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Introduction
Proteomics involves the study of the protein complement of the 

genome [1]. Plant proteomic projects include structural proteomics 
of the whole organism, organs, tissues, cells, and sub cellular 
compartments, as well as comparative proteomics on various processes. 
Yields of crops are reduced by numerous abiotic and biotic factors, 
such as flooding, drought, salinity, acidity, and nutrient limitation. 
Plant interactions with other organisms trigger biotic stresses and 
defenses. Research has greatly increased in the past decade not only by 
observing the existence of each process, but their interactions as well. 
Recent studies have found that responses to abiotic and biotic stresses 
influence each other both positively and negatively [2]. 

Due to the various environmental changes in the last few decades, 
it has become more evident that in the event of drastic shifts in the 
environment, fresh crops will more than likely not be available to use as 
a source of food [3]. Therefore, several alternative techniques, such as 
molecular markers, association mapping, candidate gene sequencing, 
and whole genome scanning, along with gene networks, and allele 
mining, have been adopted to sustain the productivity and increase 
crop yield. Markers are developed from expressed sequence tags; those 
developed from gene sequence data are called functional markers. 
Functional marker research has been developed uniquely around plant 
species, and is used more than random markers, because it is completely 
linked to the desired, or studied, allele.

A major challenge in the field of biotechnology, however, is the 
gap between the rate of development of new technologies and the 
development in applied breeding programs for crop improvements. 
The complete genome sequences of model plants, Arabidopsis [4], and 
rice [5] provide insight into several aspects of plant biology. However, 
functional genomics studies on the majority of crop plants are still 
in their early stages because some species have genome duplications, 
self-incompatibilities, and a long generation time. In such cases, the 

proteomics approach is a powerful tool for analyzing the functions 
of the plant genes or proteins. Genome-sequence data and inferred 
protein-sequence data can be used to identify proteins and to follow 
sequential changes in protein expression in an organism. Currently, we 
are capable of developing genotypes by finding and matching the right 
genes that can perform better in harsh environments [6]. 

Gene-to-metabolite networks are typically constructed using 
multivariate analysis or data mining [7]. Gene regulatory networks 
describe how genes interact, and it incorporates post-transcriptional 
events such as protein targeting and covalent protein modification 
[8,9]. Some DNA families, for example, contain kinase protein and the 
detoxification proteins of glutathione S-transfer gene (GST) family and 
are made up of over 100 distinctive proteins. However, ironically, outside 
the DNA family, these proteins vary significantly [10]. Gene families 
are often repetitive due to mutations and duplications. However, the 
knowledge is still limited on how these genes in a certain family may 
be better observed given that more than one family is performing the 
same task. 

The creation of modern systems biology comes from the need to 
gather information from genome-scale studies and being able to present 
them in biological interpretations. Systems biology is continuous, 
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though some researchers tend to define systems biology as utilizing 
dynamic modeling or multidimensional data analysis [11]. Therefore, 
development of methods for protein characterization is critical to 
complete functional genomics. 

Isolation and Characterization of Plant Protein 
Complexes by Mass Spectrometry

Even though high-resolution LC-MS (Liquid chromatography–
mass spectrometry) strategies have resolved some of the issues with 
direct analysis of complex peptide mixtures, other problems have 
risen from metabolites and proteases in great abundance -e.g. cell wall 
polysaccharides and polyphenols, lipids, and starch [12]. Therefore, 
these substances were heavily diluted or removed completely. However, 
such purification can often lead to sample loss [13]. Hence, the use of 
self-packed nano-LC columns for purification before matrix assisted 
laser desorption/ionization Mass Spectrometry (MALDI-TOF MS) has 
been employed successfully [14]. 

Protein extraction

The protein-pellet homogenization method and the lyses buffer 
have a significant influence on protein solubilization and separation 
in classical proteomic analysis of plants. Most of the protocols used 
in extraction of proteins from plant tissues are based on either phenol 
or TCA/acetone precipitation methods. The TCA/acetone procedure 
has some limitations. For example, the resulting pellet may be hard to 
dissolve; nucleic acids longer than ~20 nucleotides can be precipitated; 
and in some cases, proteins can be hydrolyzed by TCA. Protein extraction 
and sample preparation, particularly from recalcitrant tissues such as 
grape leaf, cucurbit pericarp, pine needle (generally containing high 
level of interfering substances, such as phenolic compounds, proteolytic 
and oxidative enzymes, terpenes, organic acids and carbohydrates) are 
among the most challenging aspects of proteomic analyses [15]. 

It has been demonstrated in recalcitrant plant tissues and others 
that TCA-acetone–phenol-based method is more effective than 
TCA/acetone precipitation alone prior to protein solubilization [12]. 
However, various protein extraction and solubilization buffers with a 
diversity of chemical compositions and concentrations have been used, 
such as Mg/NP-40 buffer and Tris Buffer. The use of PMSF, a protein 
inhibitor, and many other protease inhibitors, function to minimize the 
proteolysis of proteins during isolation [16].

Protein separation

Separation of complex mixtures of proteins is carried out by 
methods including analysis of the pI, Mr, solubility, and the relative 
abundance. 2-DE, which encompasses IEF from the first dimension 
and SDS-PAGE from the second dimension, allows this separation to 
occur. In addition to enabling the separation of complex mixtures of 
proteins, 2-DE also consents for proteins that have undergone PTMs 
to be further isolated for structural analyses using a mass spectrometer. 
The MALDI-TOF MS, MS alone, electrospray ionization (ESI) or 
Edman micro sequencing is used by the mass spectrometer to analyze 
the structures of the proteins [17].

In order, 2-DE MS comprises of, sample preparation and protein 
solubilization, protein separation protein detection and quantification, 
computer assisted analysis of 2-DE patterns, protein identification 
and characterization, and 2-D protein database construction. When 
studying protein spots on a 2-DE gel in depth, the resolution is often 
restricted due to aspects such as size, abundance hinder by denaturation 
and intermolecular interaction, and other electrophoretic properties 

[18]. Therefore, to refine the resolution and sensitivity, it has been found 
helpful to divide the whole proteome into discrete parts, including 
organelles, sub cellular compartments, and multi protein complexes. 

LC-MS-based qualitative analysis of plant systems

A completely sequenced genome significantly aids in the process 
of obtaining results from proteomic research. However, only a few 
eukaryotic organisms’ genomes have been sequenced [19]. There have 
been 1,792 eukaryotic genomes sequence dpaling in comparison to 
the 29,369 sequenced prokaryotic genomes used to study evolutionary 
processes, such as lateral gene transfer [20]. In contrast, other genomic 
research has been focused on model organisms such as the human, rat, 
drosophila, A. thaliana, and rice. Recent research has brought forth 
label-free studies of the plant proteome. However, label-free techniques 
are not without problems, particularly when concerning plant samples 
containing high abundance proteins [19] and large amounts of co-
eluting peptides during LC-separation –e.g. in cell lysates [21].

Biological Mass spectrometry based quantification

Biological mass spectrometry (MS) is the use of a mass spectrometer 
in proteomics, which involves proteins (now peptides in this stage of 
the process) that have been separated by SDS-PAGE. These are then 
introduced to the mass spectrometer via MALDI or ESI. After being 
introduced to the spectrometer, the mass-to-charge (m/z) of peptides 
are measured generating MS spectra [22]. Peptides are commonly 
fragmented by collision (induced dissociation), which fragments the 
ions of peptides. MS-based quantification of proteins relies on two 
strategies: label free and stable isotope labeling [23,24]. Label-free 
protein quantification is split into techniques relying on either the 
intensity of the peptide ion in the mass spectrometer or the number 
of scans, the latter requiring too much data to be efficient for PTMs 
characterization. Stable isotope labeling is characterized by chemical 
labeling (relying on sulfhydryl groups of cysteine, free amines), or by 
enzymatic labeling performed on intact plant tissues or liquid cultures. 
Plants are often labeled with 15N along with K15NO3 as the only nitrogen 
source during growth in soil or in cell suspension cultures enabling a 
large quantity of peptides enriched in 15N to be identified, 98% of which 
will be incorporated. An alternative method called SILAC (Stable 
Isotope Labeling of Amino acids in Cell culture) is used, in which the 
cells are supplied with labeled amino acids, instead of 15N, yielding 80% 
of the quantified proteins incorporated, because plant cells already 
synthesize amino acids [25]. Therefore, a number of stable isotope 
labeling techniques using 2H, 13C, 15N, or 18O isotopes were developed 
for MS-based quantitative proteomics [26-28]. 

Multidimensional protein identification technology (MudPIT) 
uses a combination of liquid chromatography (LC-MS/MS) and high 
performance liquid chromatography (HPLC), enhances the separation 
of peptide mixtures using strong cationic exchange and 2D liquid 
chromatography [29,30]. Thus, by improving sample separation 
methods along with efficient techniques of peptide mixture separation, 
the overall analysis of proteome can be enhanced to identify proteins of 
all functional and physical classes, which are found in low abundance. 

Functional Proteomics
Several attempts have been made to analyze the differential 

proteome of crop plants in response to various stresses, including toxic 
abiotic and biotic factors, such as metals [31], salinity [32], flooding 
[33], ultraviolet-B radiation [34] and pathogen infestation. The 
proteomic approach has also been applied to unravel the expression of 
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allergens in transgenic plants [35] and in comparing allergens between 
cultivated and wild types [36]. 

Abiotic factors

Abiotic stressors affect the way a plant grows and performs various 
functions. 

Metal toxicity: Toxic metals, such as Cd, Cu and Al, are major 
pollutants in soils and their levels are rapidly increasing within the 
environment. They are frequently taken up by plant roots, thereby 
severely interrupting several physiological and biochemical pathways, 
and thus restrict growth and development, ultimately leading to cell 
death. To investigate the Cd-responsive proteins in soybean, suspension-
cultured cells were exposed to various concentrations of cadmium 
and labeled with 35S-methionine for three different time periods [37]. 
Significant up-regulation of first-line anti-oxidative genes, such as 
superoxide dismutase, have also been identified in other proteomic 
analyses of stress responses to several metals, including cadmium [38]. 

Flooding stress: Among various crops, soybean, rice, maize and 
tomato are considered too highly sensitive to flooding stress. Various 
studies on hypoxia or waterlogging stress have been carried out using 
cytosolic and membrane proteins from roots and have shown regulation 
of cytosolic ascorbate peroxidase-2 under flooding stress in soybean 
[39-41]. 

Chill stress: In the process of understanding the root of chilling 
stress responses, it is found that the exploration of root proteome 
appearance and certain proteins may be critical. A group of novel 
membrane stability related proteins were up regulated during chilling 
stress in peach fruit and were identified using electrospray ionization 
MALDI-TOF MS [42]. These proteins are believed to be significant in 
our understanding of the stress responses in plants, the reason being that 
they participate in many cellular processes, including detoxification, 
vesicular trafficking, and metabolism [43].

Heat and water stress: High temperature is detrimental to the 
growth of cool-season plant species in many temperate areas or in 
subtropical regions. Heat stress can cause changes in various metabolic 
processes, such as protein denaturation, inhibition of synthesis of 
normal cellular proteins, and induction of some heat shock proteins 
(HSPs). The HSPs function in the stabilization of proteins, while 
membranes assist in protein refolding under stressful conditions [44]. 

Water stress is the most commonly occurring abiotic stress, 
particularly in rain fed crops, such as peanut, maize, and sorghum. 
Proteome analysis of the peanut leaf was conducted using two-
dimensional gel electrophoresis in combination with sequence 
identification using MALDI-TOF to determine their identity and 
function related to growth, development, and responses to stresses. The 
2DE reference map was derived from a drought-tolerant peanut leaf 
tissue [45] and serves as the basis for further investigations of peanut 
physiology, such as detection of expressed changes due to biotic and 
abiotic stresses, and plant development. 

Protein response in plants has proved to vary greatly, however, it 
is most common for proteins in response to oxidative damage arise in 
abundance in roots [46]. Analysis of proteins in soybean leaf by oxygen-
isotope-fractionation revealed a 32% mitochondrial ATP synthesis 
decrease inhibiting photosynthesis [47]. Differential expression of seed 
proteins between drought tolerant and susceptible genotypes following 
water stress was observed in peanut leaf proteins, which play a major 
role in photosynthesis [48]. Proteomics has been successfully used 

to understand the metabolic processes that occur during seed filling. 
Soybean seed proteins were analyzed at five developmental stages by 
using 2-DE and a semi-continuous MudPIT coupled with LC-MS 
analysis [49].

Biotic factors: A comparative proteomic analysis was carried out in 
two lines of Lycopersicon hirsutum harboring two different quantitative 
trait loci (QTL) that control resistance to bacterial canker, suggesting 
that these two QTLs may confer resistance to bacterial infection 
through distinct mechanisms [50]. A comparison of the protein profiles 
of the root hairs and roots showed 96 differentially expressed proteins, 
of which only twelve were unique to root hairs. Moreover, this study 
showed that soybean root hairs could be a good starting material for 
further proteomic analysis in the study of symbiotic interaction with 
Bradyrhizobium japonicum [51]. 

Proteomic Evaluation of Genetically Modified (GM) 
Crops

Several studies suggested the application of proteomics in detecting 
unintended effects in genetically significant modified crops and changes 
in gene expression profiles of transgenic crops [52,53]. Transgenic 
integration may result in deletions, insertions, and rearrangements, 
which in turn may influence harmful effects [54]. These can be 
predicted by targeted analysis of transgene integration sites and related 
metabolites; however, they do not necessarily predict changes in food 
composition and quality; therefore transcriptomics profiling is limited 
in evaluating unintended effects.

Proteomic technologies have also been applied to investigate gene-
silencing products in transgenic research. Substantial suppression 
of GlymBd 30 K, a dominant allergen of soybean seed, by a reverse-
genetic approach has been confirmed by proteomic analysis [35]. 
No significant changes were observed in the polypeptide pattern of 
the transgenic seeds compared with the proteome map of the non-
transgenic seeds. This suggests that transgenic-induced gene-silencing 
technique successfully removed the allergen from soybean. Several 
other allergen proteins include profiling in olive pollen, which showed 
polymorphism associated with physiochemical differences in response 
to different stress or physiological conditions [55,56].

With the commercialization of GM crops, these unintended effects 
are one of the most controversial issues on the biological safety of 
GM crops. The increasing use of “omics” technologies significantly 
contribute to our understanding of the biological safety of transgenics, 
since a systematic molecular analysis of GM crops is needed to address 
the unintended genetic effects [57,58]. 

Modification-specific Proteomics in Plant Biology
In the process of protein biosynthesis, post-translational 

modifications (PTMs) (i.e. phosphorylation, glycosylation, sulfation, 
prenylation, acetylation and ubiquitination) are significant in altering 
protein functions, which include stability and localization, by binding 
to amino acids [59]. Experimenting with PTMs showed that the 
functions of a protein are well conserved; however, the PTM positions 
may not be stationary over evolutionary time. 

PTMs are not stable under normal conditions for proteomics or 
MS, thus making them difficult to study. However, they regulate many 
cellular functions, such as protein activity and signaling throughout the 
cell. PTMs are identified by purification or protein separation using 
polyacrylamide gel electrophoresis (PAGE). The function of PTMs is 
currently being studied by analyzing the cell response to stress. 
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(GPI) anchored proteins are essential for cell viability and stable 
localization of the protein to a biological membrane. GPI consists of 
a phosphoethanolamin linker, a glycan core, and a phospholipid tail 
(the functional groups), phosphoinositol, glucosamine, and mannose 
(the core). GPI anchors are difficult to identify, however, the few studies 
that have been carried out solubilized isolated membranes with the 
detergent triton X-114 while alternating temperatures [75-77].

Redox-mediated modifications

Redox mediated modifications involve S-nitrosylation, Tyrosine 
Nitration, and S-glutathionylation. Nitric oxide (NO) is utilized in the 
regulation of neurotransmission, and immunological and inflammatory 
responses, in both animals and plants [78]. It is mainly produced by 
nitric oxide synthase [22] and reacts rapidly with O2

-, or glutathione 
(GSH), generating ONOO- and S-nitrosylated glutathione (GSNO). 
Because of the three ways of nitration, the proteins modified by such 
processes are abundant. However, s-nitrosylation is in low abundance 
and reacts rapidly with various chemicals, therefore, it is difficult to 
detect.

In plants, nitric oxide affects germination, leaf expansion, 
lateral root development, flowering, stomatal closure, cell death 
(hypersensitive response), and defense against biotic and abiotic stresses 
[79]. Additionally, S-glutathionylation affects flowering, differentiation, 
cell death, symbiosis, and pathogen resistance. During oxidative and 
nitrosative stresses, glutathione can modify redox sensitive cysteines 
and function as protection against irreversible oxidation [80]. 

Redox proteomics defines the PTMs of proteins by abundant reactive 
oxygen species (ROS). The zone of redox proteomics is a difficult area 
for comprehensive analysis because of the varied amount of ROS that 
create the modifications as well as the extent of independent amino 
acids along the protein sequence. Changes in peptide mass that show 
variance in the expected peptide arrangement of the original amino 
acid configuration is used to show the characteristics of the alteration. 
For example, Sheehan et al. [81] has used conversion to SO3H by adding 
32 Da to the peptide mass.

The oxidation of mitochondrial proteome in the rice leaf has 
been studied by researching the carboxylation protein configuration 
of proteins in the organelle succeeding in vitro oxidation. DNP (an 
inhibitor) was administered to specifically identify the oxidized proteins 
and proceeding MS and 2D-PAGE parting, which was followed by a 
mass spectrometric study used to examine the oxidized proteins. Our 
study confirmed that oxidation damage of the proteome is linked to 
peach fruit decay via mitochondrial function [82].

Post-translational modifications

Protein alteration through the accumulation of a lipid moiety to 
the protein has been testified extensively in organisms. Every kind 
possesses its own precise biosynthesis enzymes for the creation of the 
post-translationally adapted protein. Numerous pharmaceutical agents 
that inhibit the prenylation of these proteins have been advanced to 
oncology treatments. The lipid-modification of GTP gases in plants is 
viewed and connected to cellular growth and indication through their 
effect on stomatal closing brought by abscisic acid [83].

Evolution of Organelle-Associated Protein Profiling
The organelle constituents are an important determining factor 

when studying the structure and function of a cell. It is necessary 
to demonstrate the specific localization of a protein for an organelle 
protein catalogue to be useful in terms of cell biology studies. Organelle 

Phosphorylation

Reversible protein phosphorylation affects metabolism, the cell 
cycle, stress, hormonal responses, stomatal closure, development, as well 
as cytokinesis in the plant cell [60]. Currently, plant phosphoproteome 
studies are carried out through Immobilized Metal Chromatography-
IMAC [61], precipitation [62], metal oxides, such as TiO2 [63] and 
ZrO2 [64]. Some proteins may be found in more than one organelle 
while others may be targeted to membranes via lipid anchors [22,65]. 
The study of subcellular fractionation makes it easier to understand 
specific phosphorylation events because the site can be determined. 
Phosphorylation has been proved to be involved in the cells response 
to fungal elicitors. 

Ubiquitylation

Ubiquitylation is responsible for the tagging of proteins that need 
to be degraded. It is a process where the C-terminal carboxyl group of 
an Ub polypeptide is conjugated to the target protein via an ε-amino 
group of one or several specific lysine residues within the target protein 
[22]. It requires an ATP-dependent Ub activating enzyme (E1), an Ub-
conjugation enzyme (E2), and an Ub ligase (E2), which recognizes 
substrates. 

SUMOylation

SUMO (Small Ubiquitin-related Modifier) is as effective as a 
polySUMO chain and is involved in transcriptional regulation, DNA 
repair, nuclear transport, mitochondrial fission, and regulation of 
receptors at the plasma membrane [66]. The enzymatic process involved 
in SUMOylation is similar to that used in ubiquitylation except “SUMO 
needs to be proteolytically processed by the Sentrin-specific Protease 
(SENPs) to expose the C-terminal GG before it can be activated” 
[22]. In fact, in yeast and mammalian cell studies, there is increasing 
evidence that ubiquitylation and SUMOylation pathways interact with 
each other [67]. 

PolySUMO chains are formed from SUMO (small ubiquitin-like 
modifier) chains by proteins containing SUMO interaction motif 
(SIM), i.e. the SUMO consensus modification motif (ΨKxE/D) [68,69], 
in response to processes, such as DNA damage or meiosis [70]. Studies 
by Bruderer et al. suggest that until now, more than 300 putative 
polySUMO conjugates from cultured eukaryotic cells have been 
identified. Furthermore, both polySUMO and SUMOylation modify 
proteins at specific stoichiometries [71].

Glycosylation

Glycosylation can be N-linked or O-linked, which is determined by 
the transfer of glycosidase and glycosyl between the golgi apparatus and 
the endoplasmic reticulum. N-linked glycosylation is found abundantly 
in mammalian systems and is characterized by N-acetylglucosamine 
(GlcNAc) linked to Asn by an amide. However, detecting glycosylation 
is challenging because of the abundance of proteins, the wide range of 
diverse structure, fragmentation during collision, and large size, which 
sometimes exceeds what can be detected by the mass spectrometer.

Several techniques have been adapted to enrich glycoprotein/
glycopeptides [72] such as hydrophilic interaction liquid 
chromatography (HILIC), which detects glycopeptides by using TiO2 
and uses the hydrophilic nature of glycopeptides [73]. The experiments 
based on the detection of glycosylation in plants have mainly relied 
on 2D-PAGE to separate affinity-purified proteins or to separate total 
protein allowed identification of 102 proteins, of which, 94% were 
predicted to be secreted proteins [74]. Glycosylphosphatidylinoitol 
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the complete coverage of the plant nucleus was made in Arabidopsis 
using 2-DE and MALDI-TOF MS analysis [98]. Their study identified 
158 proteins with various cellular functions as well as 54 proteins that 
were either differentially up or down-regulated based on spot intensity 
in response to cold stress, thus supporting the regulatory role of the 
nucleus. 

Cell wall proteome

Plant cell walls play an important role in defense and development. 
About 400 cell wall proteins (CWP) were identified in Arabidopsis [99]. 
The isolated CWPs in rice were evaluated for contamination by cytosolic 
proteins by measuring the enzymatic activity of an intracellular marker, 
glucose-6-phosphate dehydrogenase [100]. Furthermore, comparative 
analysis with known Arabidopsis revealed 25 novel, rice-specific CWPs. 
Different methods were tested for the extraction of proteins from the 
cell wall enriched fraction (CWEf) obtained from a sample formed by 
skin and seeds of ripe berries of Vitis vinifera [101]. The comparison of 
2-DE reference maps of protein extracts from CWEf and CYf indicated 
the presence of both common and unique traits. Forty-seven spots 
were identified in Vitis berry, of which some were found to be cell wall 
proteins, while others were proteins not traditionally considered as 
localized in the apoplastic space. Future work should include: extracting 
and identifying CWPs still recalcitrant to proteomics, describing the 
cell wall interactome, improving quantification, and unraveling the 
roles of each of the CWPs.

Secreted proteome

The secretory proteins assist in many of the key functions of the cell, 
particularly for bacteria. Proteomics has helped reveal approximately 90 
extracellular proteins in the gram-positive bacterium, Bacillus subtilis 
via genome-based models. This analysis led to the discovery of the 
cytoplasmic cell envelope proteins as well as confirming the significance 
of the secreted proteome in the formation of biofilms, which will assist 
in our understanding of the virulence of pathogens such as B. subtilis 
[102]. Furthermore, the use of proteomics has helped unveil proteins 
in the cell wall of Arabidopsis that typically reside in other organelles 
as well as previously unknown extracellular phosphorylation in plants. 
This study was completed using CaCl2 for fractionation, separation 
by 2DE, and identification by genomic database searches along with 
MALDI-TOF MS [103]. 

Endoplasmic reticulum

The endoplasmic reticulum (ER) is a specialized endomembrane 
system that is central to a number of biological functions such as 
protein folding, sorting, secretion, intracellular calcium regulation, 
protein N-glycosylation, and the storage of proteins and lipids [104]. 
Maltman et al. [105] were the first to investigate proteomics of plant 
ER by comparing the complexity and differences in the proteome 
between germinating and developing castor bean endosperm. Similar 
to mammalian and yeast systems, plants exhibit retrograde and 
anterograde transport by mechanisms mediated by Coat Protein 
complexes (COP I&II) at specialized areas known as ER export sites. 
While soluble proteins are exported from the ER by a bulk flow 
mechanism, the export of membrane-spanning proteins from the ER 
and subsequent sorting to other locations appear to be more complex 
[106]. Comparative studies have shown that the plant secretory 
pathway is by no means identical to the pathway in yeast or mammals 
and that many plant-specific features remain to be explored. Despite 
the central role of the ER and Golgi apparatus in cell metabolism and 
secretory pathways, very few proteomic studies have been reported on 

isolation was initially used to associate proteins with their respective 
organelle through the differential centrifugation and density gradient 
fractionation methods. Through these methods many protein 
components of numerous organelles, such as the lipid raft, endoplasmic 
reticulum, mitochondria, plasma membrane, and nuclear envelope 
have been identified [84-86]. The success of these methods, however, 
depended greatly on the purity of an organelle, which was difficult, if 
not impossible, to obtain from subcellular fractionation approaches. 
Organelle proteomics is relevant because the functionality of proteins 
and cellular mechanisms are clearly linked to their subcellular location. 
Protein data available from various databases including AMIGO 
and SWISSPROT was used to build a subcellular location database 
for Arabidopsis proteins [87]. The database comprises of ten distinct 
subcellular locations and over six thousand proteins. Currently, several 
datasets of organelle proteomes such as Arabidopsis mitochondrial 
database (AMDB), Genome organelle database (GOBASE), and Plant 
organelle database (PODB), are developed to resolve protein association 
with multiple organelles and identify changes and protein-organelle 
association during the study [88-90]. 

The use of affinity chromatography following the process of 
subtractive proteomics to purify the organelle greatly enriched targeting 
organelle-specific proteins [91]. This advantage has led to a new method 
of accurately profiling protein organelles. Protein distribution among 
sub-cellular fractions can be monitored with quantitative proteomics. 
These distribution patterns can then be used to assign proteins with 
similar patterns to the same organelle [92]. 

Chloroplast and mitochondrial proteome

Chloroplasts perform basic functions including photosynthesis and 
amino acid biosynthesis. Most of the proteins of chloroplast are known 
to encode in the nuclear genome and imported into chloroplast upon 
translation. Therefore, understanding the chloroplast proteome will be 
of high value to predicting pathways to define regulatory levels of gene 
expression. Using tandem MS about 690 proteins were identified from 
Arabidopsis chloroplasts [93]. The chloroplast proteomes contains many 
proteins that are of unknown functions and not predicted to localize to 
the chloroplast. Further studies on transcript profiles of the chloroplast-
encoded proteins would be required to determine the expression of 
nuclear encoded chloroplast genes and their regulation in various 
pathways. Mitochondrial sequences in plants are notably different 
from those in other model organisms, such as yeast (Saccharomyces 
cerevisiae), due to additional components, non-phosphorylating 
bypasses of the electron transport chain, and specialized metabolite 
carriers, making analysis by bioinformatics tools challenging [94]. Since 
the need arose, Arabidopsis has been analyzed using TargetP predicting 
up to 2,897 nuclear-encoded mitochondrial-targeted proteins [4]. 
Millar et al. [95] analyzed the Arabidopsis mitochondrion by 2-D gel 
separation, identifying 100 abundant proteins and 250 low-abundance 
proteins. Later, using LC-MS method, Salvato et al. [96] identified 1060 
proteins in Solanum tuberosum mitochondria.  

Nuclear proteome

The eukaryotic nucleus serves as the regulatory hub of the cell and 
a repository of various macromolecules. Apart from DNA replication 
and transcription, the nucleus is important for cellular homeostasis 
and the determination of the genomic response to stress tolerance [97]. 
Given the central role of the nucleus, a detailed proteomic analysis 
is necessary to better understand its protein content, intracellular 
distributions, concentrations, turnover dynamics, the protein–protein 
interactions, and PTMs responsible for their function. An attempt at 
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these endomembrane systems due to difficulties associated with their 
isolation and purification.

Protein-protein Interaction
Protein–protein interactions form the basis of a large number of 

cellular processes. Genetic suppression has proven to be a powerful 
tool in identifying functional interactions. With advances in 
proteomics, more studies are now being directed towards unraveling 
the subtle network of interactions that govern cellular processes 
and development in organisms [107]. However, the many bacterial 
genomes that have been sequenced in the recent past have not left us 
with clues regarding the functions of more than half of their genes. 
Though a number of biochemical approaches have been successfully 
employed in determining protein–protein interactions in vitro, they 
essentially involve perturbation of the protein by insertion of a probe 
[108]. Genetic suppression obviates the need to modify the protein 
and provides alternative means to unveil the functional relevance of 
interactions in vivo. 

In the cell, proteins are defined by their location and timing to carry 
out activities such as protein degradation in proteome complexes. These 
complexes have been analyzed using a multitude of different methods 
in several model organisms to map protein-protein interaction [109]. 
For example, yeast, Drosophila, and human protein complexes have 
been studied by large-scale affinity purification followed by mass 
spectrometry, and human genome-wide interaction maps using 
Yeast-2-Hybrid (Y2H) screening [72,110]. This study displayed binary 
interaction information, indicating that these proteins were tested in pairs 
[111]. Furthermore, this mapping displayed many transient complexes 
essential to extracellular signaling and correction of misfolded proteins 
[112]. It is well known that protein-protein interactions play a fundamental 
role in internal equilibrium maintenance [113]. 

Protein-protein interaction (PPI) studies for differentially 
expressed leaf proteins to water stress have been done in peanut using 
Domain Interaction Map (DIMA), which finds functional and physical 
interactions among conserved protein-domains. All the accessions 
were queried using the list of protein family (PFAM) identifiers. 
The integration of evidence from different sources involves analyses 
using the domain phylogenetic profiling and domain-pair exclusion 
method for predicting domain interactions from experimentally 
demonstrated protein-protein interactions using IntAct [114] STRING 
[115] and domain contacts from crystal structures using iPFAM [116]. 
Phylogenetic profiling methods revealed that many of these proteins 
have potentially predicted functional partners. The Domain Pair 
Exclusion Method (DPEA) was used to derive the most likely domain- 
domain interactions from experimentally supported protein-protein 
interactions using IntAct. Recent integration of genomics assists in the 
study of protein-protein interaction by predicting or confirming the 
aforementioned.

Protein-Protein interaction analysis

Mathematical gene interaction network optimization software 
(MINOS) was used to estimate protein interactions in the tolerant and 
susceptible peanut cultivars (unpublished data) based on the S-system 
differential equation that simulated an expression profile [117]. 
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Where: xi: ith protein expression; i: ith protein production velocity 

coefficient; gij: coefficient of ith protein production velocity and jth 

protein expression; i: ith protein degradation velocity coefficient; hij: 
coefficient of ith protein degradation velocity and jth protein expression. 

Protein orthologs were further identified in Arabidopsis and those 
interacting with them were analysed using Arabidopsis thaliana protein 
interaction database [118]. 

Metabolomics: Towards Biological Function and 
Mechanism

Metabolite profiling provides direct functional information on 
metabolic phenotypes and indirect functional information on a range 
of phenotypes that are determined by small molecules. A key aspect of 
metabolite profiling is that it can be used in high-throughput operation 
and provides a valuable combination of high performance and low unit 
cost per sample. 

Metabolite profiling has now been accomplished in various plants, 
including Arabidopsis, Medicago etc., [119-121]. In plants, numerous 
genes have been interpreted on the basis of relationships between 
transcript and metabolite levels [122]. 

Metabolite profiling as an integral component of genomics

Integrated genomics has recently included metabolite-based 
approaches [123]. Plants expressing only parts of metabolite and 
transcriptome of transgenic versus wild-type plants showed pleiotropic 
perturbation of global transcript abundance, precursor accumulation, 
disturbed protection from UV rays, and a morphological phenotype. 
The expression of the complete pathway resulted in attenuated changes 
in growth behavior, metabolite and transcriptome composition [124]. 
Integrated approaches are also useful in the systematic characterization 
of biological processes.

Metabolite profiling as a diagnostic aid

Metabolite profiling is widely used as a diagnostic tool to determine 
the mode of action of various herbicides based on Gas Chromatography 
(GC) coupled with MS [125]. The analyses use the statistical tools of 
hierarchical clusters and a principal component analysis to compare 
large data sets. Studies suggest that the approach of headspace GC-
MS with statistical discriminant analysis could prove to be useful in 
identifying the compound class to which unknown MSTs belong [126].

Bioinformatics and OMICS: Harvesting Information 
for Crop Science

Bioinformatics is concerned with the acquisition and storage of 
analyses and genome based information. There is a strong inclination 
to implement such pipelines using mechanisms developed as open 
source software, which facilitates the reuse and sharing of expertise. 
A diversity of approaches has been applied to explain eukaryotic 
genomes. They use comparative genomics, which relies on the ability to 
deduce organizational, structural or functional biological significance. 
This information is derived from sequence data arising from one or 
more taxa. Computational tools are mostly used as central aspects of 
comparative genomics, as it is in silico discipline. One of the methods 
for detection of homologous regions has been used to the complete 
Arabidopsis genome and concatenated rice. Most of these studies, 
such as Genome Pixeliser, has successfully been used to visualizing 
relationships and analyzing the evolution of encoding resistance genes 
in Arabidopsis among other genome duplication events.

Bioinformatics also uses the methods of data mining, the process 
of discovering knowledge in databases. Recently, the majority of data 
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mining work in bioinformatics is founded on the requirement to screen 
through large, usually sequence-based, data sets looking for homology. 
The foundation of such data sets is sensitive to the exact and functional 
organization of any original explanation. Software tools are now being 
made available to aid the biologist in navigating existing ontologies, and 
in contributing their own data in the context of the wider group efforts 
[127,128]. 

The focal point for plant proteomics has, to date, been in 
development of species-specific databases, such as the Rice Proteome 
database containing indication maps based on 2DE-PAGE proteins 
from rice tissues and subcellular sections [129]. The keys to integration 
of metabolomics are bioinformatics tools and methods of analysis using 
biochemistry, plant physiology and ecology. This is mainly evident in 
the need to visualize and replace data, and develop an understanding 
of metabolic routes. 

The multiple-omics based approach involves building a database 
schema that integrally stores and manages the multiple-layered 
biological information. Figure 1 shows a concept of the biological and 
hierarchical data integration. In the schema, data will be collected on 
biological multiple hierarchies and located on the directed graph of 
each hierarchy. Consequently, a biological mechanism, such as abiotic 
stress response, will be inferred as a network system across multiple-
omes.

The data of transcriptome and metabolome was also stored in the 
database, and the relationship between the data in different biological 
hierarchies was determined. Some metabolic systems were found, 
which include up-regulating metabolites under flooding stress based 
on the temporal profile analyses. Furthermore, tag information that 
concisely showed the feature of the profile (up-regulation, down-
regulation and/or existence of the maximum or minimum during the 
observed time period) was added one by one to the temporal profile 
data in the database. The user of the database can easily retrieve the data 
based on the feature of the time profiles. An omics table integrated in 
the database revealed time-variant mRNAs, proteins, and metabolites 
under flooding stress; and relationships across multiple OMICS, such 
as a protein product from an mRNA, and an mRNA or protein relating 
to a substrate or enzyme in a reaction including the metabolite.

Conclusion
With recent advances in the technology, currently, more genomic 

resources are available to improve breeding strategies and enhance crop 
productivity. Furthermore, advances in proteomics and bioinformatics 
tools have increased our understanding of the function and metabolic 
pathways of the molecules. In the past few years, there has been 
significant progress in plant proteomics studies due to the advances 
in protein isolation, separation methods and high-resolution using 
software tools and bioinformatics. This information is currently not 
limited to model plants, but even to plants known to be recalcitrant. 
This paradigm switch enhanced our ability to identify low abundant 
proteins and identify sub cellular localization, PTM, interaction and 
dynamics of changes relating to metabolite profiles. Systems biology 
provides the mining knowledge to integrate multiple OMICS data 
and test the expression of proteins as well as metabolites. As the 
sophistication of technology increases, several efforts have been 
made to create bioinformatics software tools and repositories such as 
Blast2GO, MINT, BioGrid, GelMap, and IntAct. We use the study of 
proteomics to further our knowledge of gene function on a genome-
wide level. It depends on appropriate model systems to analyze the 
extremes of certain structures in order to view the same structure in 
other systems in smaller amounts. Additionally, these databases give us 
a more intimate insight in the study of proteins involved in interactions 
that cannot be determined from the genome alone, such as PTMs. 
Now the focus will be on integration of transcriptome, proteome and 
metabolome data sets to integrate into large scale systems biology to 
unravel to signal transduction pathways at transmembrane level. 
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