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Abstract
PVT1 was originally identified as a transcriptional unit from a human homologous sequence to Pvt1, which was 

cloned from murine plasmacytoma with t(6;15). Previous studies have revealed various genetic alterations in the 
PVT1 locus, including chromosome translocation, amplification, chromothripsis, and single nucleotide polymorphisms 
in human diseases, suggesting important roles of PVT1 in the pathogenesis. However, because this locus does not 
produce protein coding sequences, its functional properties have not been characterized and its biological significance 
remains unclear. Recent studies have shown that the PVT1 locus encodes lincRNAs and microRNAs. Therefore, 
current investigations are being performed focusing on the biological features of this long-standing puzzle gene as a 
non-coding gene.
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Introduction
Majority of cancer cells show chromosome abnormalities, 

including amplifications, deletions, and translocations, and these are 
caused by genetic alterations during tumor development. Identification 
of genes that are responsible for these chromosome abnormalities has 
elucidated important tumoriogenic mechanisms. 

In human B cell malignancies, chromosome translocations, 
involving one of three immunoglobulin gene (IG) loci (heavy chain 
gene, IGH/14q32; kappa chain gene, IGκ/2p12; lambda chain gene, 
IGλ/22q11), are frequently observed and are strongly associated 
with tumorigenesis. Among these IG loci, IGH/14q32 is the most 
common target, and chromosome translocations involving IGκ/2p12 
or IGλ/22q11 are less common, thus those are called as “variant” 
IG-translocations. Molecular cloning of the breakpoints of IG 
translocations has revealed several oncogenic sequences that play 
crucial roles in tumor cell development [1]. The gene targeted by IG 
translocations becomes closely associated with IG transcriptional 
elements, resulting in deregulated expression. Most of these targeted 
genes physiologically involves in the cell cycle, differentiation, apoptosis, 
or signal transduction in B cells. Thus, deregulation of their expression 
impairs biological functions and leads to B cell tumorigenesis.

The plasmacytoma variant translocation 1 (Pvt1) gene was 
originally cloned in early 1980s from a variant translocation 
breakpoint of t(6;15), which involves the Igκ locus, observed in murine 
plasmacytoma [2]. Thereafter, a homologous human sequence (human 
Pvt1) was identified from the equivalent translocation t(2;8)(p12;q24) 
observed in human Burkitt lymphoma [3], and a transcriptional unit 
encompassing this sequence was cloned and defined as PVT1 [4]. Thus, 
PVT1 was one of the first genes to be cloned from IG translocations. 
Although several studies have investigated the functional roles of PVT1 
since its molecular identification, similar to other genes cloned from IG 
translocations, the functional aspects still remain unclear. 

In addition to chromosome translocations, it is well known that 
PVT1 is a target of genetic gains and amplifications in various cancers 
[5-7]. Moreover, recent genome-wide screening experiments indicated 
that Single Nucleotide Polymorphisms (SNPs) around the PVT1 
locus are predictive of susceptibility to malignant or non-malignant 
diseases [7-12]. Therefore, observations of these genetic alterations 
(translocation, amplification, and SNPs) in the PVT1 locus in various 
diseases suggest that it plays important roles in pathogenesis. 

The PVT1 locus produces various alternative transcripts [4], 

although no protein coding sequences have been determined thus far 
[7]. Several microRNAs (miRs) from both human and mouse PVT1/
Pvt1 loci have recently been validated [13,14]. In addition, transcripts 
from the PVT1 locus have been identified as large intervening non-
coding RNA lincRNA [15]. Although the biological significance of 
these RNAs is under investigation, the functional characteristics of 
PVT1 are being analyzed as non-coding RNAs. 

This review summarizes on the current knowledge of the structures, 
genetic alterations, and functions of PVT1.

Structure
The PVT1 region is located 57 kb downstream of MYC on 8q24 

and covers approximately 300 kb upto the telomeric end (Figure 1). 
This gene comprises at least nine annotated exons and encodes at 
least six alternative transcripts of 2.7~3.3 kb length [7]. Nonetheless, 
no protein-coding sequences have been identified in these alternative 
mRNAs.

Huppi et al. [13] recently identified and observed miR1204, 
miR1205, miR1206, miR1207-5p, miR1207-3p, and miR1208 
expression, which reside within the PVT1 region, but do not overlap 
any PVT1 exons [13]. Although human and mouse PVT1 (Pvt1) 
transcripts are encoded in significantly different positions in annotated 
exons, relative positions of miRs are highly conserved between species 
[7,13,14], indicating fundamental roles of these miRs across diverse 
species. Transcripts produced from PVT1 are presently considered to 
be lincRNAs [7,16], which are non-coding transcripts of more than 
200 nucleotides that may be involved in several biological processes. 
Moreover, gene expression profiling using lincRNA probes recently 
revealed that PVT1 encoded transcripts are among the top 30 lincRNAs 
expressed in gastric cancers [15], suggesting functions of PVT1 as 
lincRNAs in carcinogenesis. Therefore, PVT1 is believed to be a host 
gene for lincRNAs and miRs, rather than a protein coding gene.
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Genetic Alterations in Human Diseases
Chromosome translocation

Chromosome translocations involving the 8q24 locus are observed 
in all cases of Burkitt lymphoma, some cases of non-Hodgkin 
lymphoma, and advanced cases of multiple myeloma [17,18]. Among 
8q24-translocation partners, IGH/14q32 is the most common, followed 
by IGλ/22q11 and IGκ/2p12. These result in t(8;14)(q24;q32), t(8;22)
(q24;q11), and t(2;8)(p12;q24) translocations, respectively [17]. In 
addition to IGs, various non-IG partners are translocated with the 
8q24 region [18-20]. Lymphoma or multiple myeloma with the 8q24 
translocations shows rapid clinical progression irrespective of tumor 
types. Therefore, identification of the genes responsible for of 8q24 
translocations is critical for understanding these aggressive cancer 
phenotypes.

In t(8;14)(q24;q32) translocation, 8q24 breakpoints are to the 
5’-end of MYC or its first intron. No transcriptional units have been 
identified from the intervened sequence between the 8q24 breakpoint 
and MYC, and the oncogenic actions of MYC are well characterized. 
Therefore, MYC is believed to be responsible for the t(8;14)(q24;q32) 
translocation. In contrast, breakpoints of other variants or non-IG 
8q24 translocations are to the 3’-end of MYC, or within or downstream 
of PVT1. Because MYC is a strong cancer-associated gene and PVT1 is 
a non-coding gene, it is more likely that MYC would be responsible for 
those translocation rather than PVT1.

Although few breakpoints within PVT1 have been cloned, some 
putative breakpoint clusters have been found near PVT1 exon 1, Burkitt’s 
Variants’ Rearranged Region 1 (BVR1 ), and the human homologous 
region of Pvt1 (Figure 1) [21-24]. However, the relationship between 
clinicopathological observations and these breakpoint clusters remains 
unknown. 

Chromosome translocations targeted to the PVT1 region often 
create chimeric transcripts, comprising PVT1 exon 1 and partner 
genes [18,25,26]. As discussed below, PVT1 exon 1 is also co-amplified 
with MYC in various cancers, potentially indicating its pathological 
significance. 

PVT1 amplification

Gains in copy numbers or amplification of 8q24 have been noted in 
various cancer cell types and are often associated with poor prognosis or 
drug resistance [7]. High-resolution analyses of somatic copy-number 
alterations indicate that the 8q24 region is one of the most frequently 
amplified regions across human cancers [27]. The prominent oncogene 

MYC is located on this locus, and no protein coding sequence has 
been identified in the surrounding 1.8 Mb [7]. Therefore, MYC has 
long been considered responsible for 8q24 gains and amplifications in 
cancers. However, recent studies indicate that MYC is not always the 
target of 8q24 amplification. For example, Guan et al. [6] reported that 
MYC and PVT1 independently contribute to ovarian and breast cancer 
development in cell lines bearing 8q24 amplifications.

Huppi et al. described two types of the 8q24 amplification, 
designated amplification 1 and amplification 2 (Figure 1) [7]. 
Amplification 1 includes MYC, PVT1 exon 1, and miR1204, whereas, 
amplification 2 comprises the region distal of PVT1 and miR1208. 
Amplification 1 is often co-amplified with MYC and PVT1 exon 1, and 
upregulation of both transcripts has been described in colon cancers, 
small cell lung cancers, and neuroepithelioma. However, the biological 
and pathological significances of these two amplification regions 
remain unclear. 

Chromothripsis

In addition to chromosome translocations and amplification, the 
PVT1 locus has been shown to be the target of chromothripsis, which 
is a process by which distinct chromosomes or chromosomal regions 
become fragmented into numerous segments during catastrophic 
events, and the segments are then inaccurately reassembled by 
DNA repair mechanisms [28-30]. Recently, large-scale genome 
wide screening studies of numerous meduloblastomas revealed that 
PVT1 fusion genes are highly recurrent and are generated through a 
chromothripsis-like process in group 3-type meduloblastomas [26]. 
One of the PVT1 fusions, 5’-PVT/MYC-3’, has also been found in a 
colon cancer cell line containing double-minute chromosomes derived 
from 8q24 [5].

Single-Nucleotide Polymorphism (SNP)

Previous studies have revealed that the 8q24 region is important 
for susceptibility to several malignancies and to some non-malignant 
diseases [7-12]. This risk is primarily associated with SNP variants 
at the proximal end of MYC, although a few susceptibility variants 
have been identified in the PVT1 region (Figure 1) [7]. Whereas most 
risk variants have been analyzed in relation to MYC, Myer et al. [9] 
recently identified a functional SNP variant that reduces binding of 
the transcription factor YY1 and is associated with increased PVT1 
expression in prostate cancers. 

PVT1 has also been linked with susceptibility to non-malignant 
diseases, including end-stage diabetic renal disease [10,11]. The 
associated-risk SNPs are located within the PVT1 locus, and one of 

Figure 1: Relative positions of MYC (three exons), PVT1 (nine exons), microRNAs, translocation breakpoints, SNPs and amplification regions are shown. This figure 
is modified from previously published manuscripts [7,20,24-26]. The direction of the bold arrow indicates centromere to telomere.
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the resulting variant transcripts is expressed in kidney cells. Therefore, 
PVT1 may be implicated in the development and progression of diabetic 
nephropathy, through mechanisms involving Extracellular Matrix 
(ECM) accumulation [31]. In addition, a genome-wide association 
study of 9,772 patients with multiple sclerosis identified PVT1 as one 
of 29 novel susceptibility loci [12].

Function
Although previous studies of genetic alterations around the PVT1 

locus implicate PVT1 in the pathogenesis of the human diseases 
mentioned above, little is known of its function, and contrasting 
effects on cell survival have been reported [6,32-34]. Guan et al. [6] 
showed that inhibition of PVT1 but not of MYC induces apoptotic 
responses in breast and ovarian cell lines with amplified and over-
expressed MYC and PVT1. This result indicated that PVT1 is an anti-
apoptotic molecule [6]. In contrast, Barsotti et al. [32] reported that 
PVT1 and miR1204 are induced in a p53-dependent manner and that 
ectopic miR1204 expression leads to increased p53 levels and cell death, 
controversially suggesting pro-apoptotic activities of PVT. However, 
differences between these observations may reflect differing materials 
and methods and may also be due to functional differences between 
PVT1 lincRNA and miR1204. Alvarez and DiStefano [31] observed 
that PVT1 expression was significantly up-regulated after treatment of 
human mesangeal cells with glucose and suggested that the resulting 
ECM accumulations cause diabetic nephropathy. 

Further studies on the biological functions of non-coding RNAs 
may facilitate understanding of the pathogenic and physiological 
functions of PVT1.

Conclusion
Numerous previous reports have identified various genetic 

alterations within or surrounding the PVT1 locus. Although PVT1 
appears to play pivotal roles in human disease, little is known of the 
associated biological characteristics. Recently, it was recognized that 
the PVT1 locus contains sequences for lincRNAs and microRNAs 
[7]. Future functional analyses are warranted to clarify the biological 
significance of PVT1, a long-standing puzzle gene.
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