

Protocol Development and Feasibility Testing in a Pilot Clinical Trial

Michael Thompson*

Department of Clinical Research, Horizon Institute of Medical Sciences, Newbridge, United Kingdom

DESCRIPTION

Protocol development and feasibility testing are vital early steps in the clinical research process, particularly when planning a pilot clinical trial. A pilot trial serves as a small-scale preliminary study conducted before a full clinical trial, with the primary aim of assessing whether the proposed methods, procedures and operational plans are practical and workable [1]. Careful protocol development ensures scientific rigor, ethical compliance and operational clarity, while feasibility testing provides empirical evidence that the trial can be successfully implemented in a larger population.

The development of a clinical trial protocol begins with a clearly defined research question grounded in existing scientific evidence. This question informs the study objectives, outcome measures and overall design of the pilot trial. During this phase, investigators determine eligibility criteria, intervention strategies, sample size rationale, data collection methods and statistical considerations. In pilot trials, the focus is not on hypothesis testing or definitive efficacy outcomes but rather on evaluating processes such as recruitment rates, adherence to the intervention, data completeness and acceptability to participants and study staff [2-5]. Therefore, the protocol must explicitly reflect these feasibility-oriented objectives to avoid misinterpretation of results.

Ethical considerations are central to protocol development. The protocol must ensure participant safety, minimize risks and justify the scientific value of conducting a pilot trial. Informed consent procedures are designed to clearly communicate the exploratory nature of the study and manage participant expectations regarding potential benefits. Regulatory requirements, including institutional review board or ethics committee approval, are addressed during this stage, ensuring that the trial complies with applicable guidelines and regulations. A well-developed protocol provides transparency and consistency, allowing the study to be replicated or scaled up in future trials.

Feasibility testing evaluates whether the protocol can be executed as planned in a real-world clinical setting. One of the most important aspects assessed is participant recruitment. Pilot trials

often reveal whether eligibility criteria are too restrictive, recruitment strategies are ineffective, or enrollment timelines are unrealistic. Understanding these factors early helps investigators refine recruitment approaches and adjust inclusion criteria for future studies. Retention and follow-up rates are also examined, as high dropout rates may indicate issues with participant burden, intervention tolerability, or study logistics [6].

Another key component of feasibility testing is assessing intervention delivery and adherence. Pilot trials help determine whether the intervention can be administered consistently and safely, whether participants adhere to the prescribed regimen and whether any unforeseen challenges arise during implementation [7]. These findings allow researchers to modify intervention protocols, training procedures, or monitoring strategies before initiating a larger trial. Similarly, feasibility testing evaluates outcome measurement tools to ensure they are reliable, valid and practical within the study setting. Issues such as missing data, measurement variability, or excessive assessment burden can be identified and addressed at this stage.

Data management and operational processes are also scrutinized during feasibility testing. Pilot trials provide an opportunity to test data collection systems, case report forms and quality control procedures. Identifying inefficiencies or errors in data handling helps improve data integrity and reduces the risk of costly mistakes in subsequent larger trials. Additionally, feasibility testing examines coordination among research staff, communication workflows and site-level operations, which are essential for maintaining protocol adherence and participant safety [8-10].

The results of feasibility testing inform decisions about whether and how to proceed to a full-scale clinical trial. Findings may indicate that the protocol is feasible with minimal modifications, or they may highlight the need for substantial revisions. In some cases, pilot results may suggest that a larger trial is not viable, thereby preventing unnecessary expenditure of time and resources. Importantly, feasibility outcomes should be reported transparently, regardless of whether they are favorable, as they contribute valuable knowledge to the clinical research community.

Correspondence to: Michael Thompson, Department of Clinical Research, Horizon Institute of Medical Sciences, Newbridge, United Kingdom, E-mail: michael@thompson23.uk

Received: 28-Oct-2025, Manuscript No. JCTR-25-39704; **Editor assigned:** 31-Oct-2025, PreQC No. JCTR-25-39704 (PQ); **Reviewed:** 14-Nov-2025, QC No. JCTR-25-39704; **Revised:** 21-Nov-2025, Manuscript No. JCTR-25-39704 (R); **Published:** 28-Nov-2025, DOI: 10.35248/2167-0870.25.15.617

Citation: Thompson M (2025). Protocol Development and Feasibility Testing in a Pilot Clinical Trial. *J Clin Trials*. 15:617.

Copyright: © 2025 Thompson M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

In conclusion, protocol development and feasibility testing are foundational elements of a successful pilot clinical trial. A thoughtfully designed protocol establishes a clear roadmap for study conduct, while feasibility testing provides practical insights into the trial's operational, ethical and scientific viability. Together, these processes enhance the quality and efficiency of clinical research, increase the likelihood of success in subsequent definitive trials and ultimately contribute to the generation of reliable and meaningful clinical evidence.

REFERENCES

1. Tran JE, Fowler CA, Delikat J, Kaplan H, Merzier MM, Schlesinger MR, et al. Immersive virtual reality to improve outcomes in veterans with stroke: protocol for a single-arm pilot study. *JMIR Res Protoc.* 2021;10(5):e26133.
2. Cheong MJ, Jeon B, Noh SE. A protocol for systematic review and meta-analysis on psychosocial factors related to rehabilitation motivation of stroke patients. *Medicine.* 2020;99(52):e23727.
3. Schuster-Amft C, Eng K, Suica Z, Thaler I, Signer S, Lehmann I, et al. Effect of a four-week virtual reality-based training versus conventional therapy on upper limb motor function after stroke: A multicenter parallel group randomized trial. *PLoS one.* 2018;13(10):e0204455.
4. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Chapman M, et al. Virtual reality for stroke rehabilitation. *CDSR.* 2025(6).
5. Wee SK, Hughes AM, Warner M, Burridge JH. Trunk restraint to promote upper extremity recovery in stroke patients: a systematic review and meta-analysis. *Neurorehabil Neural Repair.* 2014;28(7):660-677.
6. Rueda FM, Montero FR, de Heredia Torres MP, Diego IA, Sánchez AM, et al. Análisis del movimiento de la extremidad superior hemiparética en pacientes con accidente cerebrovascular: Estudio piloto. *Neurología.* 2012;27(6):343-347.
7. Cirstea MC, Levin MF. Compensatory strategies for reaching in stroke. *Brain.* 2000;123(5):940-953.
8. Pain LM, Baker R, Richardson D, Agur AM. Effect of trunk-restraint training on function and compensatory trunk, shoulder and elbow patterns during post-stroke reach: A systematic review. *Disabil Rehabil.* 2015;37(7):553-562.
9. Platz T, Pinkowski C, van Wijck F, Kim IH, Di Bella P, Johnson G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer test, action research arm test and box and block test: A multicentre study. *Clin Rehabil.* 2005;19(4):404-411.
10. Yozbatiran N, Der-Yeghiaian L, Cramer SC. A standardized approach to performing the action research arm test. *Neurorehabil Neural Repair.* 2008;22(1):78-90.