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Abstract

Theproper theor etical description of thedistribution of thenodedegr eefor yeast protein-protein inter action networ k wasinvestigated
todeal with theobserved discr epancy between usually proposed modelsand theexising data. Thepower law or thegener alized power law
with exponential cut-off wer eshown to beinaccur atewithin awiderangeof degr eevalues. Proposed linear -combination-of-exponential -
decays-method exactly char acterizingthedistribution by the spectr um of decay constantsrevealed two separ ate parameter domains. A
consequent hypothesisthat the node degr eedistribution could follow theuniver sal doubleexponential law wassuccessfully verified by
selected model comparison usingtheAl C criterion. BIND and DIPdatafor H. pylori, E. coli, S. cerevisiae, D. melanogaster, C. elegans
and A. thalianawereused for thispurpose. A linear changein themagnitudeof thedistribution componentswith proteomesizewas
observed, manifesting theevolutional stability of theprocessof developing the protein interaction network. Proposed kinetic mode of
protein evolution, considering thetwo hypothetical protein classes, first, with arelatively rapid emer gingrateand ashort char acteristic
residencetime, and the second one, with the opposite properties, analytically described thenatur e of bi-exponential pattern. Themodel
presentsasituation in which evolutionary conserved proteinsincreasetheir inter actionsdueto specific kinetic conditions. Thus, we
opposetheopinion that themajority of such interactionsar ebiologically significant, and, ther eforetheolder partsof interactomeare
morecomplex. Webelievethat our interactomeresultssupport the hypothesisof Suart Kaufman, presented in hisbook " TheOrigin of

Order", that random mutationsand natur al selection congtitutetheorigin of order and complexity.

K eywor ds: Protein interaction network; Exponential mode!; Scale free network; Power |aw

I ntroduction

The degree of a node (or connectivity) is the number of edges
that areadjacent toit. From thetheoretical point of view, itisone
of the basic measures characterizing the importance of the node
in the network. Although the power law (PL) and the generalized
power law supplemented with an exponentia cut-off (GPL-EC)
werewidely popularized (Wagner, 2001; Jeong et ., 2001) asthe
rules describing the distribution of the node degrees in protein-
protein interaction network, attempts at amore exact mathemati-
cal description are till being undertaken (Thomas et d., 2003;

Berg et al., 2004). The reasons are both of practical and method-

ological nature. The first reason pertainsto the still evolving da-
tabases, and the second one concerns the facts that the usually
simple shape of arrangement of experimental points may befitted
in various manners giving at different theoretical assumptions
quitesimilar results. According to the DIPdata (see Materialsand
M ethods) we could observe that the degree distribution of nodes
of S. cerevisiae proteininteraction network follows approximately
aPL oraGPL-EC, but only for thedegreevaues k smaller than 10.

For higher valuesof k we saw aserious discrepancy between the
theory and the experiment, already reported by othersasan expo-
nential decay (Wilhemet al., 2003).

Thereareadditiond indications(Barabas and Oltvai, 2004; Pereira-
Leal et al., 2005) that the biological network characteristics may
contain an exponential component. The main aim of the present
paper isto resolve whether by using amore complex exponential-

type model one can better describe the distribution of node de-
gree in the protein interaction network. Developing the above
ideawe proposed to consider anode distribution asalinear com-
bination of exponential decays A exp(—A;K) , withamplitudes A

and decay constantsﬂl- being positive values. Our method applied
to S. cerevisiae DIP datareveal ed two separatedomainsof A; , with
two characteristic values of the parameters related to the relatively
"fadt", then "dow", tendency of adistribution to decay aong k-axis.
This led to the natural concept that a double exponentia curve
a,exp(-d,k) + a, exp(-d,k) could be a better model of
the node degree distribution than the standard or modified power
law. This supposition was confirmed by using BIND or DIP data
for 6 different organismsand theAlC criterion (see Materialsand
Methods). The obtained results led to analysis of the depen-
dence of both exponential contributions to the total protein pool

on proteomesize, clearly indicating alinear trend. In consequence,
this analysis helps us to better characterise the evolutionary
mechanism leading to the observed double exponential distribu-
tion and points out its universal elements.

To explain the bi-exponential character of node degree distribu-
tion, the kinetic model of protein network evolution was proposed.
It relates the searched distribution formulato the parameters de-
scribing the rate of some creation and disruption processes, pos-
tulated as being important in formation of the net. According to
our model, two basic types of proteins, marked "1" and "2", with
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adifferent dynamicsof evolutiona behaviour were assumed. They
were shown to be good candidates, from a statistical point of
view, for the low-connected nodes and hubs, respectively.

The discussed results suggest that the process of evolution leads
toa"biologica" order intheinteractome. Therefore, they support
the hypothesis of Kaufman (1993) that the process of random
mutation and selection alwaysleadsto complexity.

Materialsand M ethods

Proteininteractionnetwork datafor H. pylori Neso =724nodes N =

1403 edges) and S. cerevisiae (ana ogous values 4135 and 7839)
were taken from Coevolution and Self-organisation in Dynamical
Networksdatasets (COSIN, http://www.cosin.org) derived from
the Database of Interacting Proteins (DIP, http://dip.doe-mbi.u
claedu)). Datafor E. coli (399 and 312), D. melanogaster (7910 and
23128), C. elegans (3227 and 5026) and A. thaliana (487 and 959)
weretaken from Biomolecular Interaction Network Database (BIND,
http://www.bind.ca/Action). Only single protein-protein interac-
tion records (without self-interaction) were analyzed. No non-
interacting proteins were reported.

According to our method of linear combination of exponential
decays (LCED), a S. cerevisiae node degree distribution (histo-
gram) was tentatively described by the sum:

n, :i_Zm:aXAi exp( - A,k) @

=0

where ;‘r wasanumber of K_ degreenodesand i_ max wasthe
maximal value of asum index .Equation 1 was fitted to the
experimental data, ati_max =50 and gridded spectrum of decay
constants .2,={0, 0.025, 0.050, 0.075... 1.250} . Thefit had been
repeated 20 timesto find the sets of ampl itudesAj , and then the
respective averages <A > were analysed. As afitti ng agorithm
the NonlinearRegress procedure (NRP) from Mathematica 4.1
(http://www.wolfram.com) was applied, with substitution A;
=(AV})*to guarantee only the positive value of amplitude. Ran-
dom startl ng conditions, A g , were being selected withintherange
0.5<A > L5.

Inthefina modelling with adouble exponential law (DEL),
n, = a,exp(=d,k) +a, exp(—=d,k) @
Inthealternative modelling withaPL,
= Ak~ ©)
and withaGPL-EC,

— -7

n, =Ak+k,) " exp(=k/k,) @
Thefitswereperformedintherange 1< k <15, using NRPonce
(without squared substitution of amplitude), and at default start-
ing conditions (1.0).

To rate the quality of the proposed models, corrected Akaike's
Information Criterion (AlCc) was adopted, defined as:

2m(m+1)

z—m—1
where 2 istheaverage squared residual for agivenmodel, - the
number of model m parameters, and z .- the number of observa-
tions (Burnham and Anderson, 2004). Inthecaseof PL, m= 2. For
GPL-EC and DEL, m =4. Thenumber of analysed pointswasz= 15
in each competing model. Modelswith asmaller AICcvauewere

AICc = zIn(o?) +2m +

being favoured.

In the theoretical considerations, the total proteome size (N of
the analysed species was assumed to be equal to the number of
openreading frames, i.e., 1788 for H. pylori, 4285for E. coli, 6307
for S. cerevisiag, 14218for D. mel anogaster and 18944 for C. elegans
(Liuand Rost, 2001) or 28952 for family membersof A. thaliana
(Horanet ., 2005). Dueto division by the scaling factor , where:

ny+ Ny
SC=——" ©)
N P

describestheratio of the extrapolated size of the analysed probe
to the size of the total proteome, the DEL model amplitudes for
accessed data, al and a2, were transformed into hypothetical val-
uesa* 1= a1/SC and a* 5= ay/SC , for the total species proteome
(seeA ppen%hx 1.Ineq. 6 the unknown value n, wasreplaced by

+a,. Then, the expected amount of prote| ns in considered
contributions 1 and 2 to the total proteome was estimated by the
sum of infinite geometrical series

N; =) a; exp(—d k) i=1,2 @
k=0 *
s a
leading to: N, = l—eX};(—d ) ®
1
* a*
= - o
1—exp(=d,)

In the estimation of the parameters of the model of protein net-
work evolution (Appendix 2) egs. A.2.8-11 were applied.

Results

It was observed that the distribution histogram of node degree of
S. cerevisiae protein-protein interaction network exhibitsawell-
ordered patternintherange1 < k < 25(Fig. 1).

Above that range statistical fluctuations prevailed and quantiza-
tion perturbed the continuity of analysed characteristics of the
network. Attemptsto describe the investigated distribution by a

PL: A=(1.65% 0.02)-10°, 7 =(1.27£0.02) (upper

line), or by a GPL-EC:
A=(24%0.7).10° k,=(0.310.7),
10000
1000
100
10
1 H
01 T T v T
1 10 100 k

Figure 1. Thedistribution histogram (nk) of node degree (k) of S.
cerevisiae protein-protein interaction network. Presented fitsare:
the upper line- apower law (PL): 11, =1.65.10* k127, thebottom
line- ageneralized power law supplemented Wlth an exponentlal

cut-off (GPL-EC):71,=2.4 -10° (k+0.3)""* exp(—k /3.0).
Zero values are not shown.
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Figure 2. Linear combination of exponential decays method
(LCED) applied to the datafor S. cerevisiae (Fig.1). Two re-
gions of decay constants (A) spectrum with dominant ampli-
tudesAi at 7=0.175and 25 = 0.625 are clearly seen. Shown
values are averages of adequate amplitudes of 20 multi-expo-
nential fits mean standard error (s.e.) is also presented.

7:%(),5 + 0.3), ke=(3.010.4) (bottomline) gavegood
results only in the range 1< k <10. The PL parameters ob-
tained, ¥ =1.27and A/Np = 0.40, are consistent with
y =1.32and A/N,= 0.42 for the whole yesst interaction
network (Yu et al., 2004). A different pictureisseen in case of the
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Figure 3. An example of one of 20 fits to the experimental data
(Fig. 1) performed to obtain the decay constants spectrum (Fig.2)
The ny is the number of k-degree nodes. For clarity, the open
circles denote group averages. Zero values are not shown.

GPL-EC model. One can notice a big discrepancy between our
result and thosefor asmall sample of 1870 nodes (Pastor-Satorras
et al., 2003), which may indicate the narrow areaof applicability of
the cut-off formula

The proposed LCED method (Fig. 2) reveal ed two narrow ranges
of decay constants spectrum with dominant amplitudes at 17 =
0.175 and /125 = 0.625 (characteristic values of node degree:
1/4, =571/ A, = 1.6). Half-width of the observed peaks
equals 0.025 and 0.050, respectively. An example of onein 20 fits
performed to obtain the above spectrum is also presented (Fig.3).
Asitisseen here, andinthe caseof other fits (datanot shown), their
qualities, especidly intherangeof values k> 10, arebetter

than the estimation with standard or modified power law.

As aresult of the above, it was hypothesized that our combina-
tion, even reduced to adouble exponential formula, could provide
abetter description of the node degree distribution than the con-
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Figure4. The distribution histogram (nk) of node degree (k) for
different species. Continuous line isthe fit of a double exponen-

tid law (DEL ). Parametersof theDEL moddsarepresentedin Table 1.

A. Helicobacter pylori.

B. Escherichiacali.

C. Saccharomycescerevisiae.
D. Drosophilamelanogaster.
E. Caenorhabditis el egans.

F. Arabidopsisthaliana.

sidered power law type models. The examples of yeast and five
other species were analysed for  k<15. Corresponding fits of
proposed DEL modelsare presented in Fig. 4a-f and Table 1. Their
qualitiesare confirmed by Al Cc va ues, which favour bi-exponen-
tia approximation in 5/6 of theinvestigated cases (Table 2). Plots
of dternative fits are not shown.

Some parametersof DEL modelsvary with proteomesize. Thesize
N and N, of dlstlngwshed protein groupsincreaseswith the
total number of proteins N, (Fig. 5). There was no detected
essential dependence of decay constant «; and ., on the
proteomesize.
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Figure5.A-B

The variation in the estimated number of prote| ns ;" and Vg '
of agiven protein class with proteome size N, . The following
datapointsrepresent: (fromleft) H. pylori, E. coI| S cerevisiae, D.
melanogaster, C. elegansand A. thaliana. A. Protein class F. B.
Protein class S. Continuousline - linear trend.

a; a d, d>
H. pylori 507.409 | 44.529 | 0.743 | 0.157
E. coli 1166.020 | 219.041 | 1.898 | 0.762

S. cerevisiae 2592.380 | 197.464 | 0.616 | 0.170

D. melanogaster | 5783.780 | 837.777 | 1.005 | 0.187

C. elegans 7307.120 | 389.915 | 1.564 | 0.278

A. thaliana 486.548 | 68.659 | 1.234 | 0.220

Table 1. Parameters of thefitted DEL models.

DEL PL GPL-EC
H. pylori 564 [11] 732 [31| 583 [2]
E. coli 60 [11| 430 31| 64 [2]

S. cerevisiae 94.6 [1]] 1358 [3]]112.4 [2]

D. melanogaster | 97.4 [1] | 122.1 [3] | 1094 [2]

C. elegans 52,5 [1]] 66.5 [2] 90.9 [3]

A. thaliana 389 [21| 372 [1] | 1305 [3]

Table 2. AlCc ranking of the modelsL.

Discussion

Theresults presented above confirm recent reports (Goldberg et
a., 2005) suggesting the "break" of a power law in the global
description of the protein interaction network. Actually, we can
suggest that this "break" may be caused by the second exponen-
tial termin node degree distribution, which does not affect strongly
the formulain the range of the node degree smaller than 10, but
may be essential elsewhere.

Initial inspection of the datashownin Fig. 1 revea sthat GPL-EC,
the4-parameter improvement of PL (bottom line), fits better than
PL aone (upper line), but is till avery long way from perfect.
Hence we decided to introduce amore general description.

In accordance with our idea, protein interaction network consists
of subpopulations of vertexes described by a similar statistical
formula, but with different parameters. Asauniversal formulawe
choose exponentia decay, which is consistent with the suggested
model of network evolution (seeAppendix 2).
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The proposed L CED method reveal ed the spectrum of decay con-
stants and the magnitude of subpopulational contributions into
the degree global distribution (Fig. 2). Two classes of nodeswith
the values of decay constant lying closely together were clearly
distinguished. Good quality of fits (Fig.3) testifiesto the utility of
the method and the acceptance of the formula.

Reducing the huge number of parameters of ageneral model and
taking into account the above observation, we propose to limit
the number of decay componentsto only two items, indexed by 1
and 2. It did not weaken thefitting abilitiesfor different speciesin
therangel< k < 15 (Fig. 4af, Table 1), which was confirmed by
theAlCc criterion. Asseenin Table 2, the DEL modelsarethe best
in 5/6 of investigated casesand just alittleworse (2nd place) than
thewinner in one case. Generally, they are more effectivefor net-
works with big proteomes (the PL model for asmall probe of A.
thaliana may be an exception) than for sets with a small protein
number; PL or GPL-EC modelsmay givesimilar results.

Documented changes in the dimensions of the indexed protein
classeswith proteomesize (Fig. 5) indicate asimilar tendency for
linear increase for the first (@) and the second (b) component of
proteome. This way the ratioN, / N, = 2.5 seemsto be a
universal constant for awide group of organisms.

The contribution of each class of proteins to the summary
distribution was shown in the example of ayeast probe (Fig. 6).

Nka, nkz\

W

Figure 6. The contribution of "F" and "S" protein cl
overall distribution. The insets n,,=aexp(- d
n.,=a,exp( - d,Kwere plotted (continuous lines 1 and 2)
for the parameters of S. cerevisiae (Tablel). Thebrokenlinerep-
resents fitted summary distribution n,= nk1+ n,,

assto the
k) and

As seen for small valuesof K, the two classes contribute to the
global distribution. For k > 10, the first class vanishes and the
second classclearly dominates. Thelatter classmay berelated to
so called hubs. It is worth stressing that the second class of
proteins may bear only afew links, too.

It seemsthat the proposed double-exponential model isasimpli-
fication of a hypothetical multi-componential model describing
the full spectrum of contributions from different classes of pro-
teins. The analysed data indicate that there probably exists the
third, small amplitude classof yeast proteins(not visiblein Fig. 2),
which may be related to the "super” hubs connecting hundreds
of nodes; however, a"fase positive" error cannot be excluded.

Although the two protein classes clearly dominate, the analysed
subpopulations do not form spikes along the decay constant axes,
but have some definite width. We believe that more sophisticated
analysis of discussed contributions, considering their continuous
representation, should fully describe protein network statisticsand
reveal new properties of the proteome system.

As mentioned beforehand, to specify our hypothesis, we pro-

posed asimple mathematical model of protein network evolution
(Appendix 2). The applied assumptions permit duplication events
to occur even more often than the appearance of "new" types of
protein encoding genes. Such behaviour is suggested by the
observation that gene-copy number within a family is often
changed during the process of speciation (Cheng et al., 2005; Ma
and Gustafson, 2005; Ting et a., 2004). However, to avoid an
enormous expansion of the system, we assumed that the specia-
tion processes are no more frequent than del etion episodes effec-
tively leading to the elimination of proteins. On the other hand,
one can detect evolutionary conservation of genes present even
indifferent kingdoms. Therefore, the probability of multiplication
of old "proteins’ issimilar to the probability of multiplication of
"young" proteins in a given genome. The facts mentioned above
were"silently" included inthe moddl. It relates amplitudes and de-

cay constantsto theemergencerates, a, and q,, effectivedimina-
tionrates, j, and ), , andinteraction gaining rates, V, and V, of the

two classes of proteins, with different dynamics of evolutional
performance. Thisdifferencein dynamicsof the evolution of pro-
teins manifests in the observed difference between "fast" and
"slow" tendency in the variation of the node degree distribution
adong k -axis. Ingenera the above parametersmay differ for differ-
ent evolutional pathways.

According our model, thelinear trend in Fig. 5 may berelated to
the stable dynamics of evolution of investigated classes of pro-
teins during the inter space progress. Indeed, with equations
A.2.12-14 it is easy to show that the observed dependence calls
for stability of theratio. ¢,% ,/4, 7, This linear trend also sugg-
eststhat for the total proteomes the corresponding amplitudes of
calculated probability (frequency) of the occurrence of a node
with a given degree may remain approximately constant. In a
sense, we showed not a scale-free distribution but a scale-free
evolution.

As the analysed decay constantsd1 and d, do not exhibit a clear
tendency to change, we may simply imagine that during evolu-
tion y,,y, ,v,andV, remain approximately constant (see egs.
A.2.10-11). According to thispicture, CI1 and (|, slowly evolvein

astablemanner (q, /g, = const ), governed, for example, by the

varying amount of DNA, which accounts for the change in the
global protein pool (seeeq. A.2.12).

To make our considerations more quantitative we estimated val-
ues Q,,d,, 1A and Y,, assuming that
v, =v, =0.1 [Umin years] (Bergetal., 2004). Itisseen (Table3)
that first class of proteins may be characterized by arelatively
rapid emerging rate q, and also relatively rapid elimination y, rate

(or short characteristic residence time) when to compare with the
second class of proteins.

The proposed mathematical model of evolution suggests unex-
pected explanation of the observation of Barabasi and co-work-
ers that more densely interconnected parts, "motives' of thein-
teraction network, are more strictly evolutionary conserved
(Wuchty et al., 2003). Intuitively, one can suppose that proteins
belonging to such motives are evolutionary conserved because
they are required for maintaining the connections in such mo-
tives. But the results of our simulations suggest an exactly oppo-
site explanation: the old proteins (evolutionary conserved pro-
teins) are more interconnected because they are ssmply old enough.
This explanation although surprising for us, does in fact have
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sense. Since the majority of the proteins are not interacting (for
example, protein-protein interaction network of yeast contains
only approximately 30000 protein-protein interactions (according
to the estimation of Kumar and Snyder, 2000) and more than
36000000 protein-protein pairs), and the protein interaction net-
work is evolutionary conserved (see, for example, Matthews et
al., 2001), itislikely that the mgjority of interactions have biologi-
cal significance and that interactions appear gradually during the
process of evolution. Itisaso likely that new "proteins' have no
interactions or have a small number of interactions. During the
process of evolution these proteins slowly gain new "useful”
interactions. If they belong to the class 2, they may even gain
many such interactions. This process leads to a well-ordered
protein-protein interaction network in which proteinsare not ran-
domly connected and in which one can distinguish "modules” of
interacting proteins.

As we have dready referred to in the Introduction, our results
support the hypothesis of Stuart Kaufman that natural selection,
random mutations and the process of evolution are the source of
order in biological systems. This paper shows arandom process
of evolution leading to complex and non-random systems. Al-
though it remains an open question whether the random process
is rapid enough to lead to creation of structures as complex as
multi-enzymatic complexes or flagelles, we believe that a right
step in the proper direction has been taken.
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Appendix 1

It was assumed that each data set analysed is only a homogenous
part of thetotal proteome of agiven species. Then thefitted DEL
model formulaand the hypothetical distribution of thetotal popu-
lation of proteinsof agiven organism (seeAppendix 2) arerelated
in the proportion:

n % a exp(-0,k) +a, exp(=d k) _ Np (A.11)

*

n,  a exp(—dk)+a exp(-d,k) N,

wherea’ and g’ arethe amplitudesof a hypothetical distribution
for thetotal population, N, isthe extrapol ated size of the analysed
probe and N isthe total size of proteome.
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In the aboveratio, N_ value includes interacting proteins ( N,.,)
and also non-interacti ng ones (n, ) - not included in the investi-
gated data sets, so that:

Ny =n, + Ny, (A.12)

Aseq. A.1.1isfulfilled for each node degree and for different
decay constants d, andd, , it should be:

a; =a /sc (A3
a; =a, | c (A.14)

where the scaling factor equalsto:

nO + Nk>0
SC=—77— A.L
NG (A.15)
Appendix 2

L et usconsider proteininteraction network containing two classes
of proteins (namely 1 and 2) characterized by different dynamics
of evolutional performance, i.e., emergingwith theratesg,and g, (as
non-interacting at the beginning), then gaining someinteractions
withtherates), andv,, and being eliminated withtherates J, and

- per protein. All' mentioned rates are assumed as being dis-
tinct and constant.

A number of selected proteins of agiven class &N/ (i=1,2), origi-
nated within small period of time , vanisheswith age aaccording
the equation

doN” . .
R i=1 2 (A.21)

with aninitial condition

N/ |azo = Gt i=12 (A22)

The resolution of egs. A.2.1 and A.2.2 represents the exponen-
tialy diminishing course

N =qdexp(-ya) i=12 (A23

The assumed continuous approximation and linear increase in
protein connectivity

k=va (A.24)

and also therelationship , let usto transform eg. A.2.3 into the
formula

d\|: :%dkexp(—gk) i=1 2 (A.2.5)

which integrated within successive intervals [k, k+1] indicates
the number of k-degree proteins of class"i" , , equal to

n, :i(l—exp(—ﬁ)]ap(—ﬁm
4 V, V.

i=1 226

Now, the total distribution of node degree, N

wheren, =N, +1, ,may bewritteninthe double-exponential
form:

n, =a, exp(—d,k) +a, exp(—d,k) (A27)

The symbols introduced above mean

2 =i(1—exp(—ﬁ)]
%

A A (A.2.8)
a, :&(1—exp(—ﬁ)J (A.29)
2 V2
A.210
d = n (A-210)
I/1
(A.2.11)
g -t
, =
l/2

A contribution of "i " class proteinsin egs. A.2.7 formally van-

ishes for k >r v, -1, where is the time of evolution of
interactome. Thustheindex k should not exceed max{r v, -1, 1,v, -1]

Assuming arelatively highvalue 7, (>>1/v; ), by summation
of a superposition of geometrical seriesn described by the eqg.
A.2.7 over o<k < , ONe can obtain the total size of proteome
'N

P

- %, 9
N, =—+—"*=
P A Y, (A212)
with adistinguished levels of class contribution
N = % (A.2.13)
and yl
N, =2
2 = (A.2.14)
Va
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