
selection the QCEM subsets were further optimised by selecting genes 
having lowest correlations of their relative expression levels between 
different tissues and then by selecting for the highest intra-tissue 
correlations of their relative expression levels. The selection procedures 
did not discriminate for age or gender, the training set represented 
male and female tissues equally and included expression data form 
different age groups. The QCEM was designed to discriminate and 
confirm tissue origins not age groups or gender. The development of 
that approach is described in [61] and the expression matrix is freely 
available on-line (see e.g. Supplementary Dataset S4 (http://journals.
plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.
pone.0032966.s005) from [61]). In summary the QCEM method relies 
on the tissue specific ratios of expression of the optimised subset of 
selected human genes, rather than on the presence of or measuring 
expression levels of the so called tissue specific genes. The use of 
expression ratios increases resolution and multidimensionality of the 
method. Unlike other similar methods based on the “intrinsic” gene 
subsets, utilising the expression ratios allows distinguishing tissue 
origins using smaller gene panels. The optimised dataset was dubbed 



Citation: Soloviev M, Milnthorpe AT (2015) Quality Control of Expression Profiling Data. J Proteomics Bioinform 8: 176-187. doi:10.4172/jpb.1000366

Microarray Proteomics

Volume 8(7) 176-187 (2015) - 181 
J Proteomics Bioinform
ISSN: 0974-276X JPB, an open access journal 

quality control expression matrix (QCEM) and original studies showed 
it to be able to identify tissue origins for human EST expression libraries 
and to identify uncharacterised or un-annotated libraries.

The use of QCEM approach requires calculating Pearson product-
moment correlation coefficients using expression values from the 
experimental library of interest with each of the entries in the QCEM:

2 2

( ) ( )
( , )

( ) ( )
x m y n

Correl X Y
x m y n
− −

=
− −

∑ ∑
∑ ∑

Where x and y are total EST counts for the selected transcripts 
concerned in QCEM (X) and experimental library (Y0, m and n are 
the mean EST counts across all transcripts in QCEM control tissue 
X and experimental library Y [61,137]. The key advantages of using 
Pearson’s coefficients are that it reveals a degree of dependence between 
the standard and experimental datasets (QCEM and unknown library 
respectively) and is independent on the scale of the two variables. I.e. 
the expression data may of different sort may be used and many linear 
data transformations are allowed and will not change the outcome 
of the analysis. Therefore this method is especially applicable for 
comparing gene expression data generated using different techniques. 
A library is considered to be a good tissue-specific match if it shows 
high positive correlation with one specific tissue (and perhaps lower 
correlation but still significant with a functionally related tissue) and 
correlation values of close to zero with the other tissues. The use of this 
approach allowed identification of the tissue of origin as well as distant 
but related tissue types of human EST expression libraries [61]. Figure 
2 shows a few examples of such libraries with correct tissue identity. 
The robustness of the approach was also confirmed by assessing the 
degree of normalisation of expression libraries by testing the matrix 
against EST libraries annotated as normalised as well as with two model 
normalised libraries in silico. The approach was also tested against 
randomised libraries as well as cancer EST libraries to attempt cancer 
staging studies [61]. We subsequently applied the same QCEM for the 
quality control and identification of small libraries [137]. Although the 
method was originally developed for use with EST expression data, the 
generated expression matrixes and the calculations (Pearson product-
moment correlation) should be usable with other type of expression 
data such as for example SAGE, RNA-Seq, microarrays or any other 
similar methods. To illustrate this capability and as the next step 
towards establishing a universal quality control method applicable to all 
forms of expression data here we report the application of the original 
QCEM to the analysis and quality control of SAGE expression data.

Here for the first time we apply the same QC matrix (EST derived) 
to identify and characterise SAGE libraries. Figure 3 shows the results 
for SAGE libraries from the same tissues as shown in Figure 2, in which 
the results for EST libraries are presented. While there were only 377 
SAGE libraries available in total (as of 9 March 2013) compared to a 
total of 8,907 EST libraries (as of 25 February 2012), the relevant SAGE 
libraries provide very high

quality matches with their annotated tissue of origin. The sampled 
SAGE libraries represented a range of ages from foetal to 88 year old 
tisue and male and female tissues were represented equally. QCEM 
showed no discrimination, as expected, proving the robustness of the 
approach. The result shows that the QCEM can be used for tissue typing 
and characterisation of SAGE libraries as well as EST libraries, showing 
its potential as a quality control method for multiple data types. This is 
also an improvement of the earlier reported attempts to quality control 
multiple data types for a small group of tissues [58]. We further decided 
to apply the QC matrix to the identification of less well characterised 

or annotated SAGE libraries. A small number of libraries annotated 
as being from tissues other than those represented in the matrix and 
therefore identifiable were used.

Figure 4A shows the tissue identity of four uncharacterised libraries. 
One such library, annotated as originating from peritoneum (SAGE_
Peritoneum_normal_B_13). While the correlation with the peripheral 
nervous system would be expected because the PNS is systemic, the 
correlation with the heart and muscle suggests that the samples were 
probably contaminated with the related pleura, the serosa which lines 
the thoracic wall rather than the abdominopelvic cavity. Therefore using 
this library should not be used for expression profiling studies would 
yield erroneous results. Another example is the white blood cell library 
(SAGE_Leukocytes_normal_B_1), which shows strongest correlation 
with colon and vascular tissues, probably indicating that this library 
was derived form from blood, but contaminated with colon tissue. The 
above examples show the robustness of our approach in elucidating the 
suitability of libraries for expression profiling.

The usefulness of this method for quality control was further 
confirmed from the results obtained from a library annotated as 
originating from oesophagus (SAGE_Esophagus_Normal_B_CN01). 
While there is slight positive correlation with colon, to which 
oesophagus is related, this library correlates strongly with brain, skin 
and with breast, suggesting that it is probably derived from mixed tissue 
preparations or was normalised and is therefore unsuitable for use in 
gene expression studies. Furthermore, the final library in Figure 4A 
(SAGE_GallBladder_Normal_B_HN) is annotated as originating from 
the gall bladder and the ventral body wall. However, the highest positive 
correlation is with the nearby colon, strongly suggesting contamination 
with this tissue. While both tissues would be highly vascularised, 
resulting in the correlation with vascular tissue, correlation with the 
thyroid would not be expected if the portion of the ventral body wall 
collected surrounded the abdominopelvic cavity, which contains the 
colon and gall bladder. The likely explanation would be that a portion of 
the wall surrounding the thoracic cavity was collected instead, resulting 
in the contamination with the nearby thyroid. Because it is a mixed 
tissue library, this library is more suited to gene discovery investigations 
than gene expression profiling studies. These examples show that the 
matrix can be used to verify the identity of un-characterised SAGE 
libraries, reveal annotation or experimental errors and elucidated 
whether they are suitable for expression profiling, as was also the case 
with EST libraries [61].

We also investigated the potential use of the QC matrix as a 
means for cancer staging. While not enough SAGE data was available 
to illustrate detailed staging, we were able to elucidate whether such 
libraries were correctly annotated. Figure 4B shows a few random 
examples of cancer libraries. “SAGE_Brain_medulloblastoma” is 
a brain library which correlates well with the stated tissue of origin, 
suggesting to be correctly annotated. The brain library “SAGE_
Brain_glioblastoma_B_H1110” correlates with peripheral nervous 
system instead of brain. While this is possible because of the close 
relation between the two tissues, it may also be incorrectly annotated. 
Another library (SAGE_Brain_astrocytoma_grade_I_B_H1043) is also 
annotated as being derived from brain, but it shows clear correlation 
with liver, suggesting either annotation error or sample preparation 
error or that it was in fact taken from a secondary metastasis in the liver. 
The final library presented in Figure 4B is (SAGE_Brain_astrocytoma_
grade_III_B_H1020), also from brain. This appears to be incorrectly 
annotated, possibly as a result of lacking any differentiation, which does 
occur in later stages of cancer.
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Figure 2: Correlation of the matrix with EST libraries from tissues showing no inter- tissue correlation. Pearson product-moment correlation coefficients 
(vertical axes) calculated for each individual EST library and the EST expression matrix. A: Placental libraries.  B: Lung libraries. C: Retinal libraries.  All libraries 
show high correlation scores with the expected tissues of origin indicating correct library annotations and good expression data quality.  Reproduced from [61] 
with permission.

Figure 3: Correlation of the matrix with SAGE libraries from tissues showing no inter- tissue correlation. Pearson product-moment correlation coefficients 
(vertical axes) calculated between each individual SAGE library and the QC expression matrix, showing a high quality match for all SAGE libraries.  The intra-tissue 
correlation (with the stated tissue) and inter-tissue correlation (with other tissues) reveal the quality of the match between the two data types.  All libraries show high 
correlation scores with the expected tissues of origin indicating correct library annotations and good expression data quality.  The layout is identical to that shown 
in Figure 2.  The result demonstrate that our QC matrix originally created based on EST expression performs equally well when allied to SAGE expression data.

Implications of QCEM Approach on the Use of Gene 
Expression Data and Future Perspectives

Expression profiling remains a popular approach for studying gene 
expression levels, but data origins and quality are often not adequately 
described and may be of inferior quality. Experimental techniques, 
library annotations and analysis algorithms vary between laboratories 
and may contain errors. Traditional analysis methods, including 
research into tissue-specific expression, assume expression levels to be 
correct and libraries to be correctly annotated, which is not always the 
case. Multiple tools capable of assessing the quality of multiple types of 

expression data have been reported but few if any rely on the expression 
data alone .i.e. on the internal controls, for quality control and 
suitability of the data for gene expression analysis. Among such tools, 
the OCEM approach to the tissue-specificity and quality control issues 
[61,137] showed greater promise. It is different from the previously 
reported tools in that the origins of the expression data were looked 
into and the tissue specificity of the original preparations and the data 
quality are both assessed. The QCEM expression matrix can be used to 
confirm tissue identities of EST expression datasets for all main human 
tissue types (Figure 2 for three example tissues), to provide insight 
into the origin of uncharacterised libraries, to identify normalised or 
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subtracted libraries or various other experimental artefacts. In a few 
cases it was possible to identify the location of the tumour from which 
a cancer sample was taken, an extension not previously considered 
and not previously reported [61]. Furthermore, this approach could 
be used to correctly identify very small libraries [137], which will have 
a lower depth of sequencing and will therefore not provide as good a 
quantitative estimate of gene expression than larger libraries [45] due to 
the reduced likelihood of rare transcripts being included [44]. The effect 
of library size has been included previously in statistical tests, which 
have been used to study gene expression levels in a range of cancers 
[129-135], but inter-library correlations were not (unlike QCEM, 
where these were also considered). When applied to SAGE expression 
data, the correlations illustrated in Figure 3 revealed that QCEM matrix 
is even more versatile than it was originally thought [61], for it was 
possible to identify and characterize SAGE libraries as accurately as 
EST libraries (Figure 2).

The results for the uncharacterized tissue libraries presented in 
Figure 4A further confirm the potential of the QC matrix as a means 
to elucidate the origin of libraries whose identity is unknown or not 
annotated in the database record. It was possible to identify the tissue 
origin of all four libraries, which in all cases showed contamination with 
another tissue. Therefore, these findings show the matrix can be used to 
identify incorrect annotations using both EST and SAGE data as well as 
verify the identity of libraries that have been correctly annotated.

Cancer libraries are known to show changes in transcription which 
are characteristic of the type of cancer from which they were taken. 
As the disease progresses, gene expression is known to increasingly 
cease to resemble normal gene expression in the tissue where the 
primary tumour arose. When we came to apply our method to SAGE 
cancer data, as we had for EST [61], we found that the results gave an 
indication of the stage of the disease for both types of data, suggesting 
its potential for indicating cancer progression more accurately than 
from annotations alone.

We envisage that this approach may be adapted and applied to 
other expression data such as from DNA microarrays, RNA-Seq data, 
RT-qPCR and Northern blots. We believe that increasing amount of 
available data could further decrease the number of transcripts in the 
expression matrix and may allow accurate analysis and tissue typing 
of the related and dependent tissues. Merging of this data could bring 
further improvements, for the quality control method would only need 
to be assessed once, rather than testing it on each type of data.

The ability to apply a quality control method to the existing gene 
expression data would be invaluable because expression profiling 
methods and different procedures used for those methods lead to a 
range of errors or biases being introduced, different for each procedure 
or method. This would quality control and correction of data for not 
only cancer, but also infectious diseases, where gene expression is 
involved in the regulation of immune responses, and many other 
disorders, leading to better application of diagnostic or prognostic 
techniques and novel treatments [138-152].

Conclusions
Expression profiling algorithms were previously found to contain 

errors, correction of which would ensure the results from investigations 
into differential gene expression are no longer affected by such problems. 
However, the results are still dependent on the gene expression data 
itself being correct, which existing algorithms assume to be the case. 
While many investigations have previously been undertaken towards 
quality control of gene expression data, none of them focused on sample 
tissue type annotation, and no attempts to devise a method to verify this 
were reported. In other studies where tissue-specific expression was 
investigated or focused on, no use of this as a quality control method to 
verify tissue type annotations was presented.

It was previously shown that the tissue type annotations of EST 
libraries could be verified independently using an expression matrix 

Figure 4: Correlation of the QC matrix with SAGE libraries from uncharacterised or cancer libraries. Pearson correlation coefficients (vertical axes) 
calculated between individual SAGE libraries and the EST-derived QC expression matrix.  The selected examples illustrate uncharacterised, incorrectly defined or 
cancer libraries indicated by their correlations which contradict libraries’ annotations. A: uncharacterised or ill-defined preparations (left to right): peritoneum library 
SAGE_Peritoneum_normal_B_13 (expected match: liver, gastrointestinal tract and colon), white blood cell library SAGE_Leukocytes_normal_B_1 (expected 
match: vascular), “SAGE_Esophagus_Normal_B_CN01” library (expected match: gastrointestinal tract) and “SAGE_GallBladder_Normal_B_HN” expression 
library (expected match: liver). B: cancer libraries (left to right): brain cancer library “SAGE_Brain_medulloblastoma_B_98-05-P608”, brain library “SAGE_Brain_
glioblastoma_B_H1110”, brain cancer library “SAGE_Brain_astrocytoma_grade_I_B_H1043”and brain cancer library “SAGE_Brain_astrocytoma_grade_III_B_
H1020”.
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based on tissue specific markers, showing this to be a suitable means 
of quality control, which could also be used for cancer staging of EST 
data. Furthermore, the robustness of the new method was confirmed by 
using it to correctly identify libraries containing only a handful of ESTs. 
Here we applied the QC matrix to SAGE data and found it to be equally 
capable of verifying the tissue identity of SAGE libraries and also 
for cancer staging. Together, these findings increase the reliability of 
differential gene expression investigation results for cancer, eliminating 
the possibility of such errors leading to misdiagnosis, erroneous 
prognosis or incorrect administration of therapy.
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