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Introduction
Many proteins in human milk are glycosylated, including 

lactoferrin, mucin 4, α-lactalbumin, lactadherin, κ-casein, butyrophilin, 
lactoperoxidase, xanthine oxidase, bile salt-stimulated lipase, α-1-
antichymotrypsin, α-1-antitrypsin, a variety of immuglobulins, and at 
least 26 other proteins [1-3]. Protein-linked glycans (PLG) are post-
translational modifications comprised of linear or branched chains 
of monosaccharides. For human milk PLG, these monosaccharides 
include hexoses (glucose, galactose and mannose), hexosamines 
(N-acetylglucosamine, N-acetylgalactosamine), fucoses and the sialic 
acid, N-acetylneuraminic acid.

Addition of glycan structures to milk proteins is energetically 
expensive to the mother [4]. Darwinian evolutionary pressure allows 
only components that benefit the infant to remain in milk. Therefore, 
these PLG likely have important, but as-of-yet undescribed, bioactive 
functions or nutritive value. PLG protect bioactive protein and peptide 
fragments from degradation and allow their continued functionality. 
Degradation of the glycan portion will increase protein susceptibility 
to proteolysis. The observation that bovine lactoferrin is more resistant 
to trypsin digestion when glycosylated than when unglycosylated 
supports this hypothesis [5]. 

Glycoproteins in human milk have many biological effects in the 
neonate, including host protection against pathogens [6-8], brain 
development [9], nutrient uptake [10], and immune responsiveness 
[11-13]. 

Studies of dietary PLG digestion in the human gastrointestinal 

tract (GIT) have not been performed in either infants or adults. The 
various monosaccharides comprising PLG are linked in a variety of 
positions and with a variety of linkage types, each of which requires a 
specific glycosidase (also known as glycoside hydrolases) for cleavage. 
Both adults and infants produce enzymes capable of hydrolyzing 
disaccharides and starch; however, no studies have demonstrated 
secreted or external brush border glycosidases specific for the bond 
types present in human milk PLG. Adult pancreatic juice proteomes 
include several glycosidases, but none with a specificity matching the 
individual bond structures of human milk PLG [14]. If PLG-degrading 
secretory or external brush border glycosidases are produced by the 
human digestive system, they have minimal activity, as in vitro studies 
show that neither pancreatic juices nor intact intestinal brush border 
membranes degrade complex carbohydrate (except for starch) [15]. 
Complex glycans survive intact through the human digestive system 
to the colon, suggesting that little, if any, degradation by human-
produced digestive glycosidases occurs. This finding also suggests that 
bacterial PLG degradation in the upper GIT is minimal.

In contrast to the lack of PLG-degrading glycosidases produced by 
the human digestive system, a large number of human GIT bacterial 
species secrete PLG-degrading glycosidases [16-18]. Genes encoding 
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Abstract
Many human milk proteins are glycosylated. Glycosylation is important in protecting bioactive proteins and peptide 

fragments from digestion. Protein-linked glycans have a variety of functions; however, there is a paucity of information on 
protein-linked glycan degradation in either the infant or the adult digestive system. Human digestive enzymes can break 
down dietary disaccharides and starches, but most of the digestive enzymes required for complex protein-linked glycan 
degradation are absent from both human digestive secretions and the external brush border membrane of the intestinal 
lining. Indeed, complex carbohydrates remain intact throughout their transit through the stomach and small intestine, and 
are undegraded by in vitro incubation with either adult pancreatic secretions or intact intestinal brush border membranes. 
Human gastrointestinal bacteria, however, produce a wide variety of glycosidases with regio- and anomeric specificities 
matching those of protein-linked glycan structures. These bacteria degrade a wide array of complex carbohydrates 
including various protein-linked glycans. That bacteria possess glycan degradation capabilities, whereas the human 
digestive system, perse, does not, suggests that most dietary protein-linked glycan breakdown will be of bacterial origin. 
In addition to providing a food source for specific bacteria in the colon, protein-linked glycans from human milk may 
act as decoys for pathogenic bacteria to prevent invasion and infection of the host. The composition of the intestinal 
microbiome may be particularly important in the most vulnerable humans-the elderly, the immunocompromised, and 
infants (particularly premature infants).
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PLG-degrading glycosidases are present in a variety of bacterial species 
[19-21]. In vitro studies show that intestinal bacteria degrade a wide 
variety of complex carbohydrates including PLG [22-26]. Indeed, 
complex carbohydrates serve as a major nutrient source for colonic 
bacteria [27].

Not all human gut bacteria degrade complex carbohydrates, 
and not all complex carbohydrate-degrading bacteria break down 
all types of complex carbohydrate bonds. Therefore, specific sugar-
sugar linkage types provide a food source for some bacterial species, 
but not for others. Dietary glycans, therefore, potentially feed specific 
microbes to the exclusion of others via specific structure. This principle 
was demonstrated for a group of complex carbohydrates in human 
milk: human milk oligosaccharides (HMO). HMO-free complex 
carbohydrates consisting of the same monosaccharide building blocks 
as PLG-support the growth of particular species of gut microbiota, 
including Bifidobacterium longum subsp. infantis ATCC 15697, B. 
longum subsp. longum DJO10A, and B. breve ATCC 15700 [28], 
but do not support growth of bacteria such as Enterococcus faecalis, 
Streptococcus thermophilus, Veillonella parvula, Eubacterium rectale, 
Clostridium difficile, and Escherichia coli [22]. This degree of specific 
promotion of bacteria by HMO suggests a similar role for milk PLG. As 
both infants and adults seem to lack the ability to produce most of the 
specific glycosidases required for dietary PLG degradation, PLG do not 
likely serve a direct nutritional role to the host, rather PLG likely serve 
a direct nutritional role for some microbial species.

Human Milk Protein-Linked Glycan Bond Structures
A variety of glycosidic linkage types are present in human milk 

PLG. Glycosidic bonds occur in two stereo isomeric forms-α and 
β-and glycosidases are typically specific to only a single bond type 
[29]. Most glycosidases are specific to glycosidic bonds with particular 
regiochemistry (e.g. 1-3 vs. 1-4 linkage) [29]. For example, a fucose 
(Fuc) linked to a galactose (Gal) by an α-1,2-linkage can only be cleaved 
by an enzyme specific to α-1,2-linked Fuc- an α-1,2-fucosidase. Neither 
an α-1,4-fucosidase nor a β-1,2-fucosidase can cleave this bond. Table 
1 summarizes the bond types identified to date in human milk PLG, 
the corresponding enzymes required for complete degradation, and the 
source of these enzymes if known. The structures of a relatively low 
number of human milk PLG are characterized to date, therefore, Table 
1 is likely not an exhaustive list. 

Glycosidases Produced by Infant and Adult Git
Secretory or external brush border glycosidases vs. 
intracellular glycosidases

This review makes a distinction between enzymes that are either 
exported to the gut lumen as digestive secretions or exist on the outer 
brush border membrane, and those that are internal to gastrointestinal 
tract cells. Secreted and external brush border membrane glycosidases 
can interact with luminal PLG, whereas intracellular glycosidases 
cannot interact unless PLG or PLG fragments are imported into the 
cell. The intracellular glycosidases of most cells likely have the capacity 
for complete PLG degradation, as PLG degradation is essential for 
remodeling glycans and degrading proteins in all eukaryotic cells [4,29]. 
For example, fucosidases, which are required for complete fucosylated 
PLG degradation, are present intracellularly in a wide range of human 
tissues [30], but are not found in human-produced digestive secretions 
[14]. Large, complex carbohydrates and glycopeptides are unlikely to 
undergo passive transport because of their size; therefore, their entry 
into cells would require specific receptor-mediated uptake. However, 
oligosaccharide import systems on GIT enterocytes have not been 

demonstrated, therefore, intracellular glycosidases likely have minimal 
impact on PLG-degradation.

Many studies show that homogenized human tissues such 
as the pancreas, stomach, and intestine have glycosidase activity. 
Homogenization disrupts cell membranes, releasing intracellular 
glycosidases and making it difficult to distinguish between extra- and 
intracellular glycosidases.

Digestive glycosidases

Disaccharide-hydrolyzing glycosidases, which cleave disaccharides 
to monosaccharides, are present in the human digestive system [23]. 
For example, lactase cleaves lactose to glucose (Glc) and galactose 
(Gal) [23]. Human digestive secretions degrade structurally and 
compositionally simple polysaccharides such as starch (an all-Glc 
polymer) to produce monosaccharides [15]. The large amounts of 
intact complex carbohydrates in the distal GIT support the concept that 
the human digestive system does not produce complex carbohydrate-
degrading enzymes. Undigested materials in the distal GIT of humans 
include polysaccharides (including cellulose, xylan, and pectin) from 
plant cell walls, undigested starch [23], HMO [31], and host-derived 
mucin-linked glycans and glycosphingolipids [23]. As these complex 
carbohydrates and human milk PLG have many of the same glycosidic 
bond structures, human PLG likely survive intact to the large intestine, 
though this has not been demonstrated.

This section reviews digestive glycosidases produced in the oral, 
gastric, and intestinal segments of the digestive tract and explains 
which glycosidase could degrade components of human milk PLG.

Oral glycosidase: At least three glycosidases are present in human 
saliva. These glycosidases include salivary α-amylase, α-galactosidase, 
and β-galactosidase. Of these, only β-galactosidase could take part in 
PLG degradation, but its regiospecificity is currently unknown. Blood 
group-degrading exoglycosidases that cleave A, H, and Lewis A (Lea) 
antigenic glycosides from non-reducing ends of glycans are present in 
small amounts in saliva [32].

Salivary α-amylase: Salivary α-amylase (1,4-α-D-glucan 
glucanohydrolase, E.C.3.2.1.1), which cleaves Glc-α-1,4-Glc bonds of 
starch (a pure Glc polymer), is present in both term infant and adult 
saliva [33]. Compared with adult levels, those in term neonate saliva 
are low, but reach 2/3 of adult levels by 3 months postpartum [33]. Glc-
α-1,4-Glc bonds are not present in human milk PLG, so this enzyme 
probably does not degrade human milk PLG.

α-Galactosidase: α-Galactosidase (EC 3.2.1.22) cleaves α-linked 
Gal from glycans. This salivary α-galactosidase converts blood group 
B antigen to H antigen by removing Gal [34]. Saliva from healthy 
adults has activity levels of 100–300 µunits/mL [35]. Whether this 
α-galactosidase activity is human produced or produced by oral 
bacteria (both Streptococcus mutans and Actinomyces spp. have 
α-galactosidase activity) remains unknown [36,37]. Studies of human 
milk PLG structure have not identified α-linked Gal residues, however, 
so this enzyme may not be important in milk PLG degradation.

β-Galactosidase: β-Galactosidases (EC 3.2.1.23) cleave β-linked 
terminal Gal from glycans. β-galactosidase activity is present human 
saliva; however, the regiospecifity was not determined [38]. β-Gal is 
present in human milk PLG in the 1,3 and 1,4 regiomeric forms [39-
43]. Therefore, this enzyme could begin human milk PLG-degradation 
in the oral cavity if it is regiospecific for 1,3 or 1,4 bonds.

Gastric glycosidases

Glycosidases present in homogenized gastric mucosa in-
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clude N-acetyl-β-glucosaminidase, N-acetyl-β-galactosaminidase, 
α-fucosidase, β-galactosidase, α-mannosidase, and α-glucosidase [44]. 
Experiments with homogenized tissue, however, cannot determine 
whether enzyme are on the external membrane or intracellular. These 
enzymes have not been identified in gastric secretions or in the external 
membrane of the stomach; however, neither adult nor infant gastric se-
cretory proteomes have been determined. As large amounts of complex 
carbohydrates remain intact to the distal intestine, the stomach likely 
has little involvement in complex carbohydrate degradation.

Small intestinal luminal glycosidases

Adult pancreatic juice degrades maltodextrose (a simple 
polysaccharide control) but not the more complex HMO [15]. Proteomic 
studies demonstrate α-amylase, glucoamylase and mannosidase α-1,2 
member IA, but no other glycosidases in the pancreatic juice of adults 
[14,45]. Pancreatic α-amylase (EC 3.2.1.1) hydrolyzes dietary starch at 
α-1,4-linked terminal Glc [46]. Pancreatic α-amylase does not appear in 
the duodenal fluid of term or preterm infants until after the first month 
postpartum [47]. Glucoamylase (also called maltase-glucoamylase or 
glucan 1,4-α-glucosidase; EC 3.2.1.3) cleaves terminal Glc-α-1,4-Glc 
bonds, and to some extent α-1,6 linked Glc at nonreducing ends of 
amylose and amylopectin, to yield Glc [48]. Therefore, this enzyme is 
an α-1,4 (6)-glucosidase. Mannosidase α-1,2 member IA (also known 
as mannosyl-oligosaccharide 1,2-α-mannosidase, EC 3.2.1.113) cleaves 
α-1,2-linked mannose (Man) from glycans. Milk PLG with either 
α-Glc, Glc-α-1,4-Glc, or α-1,2-linked Man bonds remain unidentified, 
so these enzymes likely have little importance to human milk PLG 
degradation.

Small intestinal brush-border glycosidases

Neuraminidase, cellobiase, lactase, invertase, sucrase, maltase, 
isomaltase, α, α-trehalase, and glucoamylase are present in homogenized 
brush border tissue. Whether these enzymes are present on the external 
brush border membrane remains unknown. The observation that adult 

intact intestinal brush border membranes do not degrade HMO, but 
degrade maltodextrose (a simple polysaccharide control) [15], suggests 
that basic glucosidases, but not complex carbohydrate-degrading 
glycosidases, are present on the external brush border. Studies with 
intact brush borders are needed to determine whether glycosidases are 
present on the external side of the membrane.

In summary, the reviewed data suggest that neither adults nor 
infants secrete or possess external brush border glycosidases that are 
required for breakdown of human milk PLG.

Glycosidases and Anti-Glycosidases in Human Milk
When discussing human milk digestion, it is important to consider 

the effects of enzymes delivered within the milk to the digestive system. 
Four glycosidases are present in intact human milk. Amylase does not 
degrade any of the human milk PLG structures identified to date [49]. 
The regiospecificities of the other three glycosidases in human milk-α-
L-fucosidase [50], N-acetyl-β-D-hexosaminidase [51,52], and sialidase 
[53]-remain undetermined, so whether they can act on human milk 
PLGs is unknown. Human milk glycosidases may be soluble, located 
on the outer membrane of milk fat globules or milk cells, or internal to 
milk fat globules or cells.

α-L-Fucosidase

α-L-Fucosidases (EC 3.2.1.51) cleave α-Fuc from terminal ends of 
glycans [54]. Ninety percent of human milk α-L-fucosidase activity is 
not within cellular components such as leukocytes [50], which suggests 
that it is a soluble protein. Though the optimal pH for this milk α-L-
fucosidase is ~pH 5.0, it maintains 73% activity at normal human milk 
pH (pH 7.0) [50]. α-L-Fucosidase activity in milk is highest at onset of 
lactation, then declines until week 2, then after week four continues to 
increase until day 370 of lactation [55]. However, even in milk samples 
incubated at body temperature for 16 h, only 170 μg/mL of free Fuc is 
liberated, which is approximately 5% of the available bound Fuc [51]. 

Connectivity type In human milk PLG? Enzyme required Host: secretory or external membrane? Enzyme produced by GIT microbiota?
NeuAc-α-2,3-Gal [42, 56, 84] α-2,3-neuraminidase   [18, 88, 89]
NeuAc-α-2,6-Gal [40, 41, 43, 58] α-2,6-neuraminidase   [89]
NeuAc-α-2,6-GlcNAc  α-2,6-sialidase   [89]
Fuc-α-1,2-Gal [56, 57, 85] α-1,2-fucosidase   [18, 88]
Fuc-α-1,3-Glc  α-1,3-fucosidase   [83, 88]
Fuc-α-1,3-GlcNAc  [40, 41, 43, 56, 57, 84, 85] α-1,3-fucosidase   [83, 88]
Fuc-α-1,4-GlcNAc  [56, 57, 60, 85] α-1,4-fucosidase  [83, 88]
Gal-β-1,3-Gal [43] β-1,3-galactosidase   [18]
Gal-β-1,3-GalNAc [42, 56, 60, 84] β-1,3-galactosidase   [18]
Gal-β-1,3-GlcNAc [56, 57, 60, 85] β-1,3-galactosidase   [18]
GlcNAc-β-1,3-Gal [41, 56, 60] β-1,3-N-acetylglucaminidase   [18]
Gal-β-1,4-Glc  β-1,4-galactosidase   [18]
Gal-β-1,4-GlcNAc [40-43, 56-60, 84, 85] β-1,4-galactosidase   [18]
Fuc-α-1,6-Gal [43] α-1,6-fucosidase  

Fuc-α-1,6-GlcNAc [40, 43, 58, 59] α-1,6-fucosidase  

GlcNAc-β-1,2-Man [40, 43, 58, 59] β-1,2-N-acetylglucaminidase  

GlcNAc-β-1,4-GlcNAc [40, 43, 58, 59] β-1,4-N-acetylglucaminidase  

GlcNAc-β-1,4-Man [59] β-1,4-N-acetylglucaminidase  

GlcNAc-β-1,6-Gal [56, 60] β-1,6-N-acetylglucaminidase  

GlcNAc-β-1,6-GalNAc [42, 56] [60, 84] β-1,6-N-acetylglucaminidase  

Man-α-1,3-Man [40, 43, 58, 59] α-1,3-mannosidase  

Man-α-1,6-Man [40, 43, 58, 59] α-1,6-mannosidase  

Man-β-1,4-GlcNAc [40, 43, 58, 59] β-1,4-mannosidase  

Table 1: Glycan bonds in human milk protein-linked glycans, enzymes that cleave these bonds, and whether those enzymes are secreted by bacteria within the human 
gastrointestinal tract. X in Connectivity type means the monosaccharide linkage was unspecified in literature.
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These findings show that this enzyme has a minimal overall effect on 
glycan structures in milk. Human milk PLG contain α-1,2-, 1,3-, 1,4-
, and 1,6-linked Fuc [39,40,56,57]. Therefore, more than one type of 
fucosidase is required to cleave all human milk PLG (see Table 1). The 
regioselectivity of human milk α-fucosidases remains undetermined.

N-acetyl-β-D-hexosaminidase

N-acetyl-β-D-hexosaminidase (EC 3.2.1.52), which releases 
β-linked N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine 
(GalNAc) from glycans, is present and active in the soluble fraction 
of human milk [51,52]; however, its regioselectivity remains 
undetermined. Activity levels of N-acetyl-β-D-hexosaminidase varied 
from 800–2,000 nmol/mL-h [51]. GlcNAc-β-1,3-Gal, GlcNAc-β-1,2-
Man, GlcNAc-β-1,4-GlcNAc, GlcNAc-β-1,4-Man, GlcNAc-β-1,6-Gal, 
and GlcNAc-β-1,6-GalNAc exist in human milk PLG [41,58-60] and 
could be substrates for this N-acetyl-β-D-hexosaminidase, depending 
on its regioselectivity.

Neuraminidase

Neuraminidases (also known as sialidases, EC 3.2.1.18) release 
sialic acids such as NeuAc from glycans [61]. Neuraminidase activity 
is present in human milk [51,53] (at ~10-8 units of neuraminidase per 
mL of milk [53]), but its regioselectivity and stereoisomeric specificity 
remain undetermined. Human milk PLG contain both NeuAc-α-2,3-
Gal and NeuAc-α-2,6-Gal [39,56]. Therefore, this neuraminidase could 
be important in human milk PLG degradation, depending on its stereo 
isomeric and regiochemical specificity.

α-Amylase

α-Amylase (EC 3.2.1.1), which cleaves terminal α-1,4 linked Glc 
from starch, is present in milk of term mothers as early as the first week 
postpartum [49]. Milk α-amylase activity in English and Gambian 
mothers between 0.5 and 27 months of lactation range from .08 to 
3.53 IU/mL [49]. However, there are no reports of α-1,4 linked Glc on 
human milk PLG. As such, this glycosidase is not likely to have major 
human milk PLG-degrading activity.

Anti-glycosidases

Though human milk contains antiproteases, anti-glycosidases are 
not known to be present in human milk. 

α-1,3/4-Fucosyltransferase

 α-1,3/4-fucosyltransferase attaches Fuc to glycans in an α-1,3/4 
bond type. α-1,3/4-Fucosyltransferase (EC 2.4.1.65) is present and 
active in human milk [62-64]. The effect of this enzyme on PLG in 
human milk is not known.

Bacterial Degradation of Glycans in Infants
The lower GIT is poor in mono- and disaccharides, as these sugars 

are efficiently absorbed in the proximal small intestine via active 
transport. Without available mono- or disaccharides, carbohydrate-
fermenting colonic bacteria must break down complex carbohydrates 
for nourishment [18,65-67].

Bacterial production of glycosidases

Gut bacteria must degrade complex carbohydrates to 
monosaccharides in order to use them as nourishment. Degradation 
of complex carbohydrates requires production of a variety of 
glycosidic linkage-specific glycosidases [20,21]. The ensemble of 
human gut microbes produces a wide array of glycosidases, including 

fucosidases [16], sialidases [16,17], N-acetyl galactosaminidases [18], 
and galactosidases [18] (see Table 1). Many of these glycosidases have 
linkage specificities matching PLG structures in human milk. Genomic 
studies show that carbohydrate-fermenting intestinal bacteria typically 
have a portion of their genomes for encoding proteins such as 
glycosidases involved in obtaining fuel from complex carbohydrates 
[20,21]. For example, in Bifidobacterium longum NCC2705, more 
than 8.5% of the total predicted proteins from the genome analysis are 
involved in oligo and polysaccharide degradation processes [20].

Species that can degrade all or part of PLG 
Some bacteria survive on complex carbohydrates, whereas 

others do not. For example, Bifidobacterium longum subsp. infantis, 
Bacteroides fragilis, and Bacteroides vulgatus grow well with HMO as 
the sole carbon source, whereas Enterococcus faecalis, Streptococcus 
thermophilus, Veillonella parvula, Eubacterium rectale, Clostridium 
difficile, and Escherichia coli grow little or not at all on HMO [22].

Independent vs. cooperative complex carbohydrate degrada-
tion 

Some bacterial species completely degrade a particular class of 
complex carbohydrates. For example, some Bacteroides, Ruminococcus, 
and Bifidobacterium species completely degrade mucin-linked glycans 
independently [25]. However, not all glycosidase-producing bacteria 
can produce the complete set of glycosidases necessary for degradation 
of a particular complex carbohydrate. Therefore, complex carbohydrate 
degradation sometimes requires the contributions of multiple bacterial 
species working together.

Bacterial degradation of complex sugars
Some Bacteroides, one of the most abundant among the genera 

in the human distal intestine, degrade a variety of polysaccharides, 
including xylan [68], psyllium hydrocolloid [69], and other plant 
polysaccharides [70]. Bifidobacterium longum subsp. infantis 
ATCC 15697, Bifidobacterium longum subsp. longum DJO10A, and 
Bifidobacterium breve ATCC 15700 all degrade and grow well with 
HMO as the only carbon source [28]. Bifidobacterium strains including 
Bifidobacteria adolescentis ATCC 15703, Bifidobacterium breve ATCC 
15700, Bifidobacterium longum subsp. infantis ATCC 15697, and 
Bifidobacterium longum subsp. longum DJO10A degrade and grow on 
purified galacto-oligosaccharides [71].

Bacterial degradation of protein-linked glycans 
Whether PLG of dietary origin are degraded is unknown; however, 

PLG, such as glycans attached to sloughed intestinal cell mucin, 
originating from the host are degraded. Host-derived glycans have the 
same monosaccharide components and many of the same glycosidic 
linkages as dietary glycans; therefore, digestion of dietary PLG by 
human gut microbes is likely. Human fecal cultures of anaerobic 
bacteria do degrade mucin PLG [24-26], and bacteria in human feces 
degrade both the carbohydrate and protein portions of porcine mucin 
[24]. Members of the Bacteroides genus in human feces degrade host-
derived PLG such as chondroitin sulfate [72,73], mucin-linked glycans 
[70], hyaluronate [74], and heparin [75]. Specifically, Bacteroides 
fragilis NCDO 2217 grows well on porcine mucin [76]. Bacteroides 
thetaiotamicron and Bacteroides ovatus degrade ovomucoid-linked 
glycans from bovine submaxillary mucin [70].

External vs. internal complex sugar degradation 
Bacteria can break down complex carbohydrates with either 

secreted glycosidases, external membrane glycosidases, or after 

l 
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import of intact or glycan fragments intracellular glycosidases [28,77]. 
Intracellular glycosidases only act on complex carbohydrates after 
these carbohydrates are imported into the interior of the bacterial cell. 
Growth on HMO induces expression in Bifidobacteria longum subsp. 
infantis of specific binding proteins that are predicted to help import 
HMO into the intracellular space [78].

α-1,3-N-acetylgalactosaminidase: α-1,3-N-acetylgalactosaminidase 
cleaves α-1,3-linked GalNAc from glycans and, therefore, converts blood 
group A to blood group H by removing blood group A’s GalNAc-α-1,3-Gal 
[18,79]. Bacterially-produced secretory α-1,3-N-acetylgalactosaminidase 
is present in term infant meconium [18]. Bacterial species, including 
Ruminococcus torques strains VIII-239 and IX-70 and Ruminococcus AB 
strain VI-268, secrete this enzyme [18]. This enzyme may not be important 
in human milk PLG degradation, however, as there is no evidence that 
α-1,3-linked GalNAc is present on human milk protein glycans.

β-1,3-N-acetylglucosaminidase: β-1,3-N-acetylglucosaminidase 
cleaves β-1,3-linked GlcNAc from glycans. Bacterially-produced 
secretory β-1,3-N-acetylglucosaminidase is present in term infant 
meconium [18], and Ruminococcus torques, Bifidobacterium bifidum 
and Bifidobacterium infantis all secrete this enzyme [18]. B. bifidum 
have membrane-bound external β-1,3-N-acetylglucosaminidases that 
were shown to cleave the terminal β-1,3-GlcNac from lacto-N-triose II 
leaving lactose [80]. Fecal bacteria growing on porcine mucin produced 
extracellular β-N-acetylglucosaminidase activity [26]; however, the 
regiospecificity of the enzyme is not known. Bacteroides fragilis NCDO 
2217 produces β-N-acetyl glucosaminidase, but secretes only trace 
amounts, with the rest being cell-bound. Whether the cell-bound 
activity is exterior or interior is not known, nor is the regiospecificity of 
the enzyme known [76]. GlcNAc-β-1,3-Gal is present in human milk 
PLG [41,56,60], so β-1,3-N-acetylglucosaminidase will be important in 
human milk PLG degradation.

α-1,3-Galactosidase: α-1,3-Galactosidase cleaves α-1,3-linked Gal 
from glycans and, therefore, can convert blood group B glycan epitopes 
to blood group H by removing the α-1,3-linked D-Gal from the Gal 
[18,79,81,82]. In term infant meconium, Ruminococcus AB strain 
VI-268 and Ruminococcus gnavus secrete α-1,3-galactosidase [18]. 
However, neither blood group B nor α-1,3 linked Gal is known to be 
in human milk PLG, so this enzyme may not be important for human 
milk PLG degradation.

β-1,3-Galactosidase: β-1,3-Galactosidase cleaves β-1,3-linked 
Gal from glycans. β-1,3-galactosidase is secreted by R. torques and B. 
bifidum in term infant meconium [18]. However, a later study of B. 
bifidum suggests β-1,3-Galactosidase is not present in secreted or on the 
external membrane [83]. β-1,3-linked Gal exists on human milk PLGs 
attached to Gal [43], GalNAc [42,56,60,84], and GlcNAc [56,57,60,85]. 
Therefore, this enzyme may have a large impact on human milk PLG 
degradation.

β-1,4-Galactosidase: β-1,4-Galactosidase cleaves β-1,4-linked Gal 
from glycans. Two R. torques strains in term infant meconium secrete 
β-1,4-galactosidase [18]. B. bifidum has external membrane β-1,4-
Galactosidase which can cleave the terminal β-1,4-Gal from lacto-N-
neotetraose, releasing lacto-N-triose II [80]. B. longum subsp. infantis 
ATCC 15697 has genes for β-galactosidases, but it is not known whether 
this enzyme is secreted or external, and its regiospecificity is unknown 
[86]. Fecal bacteria growing on porcine mucin produce secretory β-D-
galactosidase [26], but the regiospecificity is unknown. Bacteroides 
fragilis NCDO 2217 produces trace levels of secretory β-galactosidase 
and has cell-bound activity, but it is not known whether this activity 

is internal or external nor is its regiospecificity known [76]. Gal-β-
1,4-GlcNAc is present in human milk [40-43,56-60,84,85]; therefore, 
bacterially-produced β-1,4-galactosidase will likely impact human milk 
PLG degradation.

α-1,2-Fucosidase: α-1,2-Fucosidase cleaves α-1,2-linked Fuc from 
glycans (EC 3.2.1.63). In term infant meconium, Bifidobacterium 
bifidum, Bifidobacterium infantis, Ruminococcus torques strains VIII-
239 and IX-70, and Ruminococcus AB strain VI-268 secrete active 
α-1,2-fucosidase [18]. Lewis blood group B (Leb) has an α-1,2-linked 
Fuc attached to a Gal. α-1,2-fucosidase could, therefore, degrade Leb 

blood group glycans, converting them to Lea. α-1,2-fucosidase degrades 
degrade Blood group H [18] and should be able to degrade A and B 
blood group epitopes, as each has an α-1,2 Fuc linked to a Gal. Fuc-
α-1,2-Gal is present on human milk PLG [56,57,85], so bacterially-
produced α-1,2-fucosidase will likely impact human milk PLG 
degradation. 

α-1,4-Fucosidase: α-1,4-Fucosidase cleaves α-1,4-linked Fuc from 
glycans. Several strains of Bifidobacterium and Ruminococcus secrete 
α-1,4-fucosidase in term infant meconium [18]. B. bifidum has genes 
encoding α-1,3/4-L-fucosidase but whether this enzyme is secretory 
or external is unknown [83]. B. longum subsp. infantis ATCC15697 
also produces α-1,3/4-fucosidases [87]. Lea and Leb glycan epitopes 
have α-1,3/4-linked Fuc to GlcNAc [79] (see Figure 1). Therefore, 
α-1,4-fucosidase can degrade α-1,4 linked Lea and Leb blood groups 
[79]. Fuc-α-1,4-GlcNAc is found in human milk PLGs [56,57,60,85], 
so bacterially-produced α-1,4-fucosidase may impact milk PLG 
degradation.

Neuraminidase: Neuraminidases (EC 3.2.1.18) cleave terminal 
NeuAc from glycans. Ruminococcus torques IX-70 and VIII-239, 
Ruminococcus gnavus VI-268, Bifidobacterium bifidum VIII-210, and 
Bifidobacterium infantis VIII-240 isolated from adult feces secrete 
sialidase when grown on hog gastric mucin, but the anomeric and 
regiochemical specificity remain unknown [17,72,73]. B. bifidum JCM 
1254 has genes encoding sialidases; however, neither linkage specificity 
nor whether the enzyme is secreted or external is known [83]. Human 
milk PLG contain terminal NeuAc as both α-2,3-NeuAc [42] and α-2,6-
NeuAc [59], so this enzyme may impact human milk PLG degradation, 
depending on its bond specificity.	

α-2,3-Neuraminidase: α-2,3-Neuraminidase cleaves α-2,3-NeuAc 
from glycans. Two Bifidobacterium and three Ruminococcus strains 
in term infant meconium secrete active α-2,3-neuraminidase [18]. 
Bifidobacterium bifidum JCM1254 has a α-2,3-neuraminidase gene 
that has a C-terminal transmembrane region, which suggests this is 
an extracellular membrane-anchored protein [88]. B. longum subsp. 
infantis, commonly found in human breastfed infants, has genes for 
α-2,3-sialidases; however, this enzyme is not likely secreted nor on the 
external membrane because it lacks an export signal, transmembrane 
domain or cell wall anchor motif [89]. α-2,3-sialidase can likely degrade 
Sialyl Lex (SLex) and Sialyl Lea (SLea) blood groups’ α-2,3-linked sialic 
acids, converting them to Lex and Lea, respectively. NeuAc-α-2,3-Gal 
is found in human milk PLG [42,56,84], therefore this enzyme may be 
important in human milk PLG degradation.

α-2,6-Neuraminidase: α-2,6-Neuraminidase (also known as 
α-2-6-sialidase) cleaves α-2,6-linked NeuAc from glycans. B. longum 
subsp. infantis ATCC15697 has genes for α-2-6-sialidases [89], but this 
enzyme is likely intracellular as its gene sequence lacks an identifiable 
export signal, transmembrane domain, or cell wall anchor motif [89]. 
Whether any GIT bacterial species secretes or produces external 
membrane α-2,6-neuraminidase is unknown. α-2,6-NeuAc linked to 
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Gal is found in human milk PLG [39-41,59]; therefore, α-2,6-sialidase 
is requisite for complete human milk PLG degradation.

Endo-α-N-acetylgalactosaminidase: Endo-α-N-acetylgalactosaminidase 
(also called endo-α-GalNAcase and glycopeptide α-N-acetylgalactosaminidase; 
EC 3.2.1.97) cleaves O-linked Gal-β-1,3-GalNAc (O-linked glycan core 1) 
between Ser/Thr the α-GalNAc [90]. Bacteria, including Alcaligenes sp., 
Bacillus sp. [91], Clostridium perfringens [92], Streptococcus pneumoniae [93-
97], and various bifidobacterial strains such as B. longum, B. bifidum, and B. 
breve [90] secrete endo-α-N-acetylgalactosaminidase. Core 1 type O-linked 
glycans have not yet been found in human milk, so it is not known whether 
this enzyme will impact human milk PLG degradation.

Endo-β-N-acetylglucosaminidase: Endo-β-N-acetylglucosaminidase 
(Endo-β-GlcNAcase) cleaves di-N-acetylchitobiose linkages in 
oligosaccharides and glycoproteins [98]. Bacteria in infant meconium 
secrete active endo-β-N-acetylglucosaminidase [18]. Bifidobacteria longum 
NCC2705 has genes for endo-β-N-acetylglucosaminidase, but whether it is 
secreted or external is unknown [83].

Lacto-N-biosidase: Lacto-N-biosidase cleaves lacto-N-tetraose 
(LNT, Gal-β-1,3-GlcNac- β-1,3-Gal- β-1,4-Glc, a major HMO) at 
the GlcNAc- β-1,3-Gal bond to release the disaccharide Gal-β-1,3-
GlcNAc (lacto-N-biose; LNB) and lactose [83]. This enzyme cleaves 
neither fucosylated LNT (lacto-N-fucopentaose I and II) nor lacto-
N-neotetraose (including type II chain) [83]. Some Bifidobacterium 
species possess genes for a lacto-N-biosidase with a membrane anchor 
sequence, suggesting that it is externally active [83,99]. Gal-β-1,3-
GlcNAc is present in human milk PLG [56,60,85,90]; however, there is 
a lack of data showing lacto-N-tetraose-like structures in human milk 
PLG; therefore, this enzyme probably has little importance for PLG 
breakdown.

Enzymes essential for PLG breakdown that GIT bacteria lack

Enzymes needed for complete PLG degradation, but not yet known 
to be produced by human gastrointestinal tract bacterial species in 
external or secreted forms, include α-2,6-neuraminidase, α-1,6-
fucosidase, β-1,2-N-acetylglucaminidase, β-1,4-N-acetylglucaminidase, 
β-1,6-N-acetylglucaminidase, α-1,3-mannosidase, α-1,6-mannosidase, 
and β-1,4-mannosidase (Table 1). The secreted glycosidases of human 
intestinal micro flora are incompletely studied, however, so whether 
some or all of these enzymes are secreted is unknown.

Bifidobacterium longum subsp. infantis

Bifidobacterium longum subsp. infantis produces α-2,6 and α-2,3 
sialidases [89], α-1,2 and α-1,3/4 fucosidases [28,87], and β-galactosidase 
[19]. This bacterium survives well on HMO and consumes small mass 
oligosaccharides [28]. The B. longum subsp. infantis ATCC 15697 
genome has five gene clusters with capacity for binding, cleaving, and 
importing human milk oligosaccharides [19]. Studies suggest, but have 
not proven, that B. infantis can import oligosaccharides inside the 
bacterial cell.

Development of microbial composition in the neonate

Neonatal gastrointestinal systems are thought to be sterile at 
birth and colonized during or shortly after birth by maternal and 
environmental microbes. For infants delivered vaginally, the heavily 
colonized vaginal canal (typically dominated by Lactobacillus and 
contains Prevotella at the time of delivery) provides the source of 
inoculation of the newborn’s gastrointestinal tract and skin surfaces 
[100,101]. Subsequent to birth, full-term vaginally-delivered 
neonates are colonized by facultative anaerobes (e.g. Escherichia and 

Streptococcus spp). Shortly after birth, bifidobacteria are often observed 
in prominence in the breast-fed infant gut [102]. Data suggest that 
bifidobacteria are enriched by the uncommon ability to utilize the 
relatively abundant HMO in mother’s milk [19]. These HMO are 
thought to be partially responsible for the difference between the infant 
and adult microbial community structure [103]. With the initiation of 
weaning, the diversity of the obligate anaerobes (e.g. Bacteroides and 
Clostridium species) increase [104,105]. Introduction of solid foods to 
the diet and termination of breastfeeding induces major remodeling 
of the infant microbial community [102]. Only after weaning does 
the infant develop the differentiated microbial communities present 
in adults [106]. By the first year of life, the infant gut microbiota 
establishes an adult-like composition (i.e. domination by Firmicutes 
and Bacteroides), although phylotypic representation appears to vary 
across individual infants [107].

Whereas the full-term neonate is rapidly colonized by a diverse 
array of microorganisms, preterm infants exhibit a dissimilar 
profile, including delayed colonization, less diverse phylogenetic 
representation, and greater susceptibility to challenges by pathogenic 
bacteria [108].

The gut microbiota is intimately involved in biological processes 
that benefit the host over its lifespan. This is particularly evident 
with the persistent impact on host health throughout infancy. For 
example, gut microbiota erect a barrier to shield their infant hosts from 
pathogens, and they activate immunological components that promote 
the development and regulation of the nascent immune system [109].

Extent of Bacterial Degradation of Complex Carbohy-
drates

Though little HMO digestion occurs in the upper intestine, 
extensive hydrolysis likely occurs in the lower intestine/colon, as only 
about 8% of ingested HMO are found in the infant feces [110]. HMO 
are abundant in human milk, this lack of intact HMO in stool samples 
suggests that bacterial digestion of HMO is high. The extent of bacterial 
digestion of milk PLG breakdown remains unknown.

Bioactive Potential of Intact Glycans in Human Milk
Incomplete digestion of human milk PLG in the small intestine 

may have beneficial consequences as they may act in the infant gut 
as prebiotics for specific bacteria, decoys for specific pathogens or by 
other unknown biological mechanisms.

Specific prebiotic

Human milk PLG may be prebiotic by enhancing the growth of 
particular complex carbohydrate-metabolizing bacteria. Specific 
glycan structures may shape the proportions and types of microbes in 
the infant gut. Shaping the microbiome can have biological advantage; 
for example, the presence of Bifidobacteria spp. in the gut is associated 
with reduced incidence of diarrheal illnesses, improved lactose 
digestion, and enhanced immunomodulatory functions [111]. Some 
strains of gut bacteria produce vitamins K and B12, and short-chain 
fatty acids [112]. Growth of commensal bacteria can also competitively 
inhibit colonization by pathogenic bacteria [113].

Structural decoy

Human milk PLG may serve a role in host protection against 
pathogens via immune exclusion [6-8,114-116]. Often, the binding of 
pathogens to enterocytes is facilitated when receptor proteins on the 



Citation: Dallas DC, Sela D, Underwood MA, German JB, Lebrilla C (2012) Protein-Linked Glycan Degradation in Infants Fed Human Milk. J Glycomics 
Lipidomics S1:002. doi:10.4172/2153-0637.S1-002

Page 7 of 10

 J Glycomics Lipidomics 					               Glycobiology 			               ISSN:2153-0637 JGL an open access journal 

pathogen interact with specific glycan motifs on the external membrane 
of the enterocyte. Once bound, pathogens can invade enterocytes, a 
process required for bacteria to produce an infection [86,117]. HMO 
bind pathogens and prevent their adherence to and invasion of cells 
lining the gastrointestinal, urogenital, and respiratory tracts [115,118-
121]. Human milk α-1,2-fucosyloligosaccharides inhibit Escherichia 
coli in vitro, and the secretory diarrhea induced by its toxins both in 
vivo and in vitro [122]. Provision of α-1,2 fucosylated HMO to infants 
reduced occurrences of Campylobacter-induced diarrhea [123,124]. 
Sialylated milk glycoproteins neutralize infectious particles such 
as rotavirus [125]. By preventing binding to the enterocytes, decoy 
glycan-pathogen interaction facilitates expulsion of microbes into the 
feces [126].

Other bioactivities

Human milk glycoproteins have biological functions in the 
neonate related to brain development [9], nutrient uptake [10], and 
immune responsiveness [11-13]. The part of this bioactivity due to the 
glycan component of these glycoproteins is unknown. PLG can bind to 
glycan binding proteins and mediate cell-cell interactions, extracellular 
molecule recognition, and cellular recognition [127]. For example, 
selectins, a type of adhesion molecule, bind glycans and mediate 
interactions between blood cells and vascular cells [127]. Glycosylation 
of a protein can also act as a switch to turn a protein’s activity on 
or off, and as a modulator of protein activity [127]. For example, 
deglycosylated beta-human chorionic gonadotropin hormone binds to 
its receptor with affinity similar to that of the glycosylated form, but it 
fails to stimulate adenylate cyclase activity [127].

Conclusion
Human milk proteins are widely glycosylated [1-3]. Increasing 

resistance to proteolytic degradation may be an important role of 
glycosylation as it could allow bioactive proteins and peptides to 
remain intact for later exertion of bioactive effect. PLG may exert 
biological functions through interaction with receptors such as lectins, 
by nourishing specific bacterial species or by competitively inhibiting 
pathogen binding to epithelial glycans.

Both adults and infants can produce an array of enzymes to 
degrade disaccharides and starches, but neither produces glycosidases 
in digestive secretions nor in the external brush border membrane 
capable of breaking down the specific bonds in PLG. Indeed, in 
vitro and in vivo studies suggest that little to no degradation of 
complex carbohydrates, including PLG, occurs in the stomach or 
small intestine. The lack of complex carbohydrate-specific enzymes 
produced in the human digestive system and the abundance of these 
enzymes produced by colonic bacteria suggest that most degradation 
of complex carbohydrates in the digestive system results from bacterial 
fermentation. Differences in bacterial populations between term and 
preterm infants may alter degradation of human milk PLG and change 
bioactivity of the glycopeptide or glycoprotein.

The particular make-up of the intestinal microbiome has major 
health effects. Particular intestinal microbial compositions are linked 
to necrotizing enterocolitis [128], a common devastating disease of 
premature infants. Attempts to alter the composition of the intestinal 
microbiota with probiotic supplements and/or human milk feeding are 
promising in these very high risk infants [129,130].
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