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Antibody–antigen interactions plays a major role in the adaptive 
immune system, as antibodies can recognize a wide range of molecules 
including macromolecules and small chemicals with a high degree of 
specificity and affinity [1]. This feature of antibodies makes them one of 
the most potent tools in therapy and diagnostics [2]. The functionality 
of the specific recognition of antibodies is also utilized for the 
molecular detection in biotechnology such as in western blotting [3], 
enzyme-linked immunosorbent assay [4], and immunocytochemistry 
[5]. The interaction of antibodies with protein or peptide antigens has 
been studied as a model system for protein–protein or protein–peptide 
interactions [6-8]. For this applicability and usefulness of antibodies, 
detailed investigation on the biochemical and biophysical aspects of 
antibody–antigen interactions is desirable in order to understand the 
underlying mechanism of the specific molecular recognition process.

Recently we reported the biophysical mechanism of the interaction 
between a human pathogenic antibody (BO2C11) and its target antigen, 
coagulation factor VIII (FVIII) using a surface plasmon resonance-
based technique and other binding assays [9]. In the article, we show 
kinetic and thermodynamic investigation of the binding between 
BO2C11 and FVIII in different salt conditions of the binding buffer in 
order to understand the underlying energetic of the binding process. 
One of the central observations in the paper is the thermodynamic 
variables (∆G°‡, ∆H°‡, and ∆S°‡) in the association of BO2C11 and 
FVIII. In this editorial, we report our analysis of these results in terms 
of equilibrium thermodynamics to show that the association phase 
in the interaction of the antibody and its antigen exhibits enthalpy–
entropy compensation. We discuss the implication of this finding in 
the use of antibodies for the molecular recognition in biotechnology.

In the kinetic experiment of the association of BO2C11 and FVIII, 
we measured the association rate constant at various temperatures. 
Using the Arrhenius equation, we derived ∆H°‡ of the association. 
The value of ∆H°‡ is highly dependent on the ionic strength of the 
binding buffer as it was 159 kJmol-1 and -5.2 kJmol-1 when the NaCl 
concentration in the binding buffer was 0.15 M or 0.035 M, respectively. 
The difference of ∆H°‡ (∆∆H°‡) is -164.2 kJmol-1, which is 66.2 times 
the thermal energy at 25°C. In the calculation of ∆∆H°‡, we assigned 
the binding in the buffer containing 0.15 M NaCl as an initial state. 
According to the value of ∆∆H°‡, the association between BO2C11 and 
FVIII is more favorable in the lower salt concentration of the binding 
buffer in terms of enthalpy. The value of ∆S°‡ can be derived once ∆G°‡ 
and ∆H°‡ are known using the following equation [10]:

‡ ‡ ‡G H TS∆ = ∆ − ∆      (1)

The value of T∆S°‡ at 25°C was 120 kJmol-1 and -56.7 kJmol-1 when 
the NaCl concentration in the binding buffer was 0.15 M or 0.035 M, 
respectively. 

The corresponding value of T∆∆S°‡ is -176.7 kJmol-1, which is 71.3 
times the thermal energy at 25°C. Therefore, the association is more 
favorable in the higher salt concentration of the binding buffer in terms 
of entropy. The difference in ∆G°‡ between two different reactions of 

different salt concentrations in the binding buffer (∆∆G°‡) can be 
obtained using the following equation with the values obtained from 
the above calculations for ∆∆H°‡ and T∆∆S°‡:

‡ ‡ ‡G H T S∆∆ = ∆∆ − ∆∆  

   (2)

The corresponding value of ∆G°‡ is 12.5 kJmol-1, which is just 5 
times the thermal energy at 25°C (Figure 1). This calculation clearly 
indicates that the association between BO2C11 and FVIII is an 
example of enthalpy–entropy compensation in that the difference of 
enthalpy between two reactions (∆∆H°‡) is comparable to the value 
of the entropic energy difference (T∆∆S°‡) so that two reactions have 
similar free energy changes (∆G°‡) since there is no resulting significant 
difference in ∆G°‡ according to Eq. (2), even though each energy 
component (∆∆H°‡ and T∆∆S°‡) can change significantly between the 
two reactions.

The same analysis as shown above can be applied to the comparison 
of the association of BO2C11 and FVIII in the binding buffer with 
different salt types (NaCl and NaSCN) in the paper [9]. In this case, 
the values of ∆∆H°‡ and T∆∆S°‡ are -155.8 kJmol-1 and -161.4 kJmol-1, 
which is 62.9 and 65.1 times the thermal energy at 25°C, respectively. 
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Figure 1: Effect of the salt conditions of the binding buffer on the thermodynamic 
energy values in the association of BO2C11 and FVIII. Entropic energy was 
calculated for 298 Kelvin. 
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In the calculation of ∆∆H°‡ and T∆∆S°‡, the binding in the buffer 
containing 0.15 M NaCl was assigned as an initial state. Using Eq. (2), 
the corresponding value of ∆∆G°‡ is obtained as 5.6 kJmol-1, which is 
just 2.3 times the thermal energy at 25°C (Figure 1). As one can see 
from our analysis, the underlying thermodynamic energy components, 
∆H°‡ and T∆S°‡, can vary at least more than 60 times the thermal energy 
due to the different salt conditions (concentration or salt type) in the 
binding buffer, but the resulting changes of the free energy component 
is quite limited as their values of ∆∆G°‡ are less than 5 times the thermal 
energy.

Enthalpy–entropy compensation is often observed in many weakly 
coupled systems such as protein folding [11], antibody–antigen 
interactions [12-14], and minor histocompatibility antigen–peptide 
interactions [15]. According to our analysis, this feature is responsible 
for the relative insensitivity of the ∆G°‡ value in the association 
between BO2C11 and FVIII in different salt conditions [9] by mutual 
compensations between ∆∆H°‡ and T∆∆S°‡ values, although the 
enthalpy and entropy changes of a reaction occurring in different 
conditions can differ significantly.

Antibody-based detection has been widely used in biotechnology 
[3-5]. For example, an antibody can detect its target antigens to assess 
their quantity in western blot analysis. The binding condition for 
the molecular detection of an antigen by an antibody is different in 
most cases from the in vivo condition, where an antibody is selected 
for high affinity to specific antigens, but the antibody still successfully 
performsits function of molecular recognition (for example, [16]). 
This could be a consequence of enthalpy–entropy compensation in the 
binding of antibodies to antigens as shown in this editorial. However, 
one should note that the compensation is not perfect, so the affinity 
of the antibody to its antigen could differ depending on the binding 
conditions such as salt concentration or salt type. Therefore, if the 
desired binding affinity of an antibody to its antigens is not attained, 
one may optimize the binding buffer condition, for example, by 
changing the salt concentration of the binding medium. In addition, 
even when the antibody shows a desirable affinity to its target antigens 
in the in vitro application, the underlying thermodynamics can be quite 
different from that of the in vivo binding as shown in this letter.
Significance 

We analyze an antibody–antigen interaction to deduce a thermodynamic 
feature of the interaction, enthalpy–entropy compensation, and discuss the 
implication of this finding in biotechnology.
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