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Abstract

Drug discovery research based on marine organisms is a big challenge. However, lack of facilities and competent
human resources stand as a barrier on the way of research. More in-depth study especially on deep-sea natural
products needs to be carried out to solidify the research on the potential for marine organisms to contribute to the
future of drug discovery. The total drug discovery processes including collection of marine organisms, extraction,
isolation, structure elucidation, biological assay and experimental screening as well as clinical trials is a very long
journey and big challenge. Therefore, researchers pay a big attempt to design and discovery of synthetic congeneric
leads by derivatizing the natural potent compounds. Therefore, In-silico High throughput screening based on QSAR
and molecular docking has been attempted in the present study for the design and discovery of promising
anticancer compounds considering existed marine sponge-derived hymenialdisine analogs which are protein kinase
inhibitors having nanomolar activities against CDKs, Mek1, GSK 3β and CK1. It may crystallize crucial features for
the design and discovery of promising anticancer HMD compounds which could be proposed for further synthesis
and testing. QSAR and molecular docking analysis of HMD analogs are being carried out by freely accessible open
source software which are very economical and potential in drug discovery attempt.

Keywords: Marine sponges; Hymenialdisine (HMD); CDK5/p25
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Introduction
Microbial symbionts of marine sponges play a significant role for 

the generation of medicinal leads. Lacking any protective shell or 
means of escape, sponges are evolved to synthesize a variety of natural 
novel leads against cancer, bacterial, viral, fungal and parasitic diseases. 
Drug resistance is one of the major issues which could be solved by the 
treatment with potent natural products [1,2]. Many marine natural 
products have successfully been undergoing on the late stages of 
clinical trials, as for example ara-A (vidarabine), an anti-viral drug 
used against the herpes simplex encephalitis virus. Moreover, many 
marine-sourced candidate structures have been selected as promising 
leads for extended preclinical assessment, including manzamine A 
(activity against malaria, tuberculosis, HIV, and others), lasonolides 
(antifungal activity) and psammaplin A (antibacterial activity).

Potential secondary metabolite hymenialdisine was isolated from 
marine sponges belonging to the genera Acanthella, Axinella and 
Hymeniacidon [3,4]. It was shown to be a potent inhibitor 
(IC50=10-40 nM) of the protein serine/threonine kinases CDK5, 
mitogen-activated protein kinase-1, and casein kinase 1. These protein 
kinases regulate several vital cellular functions such as gene expression, 
cellular proliferation, membrane transport and apoptosis [5]. HMD in 
the micromolar range was shown to produce antiproliferative effects 
against human tumor cell lines, presumably as a result of CDK and 
Mek inhibitory activity [6]. Further, HMD was shown to be a 
micromolar inhibitor of NF-kB mediated gene transcription in U937 
cells, [7-9]. Indoloazepines were designed from the structure of natural

template hymenialdisine and these compounds were tested against the 
production of IL-2 and TNF-α. The indoloazepines were shown to treat 
inflammatory diseases, particularly diseases associated with kinases NF-
κB or GSK-3β activation or NF-κB activated gene expression products. 
The indoloazepines were also useful for the treatment of cancer by the 
inhibition of kinases CHK1 and CHK2 [10]. The challenging syntheses 
and their evaluation as kinase inhibitors of hymenialdisine and its 
analogues were described by Nguyen et al. in a review [11].

Therefore HMD was taken as a major scaffold to synthesize a 
number of potential compounds. An attempt has been made by Wan et 
al. to synthesize many congeners having significant anticancer activities 
against different protein kinases [12]. Hymenialdisine contains 
pyrrolo[2,3-c]azepine nucleus. In order to explore crucial structural 
features of the pyrrolo[2,3-c]azepine skeleton as a protein kinase 
inhibitory scaffold descriptor based QSAR has been developed. 
Theoretical molecular descriptors include topological indices or 
numerical graph invariants that are widely used in the theoretical 
QSAR research for predicting biological activities of chemical 
compounds. Molecular descriptors considered in our study consist of 
topological, constitutional, electrostatic, geometrical and 
physicochemical parameters solely computed from the structures of 
HMD compounds. Such QSARs are useful for the prediction of newly 
designed HMD congeners prior to the experimental testing.

A synthetic medicinal chemist using traditional methods of
synthesis can produce a limited number of compounds. In
contemporary drug design one can generate millions of virtual
combinatorial compounds shortly. Therefore  it is necessary to develop
QSAR models by using non-empirical parameters which are also called
as theoretical molecular descriptors. In experimental drug design,
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synthesis and structure activity relationship of molecules are time
consuming, expensive and involves animal sacrifices  Before the
experiment, one can tackle such situation with a differen  view based
on the application of QSAR models for predicting biological activity of
the virtual compounds which are being subjected for further ligand-
receptor interaction studies to predict mechanism of action.

In the next step, structure based molecular docking is being carried 
out for predicting the mode of binding of congeneric HMD 
compounds. This study will help to design and screen new active 
congeneric potent analogs. Promising newly designed hits with 
potential activities arising out of these studies will be proposed for the 
synthesis and testing against different protein serine/threonine kinases 
such as CDK5, mitogen-activated protein kinase-1, casein kinase 1, etc 
for biological screening.

Materials and Methods

Selection of biological activity data
In the present study, a series of 52 HMD compounds having 

Pyrrolo[2,3-c]azepine scaffold showing good inhibitory effect on 
CDK5/p25 (Table 1) were taken into consideration for QSAR based on 
computed structural indices based QSAR modeling. Pyrrole ring was 
replaced by halo indole to generate potent compounds. 2-amino 
imidazole and pyridine derivatives showed a potent inhibition towards 
CDK5/p25 kinases. Hydrazone and glycocyamidine indole analogs 
also play a great role for producing biological activities. IC50 were 
calculated by conducting assays at 1.5 µM ATP for CDK5/p25 [12].
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Compound number Substitution points Activity

(pIC50)

R1 R2 R3 R4

1 Br H H H 1.431

2 Br Br H H 1.251

3 H H H H 0.95

4 H Br H H 1.102

5 Cl Cl H H 1.207

6 Br Br CH3 H 0.6

7 Br Br H CH3CO 0.273

8 Br Br H C2H5 -0.959

Compound number Substitution points Activity

(pIC50)

R1 R2 R3 R4

9 H H H H 0.752

10 H F H H 0.752

11 H Cl H H 0.718

12 H Br H H 0.671

13 H SO2CH3 H H -0.093
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20 Br Br H

N
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H2N
-0.911

16 NO2 H H H 0.962

17 NH2 H H H 0.728

18 H Br CH3 H -0.004

19 H Br H CH3CO -0.708

14 H NO2 H H 0.146

15 H NH2 H H 0.166

Compound number Substitution points Activity

(pIC50)

R1 R2 R3 R4



32 H F

N
1.091

33 H Cl

N
0.090

34 H Br

N
0.359

35 NH2 H

N
-1.352

36 H Cl

N
Cl 0.747

37 H Cl

N
F3C 0.060
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47 H F

N
F3C 0.359

48 H F

N
1.920

49 H F

N
O -0.466

50 H F
S

O

O
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51 H F S
O

O
H2N 1.2

52 H F
N

S
O

O
H2N 0.752
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Table 1: Biological activity data.

Optimization of chemical structures

The chemical structures were drawn into 2D which was then 
converted into 3D modules. 3D structures were minimized by MM2 
force field [13] using a value of 0.001 as dielectric constant considering 
Chem3D Ultra. Optimization of all the structure was performed by 
using Chemdraw software for making them stable energetically [14]. 
For the computation of theoretical molecular descriptors, these 
energetically minimized stable conformations were then taken into 
consideration into descriptor calculation module.

Descriptor calculation

Many theoretical Molecular descriptors were calculated using 
PaDEL Descriptor Computation [15] open source molecular property 
calculation freeware which can calculate a number of 1875 descriptor 
including 1444 1D, 2D descriptors and 431 three dimensional (3D) 
descriptors and 12 types of fingerprint (total 16092 bits) using the 
Chemistry Development Kit. These structural indices are numerical 
quantification of molecular size, shape, symmetry, complexity, 
branching, cyclist, stereo electronic character, etc. derived by the 
application of graph theory and play a crucial role in QSAR and 
molecular modeling [16-19].

Prior to the QSAR model development, the descriptor set is reduced 
into 1177. The rationale behind the data mining is that descriptors with 
perfectly constant and highly inter-correlated descriptors were 
removed considering variance and correlation coefficiet cut-off values 
of 0.0001 and 0.99 using V-WSP algorithm [20] incorporated into 
vWSP module of Nano BRIDGES software [21]. Descriptor data is 
given in Table S1. As the number of structural predictors greatly 
exceeds the number of compounds, selection of important predictors is 
necessary for the QSAR modeling. Genetic algorithm-multiple linear 
regression (GA-MLR) has been used for the development of QSAR 
model considering reduced predictors data after variable selection by 
genetic algorithm method [22,23].

Statistical modeling by GA-MLR

Computational programming has been incorporated as a stochastic 
optimization tool in GA which is based on the cross over and mutation 
concept of combination of genes to produce chromosome. GA is a very 
powerful tool to explore many solutions to a large problem space. In 
this method, each gene is numerically encoded by a descriptor and 
each chromosome consists of combination of genes representing a 
population consisting of combination of molecular descriptors. In 
descriptor combination, a binary string of digits containing the values 
of “1” or “0” are given. It signifies its presence or absence. The value of 
“1” implies that the corresponding descriptor is included for the parent 
and “0” indicates that the descriptor is excluded. The length of each 
string is same and is equal to the total number of descriptors. Fitness 
function is calculated by considering the following default parameters 
as modeled in Nano Bridges software: Total number of iterations=100, 
equation length=5, crossover probability=1, mutation probability=0.5, 
initial number of equations generated=100, number of best equation 
selected=20, smoothing parameters (LOF calculations)=10. A

population of 100 different random combinations of the calculated 
molecular descriptors is generated. A QSAR model is developed based 
on each parent combination of descriptors for the entire data set using 
MLR. Fitness function of each model is formulated in term of Q2

Loo or 
R2 where, Q2

Loo represents cross-validated R2. Values of Q2
Loo and R2

are calculated by the standard equation [24,25].

Molecular docking
The crystal structure of CDK5/p25 (PDB ID: 1UNG) complexes 

with aloisine co-crystal was selected as receptor for the docking studies. 
The protein was downloaded and prepared by removing water 
molecules and hydrogen atoms in the H-depleted target molecule were 
added. A grid was generated surrounding co-crystallized ligand bound 
with the active cavity of target. Flexible docking method was 
incorporated in Argus Lab 4.0.1 freeware which allows free rotation of 
the ligand inside target cavity to generate multiple conformers that can 
produce many 50 docked complex poses considering grid resolution 
(angle) of 0.4 degrees as default value. The best complex pose with 
minimal interaction energy has been taken into consideration for 
better explanation of mode of interaction between the ligand and 
active amino acid residues of the receptor protein [26,27].

Results and Discussion

QSAR modeling
Quantitative structure activity relationship models have been 

generated for 52 Pyrrolo[2,3-c]azepine skeleton of hymenialdisine 
analogs by considering various set of molecular descriptors including 1 
dimensional, 2 dimensional and 3 dimensional descriptors by using 
GA-MLR methods of NanoBridges software The impact of the 
different computed descriptors on CDK5/p25 inhibition has been 
captured by the various validated training QSAR modeled parameters. 
A number of training models were generated by dividing the data set 
into different test and training set using Kennard stone method [28]. In 
this study, QSAR model showing best results in terms of CDK5/p25 
inhibition was reported in Table 2. Test set consists of 27% of the total 
data whereas training set consists of 73% of the total observation. 
Compound number 1, 6, 16, 21, 22, 23, 28, 31, 37, 39, 40, 48, 49, 50 
were taken as test set. It can produce the maximum model quality in 
terms of R2, Q2

Loo, R2
pred and r2

m (for the test set) values of 0.781, 
0.685, 0.620 and 0.763 respectively.

B.A=-0.97669(+/-0.93078)+0.06475(+/-0.02067) RDF60m+0.26238(+/-0.10625)
SdsN-0.9632(+/-0.35784) RDF20s+0.00302(+/-0.00273) fragC
+3.41726(+/-1.08703) MATS8i +3.59907(+/-0.81349) MATS7e

N=38, R2=0.781, Q2
Loo=0.685, R2

pred=0.620, SEE=0.429, RMSEP=0.713, 
F=18.486 (DF :6, 31), r2

m (test)=0.763, average r2
m(test)=0.747, delta 

r2
m(test)=0.031 (Equation 1)

Model parameters Physical interpretation

RDF60m
Radial distribution function-6.0/weighted by atomic
mass

SdsN (Atom-type E-state indice): Sum of dsN E-states
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RDF20s Radial distribution function index

fragC (2D): Complexity of a system

MATS8i
(2D autocorrelations): Moran autocorrelation of lag 8
weighted by ionization potential

MATS7e
(2D autocorrelations): Moran autocorrelation of lag 7
weighted by Sanderson electronegativity

Table 2: Best QSAR model showing CDK5/p25 inhibition along with
physical parameters.

R2 and Q2
Loo of a model are calculated by

R2=1-[∑(Yobs-Ycalc)2/∑(Yobs-Ῡ)2] and

Q2
Loo=1-[∑(Yobs-Ypred)2/∑(Yobs-Ῡ)2]

Where Yobs and Ypred indicate observed and predicted activity
values, respectively, and Ῡ indicates mean activity value of training
molecules. A model is considered acceptable when the value of Q2

Loo
exceeds 0.5.

Rpred
2=1-[∑(Ypred test-Ytest)2/∑(Ytest-Ῡtraining)2]

where, Ypred test and Ytest indicate predicted and observed activity
values respectively of the test set compounds and Ῡtraining indicates
mean of observed activity values of the training set. For a predictive
QSAR model, the value of R2

pred should be more than 0.5 [29].

It was shown that the equation 1 can produce an explained variance 
of 78.1% and an internal predicted variance of 68.5% of the observed 
data. A simple R2 represent the goodness-of-fit as R2 value can be 
increased even on addition of insignificant descriptors. Therefore 
R2

pred, standard error of estimation (SEE) and root mean square error 
of prediction (RMSEP) are calculated and given as 0.620, 0.429 and 
0.713 respectively. F statistics is calculated as 18.486 whereas degree of 
freedom is given as (6, 31) for the training data considered in the

present study. It was observed that QSAR result based on combination
of the descriptors from the randomized sets produce lower values of
R2, Q2

Loo and R2
pred.

Further, external predictability of the generated QSAR models was 
evaluated by calculating modified r2 (r2

m) which is given as

Where, r2 and r0
2 are squared correlation coefficient between the 

observed (Y axis) and predicted (X axis) activity values of the test set 
with and without intercept, respectively. r2

m value must be greater than 
0.5 to have a significant model. r2

m (test) is calculated as 0.736 which 
produce significant predictability of this model [30].

Change of the axes gives the value of r⁄
0

2 and r⁄
m

2 is calculated by the
following formula which depends on the value of r⁄

0
2.

Where, r2 and r⁄
0

2 are squared correlation coefficient between the 
observed (X axis) and predicted (Y axis) activity values of the test set 
with and without intercept, respectively. Therefore, average r2

m and 
delta r2

m are now calculated by

An acceptable QSAR model must produce the value of "Average r2
m" 

>0.5 and "Delta r2
m" should be <0.2 respectively [30-32]. So, this model 

produces average r2
m and delta r2

m given as 0.747 and 0.031 
respectively. These parameter values are well accepted as per the 
standard values and the model produce significant predictability. The 
above QSAR model is further applied for predicting biological activities 
of the test compounds. The observed and predicted activities of the test 
compounds along with their square residuals are given in the following 
Table 3. Further correlation between observed and predicted activities 
was graphically represented in the Figure 1.

Test molecule number Observed activities Predicted activities (Residual)^2

1 1.431 0.922 0.258

6 0.600 0.424 0.030

16 0.962 0.772 0.035

21 -1.915 -0.671 1.546

22 -0.101 -0.412 0.097

23 -0.579 -0.432 0.021

28 -1.352 -0.273 1.163

31 0.120 -0.288 0.166

37 0.060 0.589 0.280

39 1.494 0.590 0.817

40 -0.725 -0.594 0.017

48 1.920 0.921 0.996

49 -0.466 -0.302 0.026
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50 1.920 0.628 1.668

Table 3: Observed and predicted activities of the test compounds along with their square residual.

Figure 1: Observed activity vs. predicted activity of test molecules.

From this graph, it is evident that predicted activities of all 
compounds in test set are good corresponding to the observed 
activities. The square correlation coefficient between observed 

activities vs. predicted activities is calculated as 0.767 which suggests
good model predictivity.

The above model contains two important parameters such 
as coefficient MATS8i and MATS7e having higher positive 
coefficient values of 3.417 and 3.599 respectively. These 
represent 2D autocorrelation descriptor encoding ionization 
potential and Sanderson electronegativity of the HMD analogs. 
These parameters indicate the relative tendency of a charge 
distribution, like the electron cloud of an atom or molecule which may 
motivate charge or hydrogen bond interaction with the target. 
Further structure based molecular docking would be helpful for 
predicting mode of binding of congeneric HMD compounds.

Structure based docking findings
Molecular docking of 52 HMD analogs consisting of five series has 

been done to study the essential binding interaction of HMD analogs 
with CDK5/p25. Details of interactions have been given in Table 4. 
Most common amino acids responsible for producing H-bonding and 
hydrophobic interactions for these series have been highlighted by 
bold font.

Ligand Mode of interactions of the ligands with amino acid residues inside the binding pocket

1 ASN 144, CYS 83, LYS 33, VAL 18

2 ASN 144, CYS 83, LYS 33, VAL 18, GLU 81, ILE 10

3 CYS 83, LYS 33, GLU 81

4 ASN 144, CYS 83, LYS 33, VAL 18, ILE 10, ALA 31, PHE 80

5 ASN 144, CYS 83, LYS 33, VAL 18, GLU 81, PHE 80

6 ASN 144, CYS83, ILE 10, ALA143

7 ASN 144, CYS 83, VAL 18, ILE 10, ASP86, GLN 130

8 CYS 83, VAL 18, ILE 10

9 ASN 144, CYS 83, ILE 10, PHE 82

10 ASN 144, CYS 83, ILE 10, ALA 31, PHE 82, ASP 84, GLN 85

11 ILE 10, GLN 85, LYS 20

12 CYS 83, LYS 33, GLU 81, ASP 86

13 ILE 10, GLY 16

14 ILE 10, ASP 86

15 CYS 83, GLU 81, ILE 10

16 CYS 83, ILE 10

17 CYS 83, ILE 10, ASP 86

18 ASN 144, ILE 10, ALA31, ASP 86, GLN 130, PHE 82
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19 CYS 83, GLU 81, ASP 86, PHE 82, LEU 133

20 ASN 144, CYS 83, LYS 33, VAL 18, GLU 81, ALA 143, PHE 82, LEU 133

21 ASN 144, CYS 83, ILE 10, ALA 31, PHE 80, ALA 143, PHE 82, GLN 85, LEU 133, GLU 85, VAL 64

22 CYS 83, LYS 33, VAL 18, PHE 80

23 ILE 10, ASP 84, LYS 20, LYS89, GLN 8

24 ILE 10, PHE 80, PHE 82, LYS 89

25 CYS 83, LYS 33, VAL 18, PHE 80, ASP 86, PHE 82

26 ASN 144, LYS 33, VAL 18, ILE 10, PHE 80, ALA 143, ASP 84, VAL 64

27 ASN 144, CYS 83, LYS 33, GLU 81, ILE 10, ALA 31, PHE 80, ASP 86, LEU 133

28 CYS 83, VAL 18, ILE 10, ASP86, LYS 20

29 LYS 33, ILE 10, PHE 80, ALA 143, ASP 86, VAL 64

30 GLU 81, ALA 31, PHE 82

31 ASN 144, CYS 83, LYS 33, ILE 10, PHE 80, ALA 143, PHE 82

32 ASN 144, CYS 83, LYS 33, ALA 31, PHE 80, ASP 86, PHE 82, LEU 133

33 ASN 144, CYS 83, LYS 33, GLU 81, ALA 143, PHE 82, LEU 133, VAL 64, GLU 51

34 VAL 18, ILE 10, ALA 31, GLN 130, PHE 82

35 ASN 144, CYS 83, ILE 10, ALA 31, ASP 86, GLN 130, PHE 82, LEU 133

36 ASN 144, LYS 33, VAL 18, ILE 10, ALA 31, PHE 82

37 ASN 144, ILE 10, ASP 86, LYS 20, LEU 133

38 ASN 144, LYS 33, ILE 10, PHE 82

39 ASN 144, CYS 83, LYS 33, VAL 18, ILE 10, ALA 31, PHE 82, LEU 133

40 VAL 18, ILE 10, PHE 80, ASP 86, LYS 20

41 ASN 144, CYS 83, LYS 33, VAL 18, ALA 31, ASP 86, PHE 82, ASP 84

42 CYS 83, LYS 33, VAL 18, GLU 81, ASP 86, GLN 85

43 ASN 144, VAL 18, ILE 10, ALA 31, ALA 143, PHE 82, VAL 64, GLU 51

44 ASN 144, LYS 33, ILE 10, ASP 86, LYS 20

45 ILE 10, ASP 86, LYS 20

46 ASN 144, CYS 83, GLU 81, PHE 80, ALA 143, ASP 86, GLN 130, PHE 82, LEU 133, VAL 64

47 ASN 144, LYS 33, VAL 18, ASP 86, LEU 133, ALA 143, VAL 64

48 ASN 144, CYS 83, GLU 81, PHE 80, ALA 143, ASP 86, GLN 130, PHE 82, LEU 133, VAL 64

49 ILE 10, ASP 86, GLN 8

50 ASN 144, CYS 83, LYS 33, VAL 18, PHE 80, PHE 82

51 CYS 83, ASP 86, ASP 84, ALA 31, LYS 20

52 CYS 83, ALA 31, ASP 86, ASP 84

Table 4: Details study of HMD analogs-receptor interactions.

There are three factors primarily involved in influencing 
binding conformation between ligand and protein: binding energy, 

 hydrogen bonding, and hydrophobic bonding. ILE 10 is common 
for mostly compounds. Docking analyses of HMD analogs 
including serial no 1-8, 9-19, 20-30, and 31-52 have been discussed
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taking CDK5/p25 cleft Serial no 1-8 has shown common interactions 
with ASN 144, CYS 83 and VAL 18 amino acid residues. ASN 144 and 
CYS 83 influence on hydrogen bonding while VAL 18 produces 
hydrophobic interactions.

Mostly -NH group of pyrrole of pyrrolo [2,3c] azepine skeleton
interacts with C=O group of ASN 144. Carbonyl group of azepine of
HMD analogs interacts with NH and CH group of ASN144. N atom
and NH group of imidazole of HMD analog interacts with CO group
of ASN 144. Br atom produces hydrophobic bonding with VAL 18 and
H-bonding with CYS 83. NH and CO group of imidazole of HMD
analogs shows interactions with CO, NH and SH group of CYS 83.
Carbonyl and hydroxyl group present in azepine of HMD analogs
interacts with NH group of CYS 83.

Most common amino acids interactions with ligand serial no 9-19 
are CYS 83 and ILE 10. CYS 83 produces hydrogen bonding while ILE 
10 influence  both hydrogen bonding and hydrophobic interactions. 
NH group of indole present in HMD analogs interacts with CO group 
of CYS 83. CO and NH group of azepine of HMD analogs interacts 
with CYS 83. Amino group of imidazole of interacts with CO group of 
ILE 10. Amino group attached at second position of imidazole of HMD 
analogs interacts with CO group of ILE 10. The most common amino 
acids interactions with ligand serial no 20-30 are ILE 10 and PHE 80. N 
and NH group of hydrazone and NH group of Indole interacts with 
CO group of ILE 10.

Pyrrole ring, benzene ring and Br atom present at third position of 
pyrrole, of HMD analogs produce hydrophobic bonding with ILE 10 
and PHE 80 while N atom of pyrrole produces electrostatic bonding 
with PHE 80. HMD analogs from serial no 31-35 have shown most 
common amino acid interactions with ASN 144, CYS 83 and PHE 82. 
CYS 83 and PHE 82 influence H-bonding, hydrophobic bonding, 
halogen bonding and ASN 144 produces H-bonding. CO group of 
azepine ring and pyridine ring of HMD analogs produces interaction 
with NH group of ASN 144 while NH group of both azepine and 
hydrazine interacts with CO group of ASN 144.

CO group of azepine interacts with CH group of PHE 80. NH group
of indole and N atom of hydrazine interacts with CO group of CYS 83.
Benzene ring of indole produces hydrophobic interaction with CYS 83
and PHE 82. HMD analogs from serial no 36-52 have shown common
amino acid interactions with ASN 144, ILE 10 and ASP 86. NH group
of azepine of HMD analogs interacts with CO group of ASN 144 while
Fluorine atom of trifluoromethy  attached at second position of
pyridine, N atom of pyridine, pyridine nucleus of HMD analogs
interacts with NH group of ASN 144 and produces hydrogen bonding.

NH group of Hydrazine interacts with CO group of ILE 10 and
produce for hydrogen bonding. Benzene ring of indole, Cl atom
present at forth position of indole and pyridine produces hydrophobic
bonding with ILE 10. Cl atom present at second position of pyridine
interacts with NH group of ASP 86 whereas CH group present at fifth
and sixth position of pyridine of HMD analogs interacts with CO
group of ASP 86. N atom of pyridine ring, hydrazine and azepine ring
also produces electrostatic interactions. Cl atom at second position of
pyridine, Cl atom at forth postion of indole and F atom at forth
position of indole produces halogen bonding.

Conclusion
QSAR of marine sponge derived HMD analogs elucidate the crucial 

features of radial distribution function, ionization potential and 
Sanderson electronegativities which are correlated with the polarity 
character of the compounds. Evaluation of docking results of HMD 
analogs has been compared with the docking findings of compound 48 
carried out by Wan et al. [12]. Docking results of highest active 
compounds 48 showed same hydrogen bonding interaction with the 
amino acid residues such as CYS 83 and GLU 81 already reported by 
Wan et al [12]. As per the in-silico docking experiments done by us it 
was observed that amino acid residues ASN 144 produced non-classical 
H-bonding with pyridine ring. Other amino acid residues including 
Phe 80, Leu 133, ALA143 and Val 64 can interact with different 
substituents of the ligand 48, cleft at hydrophobic pocket of the target. 
7-fluoro can interact with GLN130 and Asp 86 by halogen bonding. 
Therefore, it is concluded that these residues are also important for 
inhibition of CDK5/p25. Pattern of interactions is given in Figure 2. It 
was also observed that amino acid residues such as CYS 83, ILE 10 and 
ASN 144 are commonly interacted by the moderate active such as 3-4, 
9-11, 16-17, 32, 36, 45-46 and 52 as well as lower active compounds 
such as 6, 7, 8, 12-15, 18-20, 21-37, etc.

Figure 2: Best docked conformer pose of compound 48 cleft at
target (PDB ID: 1UNG).

This work has been performed by using softwares which are freely 
accessible from the internet resources. Therefore  studies in this 
direction are very economical and could be highly focused in 
predicting essential HMD structural features for the design of potent 
hybrids utilizing free internet resources.
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