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Introduction
The demand for proteins with special purposes increases 

significantly, for example, special proteins are in good need in 
development of sensitive, specific and reliable differential diagnostic 
assays. To meet such huge demand, proteins of interest can be 
expressed in either prokaryotic or eukaryotic cells, like Escherichia 
coli, to produce recombinant proteins. However, this is not an easy task 
and is often costly. Purification of recombinant proteins from plant 
biomass currently accounts for almost 80% of production cost [1]. A 
series of difficulties may be encountered in purification. For instance, 
purified proteins from a host may accumulate in low titers and may be 
mixed with infection [2,3] or form protein aggregates [4,5]. Therefore 
a purification scheme usually includes many steps, such as affinity 
chromatography, precipitation, protecting of recombinant proteins 
from degradation with stabilizer, centrifugation and so on.

In order to develop an efficient and cost-effective purification 
scheme, many efforts have been made and much has been achieved 
in finding the factors that affect protein purification. At codon 
optimization level, N-terminal rare codons increase expression [6] 
with some reservation [7]. At protein terminal level, hydrophilicity of 
histidine tag enhances the high solubility of expressed recombinant 
fusion proteins [8]. At protein level, polyhedrin is used as a carrier 
protein to facilitate antigen purification [9-13].

The proteins that require to be purified are not completely 
unknown in many cases, not only they are known for clinical and 
biotechnological applications, but also they are known for their amino 
acid composition, primary structure and even 3-dimensional structure. 
And these types of knowledge are publicly available, and are useful to 
estimate purification propensity. However, how to use this valuable 
information is a challenge. So far, more than 540 amino acid properties 
have been found to describe various aspects of amino acids [14]. 
Technically, each property is a set of 20 numeric values corresponding 
to 20 types of amino acids, and 535 amino acid properties are listed in 
Supplementary Material. 

Over years, amino acid properties are constantly considered useful 
to correlate with various protein operations in order to minimize the 
operating cost. For example, amino acid properties were used to estimate 
whether a protein could be crystallized [15], and the whole process 
from cloning to expression, to purification and to crystallization with 

amino acid properties [16]. Actually, protein purification is different 
from gene expression in an organism, whose survival from generation 
to generation is primarily related to the evolutionary process with 
respect to different taxonomic groups. Indeed, purification is mainly 
relevant to chemical and physical processes, which are exactly described 
by amino acid properties. Therefore it is necessarily important to use 
amino acid properties to estimate the propensity of purification as an 
individual process.

Because each amino acid property is a set of 20 numeric values 
corresponding to 20 types of amino acids, the general procedure that 
is used to estimate any propensity is to use a set of 20 numeric values 
to replace their corresponding amino acids in a protein, and then use 
this “numeric” protein to correlate with a certain operation in process 
of protein, such as the outcome of protein purification. In fact, the 
outcome of most protein operations is either yes or no, for instance, 
a protein can either be purified or not. Consequently, purified protein 
and impossible purified protein are replaced as unity and zero, and the 
proteins to be predicted can be replaced by an amino acid property, and 
then either logistic regression or neural network can be used to estimate 
the relationship between “numeric” protein and unity/zero. But, it was 
not clear which amino acid property is useful for such estimation, so 
this study tested each amino acid property against 438 purified versus 
429 impossible purified proteins from Bacillus halodurans.

B. halodurans is a Gram-positive and alkaliphilic bacterium
growing above pH 9.5 and its genome was completely sequenced [17]. 
Alkaliphilic microorganisms have wide industrial applications on 
commercial enzymes [18]. Over recent years, the research interest in 
B. halodurans becomes stronger. For example, B. halodurans produces
haloduracin, which could serve as peptide antibiotics [19]. Also, a
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Abstract
The demand for proteins with special purposes increases significantly. These proteins are generally obtained through 

recombinant proteins, however their purification is costly and not easy. It is necessarily important to develop a method to estimate the 
chance of purification beforehand in order to have a prospective on proteins in question. Purification of a protein should be related to 
instinct properties of a protein including its 3D structure, and so far around 540 amino acid properties are found. Thus it is possible to 
test each amino acid property against the successful rate of protein purification to find out which property is more suitable to estimate 
the purification propensity. In this study, each of 535 properties was tested against 438 purified and 429 impossible purified proteins 
from Bacillus halodurans using logistic regression and neural network model. ROC analysis was applied to the resultant sensitivity 
and specificity. The results show that amino acid composition properties were generally less helpful to estimate the purification 
propensity whereas amino acid physicochemical properties, secondary structures and dynamic properties were more useful, and 
dynamic properties were more promising. Therefore several types of protein properties can serve to determine purification propensity 
of proteins, and have the potential to reduce the cost and to speed up the production in microbiological and biotechnical fields.
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The amino acid pair predictability is dynamic value representing 
a protein according to permutation [30,31]. For example, a protein 
Q9K915 has 239 amino acids, among them there are 48 glutamic 
acids (E) and 9 isoleucines (I). The amino acid pair EI would appear 
twice in this protein (48 / 239  9 / 238  238  1 ).81× × = . This protein 
does have two EIs, so the amino acid pair EI is predictable. Taking 
the amino acid pair EE into account, it would appear nine times 
( )48 / 239  47 / 238  238  9.44× × = ,but it appears 6 times in Q9K915 
protein, thus the amino acid pair EE is unpredictable. All amino acid 
pairs in this protein can be classified as predictable or unpredictable, 
and its predictable and unpredictable portions are 67.75% and 32.25%. 
This feature can be computed at the web http://www.nerc-nfb.ac.cn/
calculation/pp.htm, and was used to analyze the relationship with 
protein purification, which was compared with Mann-Whitney Rank 
Sum Test. P < 0.05 was considered statistical significant.

Results and Discussion 
It is important for biotechnological industries to make a large 

quantity of highly stable and purified recombinant proteins, which 
provide economically affordable sources for clinical and industrial 
applications and research. Usually, purification is laborious and 
unexciting although various expression systems are employed 
successfully, such as codon optimization in expression. This is the 
reason why amino acid properties were analyzed to find out which 
amino acid property could provide a clue on the chance of successful 
purification.

The upper panel of Figure 1 showed the accuracy, sensitivity and 
specificity resulting from logistic regression that was used to find out 
which of 535 amino acid properties was useful to estimate the purification 
propensity for 857 proteins from B. halodurans. In this figure, x-axis 
indicated each of 535 amino acid properties (Supplementary Material) 
while y-axis indicated the accuracy, sensitivity and specificity. At first 
glance, the specificity was the best followed by the accuracy and the 
sensitivity. Moreover, little difference appeared between 535 amino 
acid properties because the specificity, accuracy and sensitivity were 
colored similarly, but it was necessary to pick out the poorly performed 
amino acid properties, which were colored in blue in the upper panel of 
Figure 1. The amino acid properties related to electric charges were not 
good in estimating the chance of protein purification.

The lower panel of Figure 1 displayed the receiver operating 
characteristic (ROC) analysis in order to furthermore distinguish the 
performance of amino acid properties used in logistic regression. As 
can be seen, all results were located in the up-left triangle, indicating 
that logistic regression was effective because its outcomes surpassed a 
random guess. However, the results were somewhat similar, indicating 
that logistic regression could not effectively indicate the difference 
between amino acid properties.

Figure 2 illustrated the accuracy, sensitivity and specificity 
obtained from 10-1 neural network that was also used to find out which 
of 535 amino acid properties was useful to estimate the purification 
propensity for 857 proteins from B. halodurans (upper panel) and to 
valid this relationship with delete-1 jackknife validation (lower panel). 
Compared with Figures 1 and 2 included the results from both fitting 
and delete-1 validation, while the latter was a common procedure 
in development of predictive model. The results in Figure 2 varied 
largely because the color bar covered the whole range from zero to 
unity. As can be seen, the sensitivity is better than the accuracy and 
the specificity. However, the sensitivity and the specificity behaved 
oppositely, i.e., the better the sensitivity was, the worse the specificity 

considerable effort was made to crystallize proteins from B. halodurans 
[20-22]. For instance, E. coli has only one copy of YidC [23] while B. 
halodurans has two copies of YidC [24], which makes B. halodurans 
have more benefit for bioengineering. Nevertheless, we hope to focus 
our attention on the proteins that are more relevant to microbiological 
applications after this first stage of study. 

Materials and Methods 
Structural genomics initiative [25] makes experimental progresses 

and statuses of most target proteins become publicly available [26,27], 
of which 438 purified versus 429 impossible purified proteins from B. 
halodurans were documented [26]. 535 amino acid properties [14] were 
grouped as 40 constant composition properties, 218 physicochemical 
properties, 273 secondary structure properties and 4 dynamic 
properties (Supplementary Material). The purification outcome of 
a protein is either a success or a failure, which can be presented as 1 
or 0. A protein is an amino acid sequence, which can be numerically 
replaced by an amino acid property. As a result, the purification is 
a relationship between 1 or 0 and a set of 20 values representing an 
amino acid property, where 1 or 0 event is an outcome of an amino acid 
property presented by 20 values.

It is true that protein purification is dependent on numerous 
factors, however it would be a good practice to test each factor at a 
time rather than to test many factors simultaneously. Unlike control 
experiments, amino acid properties cannot be separated from a protein 
during purification process. However, a stepwise regression could 
in principle either narrow down or extend up amino acid properties 
that are involved in purification, which is the rationale to estimate the 
purification propensity.

Technically, the first step was to determine whether logistic 
regression or neural network can fit the relationship between a 1 versus 
0 (purified and impossible purified) and 20 weighed values (an amino 
acid property weighed by 20 types of amino acids). Accordingly, 438 
purified and 429 impossible purified proteins could establish 857 
relationships, which constructed the base to determine whether the 
amino acid property was useful to estimate the purification propensity 
of proteins from B. halodurans. The second step was to operate each of 
the 535 amino acid properties one by one, and to generate the model 
parameters for either logistic regression or neural network. The third 
step was to predict the purification propensity, that is, with numerical 
proteins as inputs, the obtained model parameters were used to produce 
the output of 0 or 1, during which a delete-1 jackknife was applied for 
model validation of neural network.

MatLab was used to operate both logistic regression and neural 
network, and the latter one was defined as 10-1 feed-forward back-
propagation neural network [28]. The model output was classified 
into true positive, false positive, true negative and false negative. The 
accuracy, sensitivity and specificity were calculated as follows: Accuracy 
= (true positive + true negative)/ (true positive + false positive + true 
negative + false negative) × 100, 

Sensitivity = true positive/ (true positive + false negative) × 100, 

Specificity = true negative/ (true negative + false positive) × 100. 

The data were presented as median with interquatile, and were 
analyzed by Chi-square test. Kruskal-Wallis one-way ANOVA on ranks 
and Mann-Whitney rank sum test were used to analyze the difference 
among and between different predictions. The receiver operating 
characteristic (ROC) analysis was used to compare the sensitivity and 
the specificity [29].



Citation: Yan S, Wu G (2016) Purification Propensity for Proteins from Bacillus halodurans. Enz Eng 5: 151. doi:10.4172/2329-6674.1000151

Page 3 of 6

Volume 5 • Issue 3 • 1000151
Enz Eng, an open access journal
ISSN: 2329-6674

many factors. Although it is not clear whether an amino acid property 
can unambiguously reflect a certain aspect of purification process, the 
fact that an amino acid property cannot be separated from an amino 
acid renders the base for the possibility to estimate the purification 
propensity. At this stage, the underlined physicochemical mechanisms 
in protein purification are too complicated to guide such estimation. 
However, some reasons could be figured out for unsuitability of some 
amino acid properties. For example, it is difficult for some properties 
to reflect an overall property of a protein with different compositions, 
different neighboring amino acids, etc., although these properties can 
be weighed with their compositions (columns 6 and 7 in Table 2). On 
the other hand, the dynamic amino acid properties, such as amino acid 
distribution probability (the last 2 columns in Table 2), appear flexible 
because they do not have a simple weighing scheme and do change 
with respect to different compositions, different neighboring amino 
acids, and different distributions of amino acids in a protein [30,31]. In 
future, it is hoped to combine various amino acid properties together to 
estimate the purification propensity, however, various combinations of 
535 amino acid properties would be tremendous, therefore this study 
hopefully reduced the size of such combinations, and speeds up the 
research to estimate the purification propensity. 

For predicting protein purification, an intriguing question is what 
kind protein can be predicted successfully. Here we used the amino acid 
predictability to address this issue. In Figure 4, the upper and middle 
panels represented the predictive accuracy obtained from fitting (blue 
bars) and delete-1 jackknife validation (light blue bars), and the x-axis 
represents 867 B. halodurans proteins, which were ranked according 
to their predictive accuracy of purification. The acceptable accuracy 
was set as 75% accuracy, by which B. halodurans proteins were divided 
into two groups. Their statistical difference was showed in the lower 

was. Some amino acid properties provided the results with very high 
sensitivity but very low specificity, and they included 32/40 amino 
acid properties grouped as constant compositions, 76/218 amino acid 
properties grouped as physicochemical properties, and 18/273 amino 
acid properties grouped as secondary structures. Similar results could 
be found in other studies [31-36]. On the other hand, the rest amino 
acid properties provided relatively high values of both sensitivity and 
specificity, and they included the dynamic properties shown at right-
hand in both panels of Figure 2.

When looking at estimation performance, Table 1 provided clues 
for the estimation of purification propensity by means of neural 
network. In general, the constant composition properties resulted 
in a lower accuracy than other properties (0.51 versus 0.71 in fitting 
and 0.51 versus 0.59 in validation), suggesting that the constant 
composition properties are less helpful to estimate purification 
propensity, but physicochemical properties, secondary structures and 
dynamic properties are more helpful in this regard.

Figure 3 demonstrated the ROC analysis in order to furthermore 
distinguish the performance of amino acid properties for the 
estimation in neural network, where the larger the distance above the 
diagonal was, the better the performance was. Again, some amino 
acid properties performed better than most amino acid properties as 
indicated by the cycle, because a high sensitivity was accompanied with 
a high specificity. 

Protein purification is a long and monotonic process, which involves 
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Figure 1: Accuracy, sensitivity and specificity obtained from logistic regression 
to determine if any of 535 amino acid properties was useful to estimate the 
purification propensity for 857 proteins from B. halodurans (upper panel), and 
comparison of sensitivity versus specificity in ROC analysis (lower panel). The 
diagonal line is the line of indiscrimination indicating a completely random guess.
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Figure 2:  Accuracy, sensitivity and specificity obtained from using 10-1 neural 
network model to determine if any of 535 amino acid properties was useful to 
estimate the purification propensity for 857 proteins from B. halodurans (upper 
panel) and to valid this relationship with delete-1 jackknife validation (lower 
panel). 
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Amino acid properties Accuracy Sensitivity Specificity
Results from fitting

40 constant composition properties
0.51 (0.508 - 0.515) 0.969 (0.942 - 0.981) 0.041 (0.027 - 0.0696)

[0.505 - 0.716] [0.725 - 1] [0 - 0.681]

218 physicochemical properties
0.7 (0.508 - 0.71) b, e 0.755 (0.741 - 0.986) c, e 0.648 (0.0196 - 0.677) b, e

[0.505 - 0.721] [0.551 - 1] [0 - 0.69]

273 secondary structure properties
0.711 (0.706 - 0.714) c 0.745 (0.739 - 0.751) c 0.678 (0.672 - 0.681) c

[0.505 - 0.722] [0.678 - 1] [0 - 0.693]

4 dynamic properties
0.712 (0.671 - 0.73) b 0.745 (0.712- 0.763) b 0.678 (0.629- 0.697) b

[0.635 - 0.743] [0.684- 0.776] [0.586- 0.71]
Results from validation  

40 constant composition properties
0.507 (0.507 - 0.508) 0.968 (0.964 - 0.97) 0.0369 (0.0331 - 0.0408)

[0.504 - 0.601] [0.625 - 1] [0.0005 - 0.569]

218 physicochemical properties
0.59 (0.506- 0.595) a, e 0.636 (0.625- 0.982) b, e 0.544 (0.021- 0.563) a, e

[0.503 - 0.602] [0.494- 0.999] [0.0007- 0.578]

273 secondary structure properties
0.595 (0.592 - 0.596) c 0.626 (0.622- 0.63) c 0.563 (0.559- 0.566) c

[0.505- 0.601] [0.601- 0.999] [0.0007- 0.576]

4 dynamic properties 0.593 (0.573 - 0.596) a
[0.554- 0.599]

0.632 (0.607- 0.64) b
[0.587- 0.644]

0.549 (0.53- 0.56) a, d
[0.52- 0.561]

The data were presented as median with interquatile in parentheses and range in brackets. The letters of a, b and c indicated statistical significance at P<0.05, 
P<0.01 and P<0.001 levels, respectively, compared with constant composition properties (Mann- Whitney Rank Sum Test). The letters of d and e indicated statistical 
significance at P<0.05 and P<0.001 levels compared with secondary structure properties (Mann-Whitney Rank Sum Test).

Table 1: Results obtained from fitting and delete-1 jack-knife validation by means of 10-1 feed-forward back propagation neural network.
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Figure 3:  Comparison of predictive sensitivity versus specificity obtained from neural network in ROC analysis. The diagonal line is the line of indiscrimination indicating 
a completely random guess.

Amino 
acid

No. RADA880107 RADA880107 × No CC (%) FC (%) DP
P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

A 8 8 -0.29 -0.29 -2.32 -2.32 8.70 8.70 7.25 7.81 0.1682 0.0280
R 7 1 -2.71 -2.71 -18.97 -2.71 7.61 1.09 7.19 5.80 0.0268 1.0000
N 2 1 -1.18 -1.18 -2.36 -1.18 2.17 1.09 4.09 4.57 0.5000 1.0000
D 4 7 -1.02 -1.02 -4.08 -7.14 4.35 7.61 5.86 5.31 0.5625 .2142
C 0 1 0 0 0 0 0 1.09 1.37 2.11 0 1.0000
E 14 8 -1.53 -1.53 -21.42 -12.24 15.22 8.70 5.50 5.80 0.0687 0.2243
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Q 6 5 -0.9 -0.9 -5.40 -4.50 6.52 5.43 4.71 3.54 0.0386 0.1920
G 4 9 -0.34 -0.34 -1.36 -3.06 4.35 9.78 6.40 7.53 0.1875 0.0328
H 2 2 -0.94 -0.94 -1.88 -1.88 2.17 2.17 3.62 3.54 0.5000 0.5000
I 8 6 0.24 0.24 1.92 1.44 8.70 6.52 4.89 4.53 0.1682 0.2315
L 8 9 -0.12 -0.12 -0.96 -1.08 8.70 9.78 8.55 8.64 0.2243 0.1967
K 8 8 -2.05 -2.05 -16.40 -16.40 8.70 8.70 4.65 3.24 0.1682 0.2523
M 1 0 -0.24 -0.24 -0.24 0 1.09 0 2.15 1.95 1.0000 0
F 2 4 0 0 0 0 2.17 4.35 2.76 3.48 0.5000 0.1875
P 4 2 0 0 0 0 4.35 2.17 4.95 4.03 0.1875 0.5000
S 3 4 -0.75 -0.75 -2.25 -3.00 3.26 4.35 5.37 5.84 0.6667 0.5625
T 1 3 -0.71 -0.71 -0.71 -2.13 1.09 3.26 4.75 4.63 1.0000 0.6667
W 0 0 -0.59 -0.59 0 0 0 0 0.62 0.69 0 0
Y 3 5 -1.02 -1.02 -3.06 -5.10 3.26 5.43 1.69 2.58 0.6667 0.2880
V 7 9 0.09 0.09 0.63 0.81 7.61 9.78 8.45 9.42 0.1071 0.1475

RADA880107 was a physicochemical property of amino acids that described the energy transfer from out to in (95%buried). P1 and P2 were two proteins with accession 
number Q9KA18 and Q9K5W1. No., Number of amino acids; CC, %, the current composition of amino acids calculated by the number of a type of amino acids divided 
by the total number of amino acids in a protein; FC, %, the future composition of amino acids calculated according to the mutating probability (http://www.nerc-nfb.ac.cn/
calculation/fc.htm); DP, the distribution probability of amino acids calculated according to the equation, r!/(q0!×q1!×...×qn!)×r!/(r1!×r2!×...×rn!)×n-r, where ! is the factorial, 
r is the number of a type of amino acid, q is the number of partitions with the same number of amino acids and n is the number of partitions in the protein for a type of 
amino acid [37].

Table 2: Comparison of weighed schemes of a physicochemical property with dynamic properties in two proteins.
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Figure 4: Purification accuracy of B. halodurans proteins obtained from fitting (upper panel), delete-1 jackknife validation (middle panel), and statistical comparison of 
their predictable portion of amino acid pairs (lower panel). The dotted lines indicate the cut-off point for separating the low accuracy from the high one. The data were 
presented as median with interquartile. Difference between low and high accuracy groups is statistically significant (P < 0.001, Mann-Whitney Rank Sum Test).
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panel of Figure 4, indicating that the B. halodurans proteins with lower 
predictable portion have better predictive result for their purification 
state.
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