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Abstract

Phosphopeptide/protein identification using tandem mass spectrometry (MS/MS) is a challenging issue in

proteomics research. In particular, phosphopeptides typically exhibit low intensity peaks of b and y ions in spec-

tra when serine or threonine is phosphorylated. Consequently, the existing algorithms for peptide and protein

identification generate a high false discovery rate when coping with phosphopeptide spectra. In order to in-

crease the number of correct phosphopeptide identifications using database search, a new data mining approach

for spectra preprocessing is proposed. A support vector machine classifier is used to calculate the probability of

each peak representing a b or y ion. Next, low-probability peaks are removed from spectra, while remaining

peaks have their intensities enhanced. As a result, a huge increase in signal-to-noise ratio is provided and the

chances of detecting important peaks are significantly advanced. Experiments using MASCOT and SEQUEST

along with Peptide/ProteinProphet and a decoy database approach showed a significant improvement in the

sensitivity of phosphopeptide identification without compromising specificity, demonstrating that our new strat-

egy for MS/MS spectra preprocessing is a powerful proteomics tool for enhancing phosphopeptide identifica-

tions.

Key words: Data mining; Tandem mass spectrometry; Spectra preprocessing; Phosphoproteomics; Peptide/protein identifi-

cation
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Introduction

Protein phosphorylation is a key post-translational modifi-

cation for many cellular processes in all living organisms

(Morandell et al., 2006). Moreover, abnormal phosphoryla-

tion can be responsible for many serious diseases such as

diabetes and cancer (Kocher et al., 2006). Therefore, a

complete understanding of many biological processes and

signaling pathways depends on a profound analysis of in-

volved phosphorylated proteins.

Liquid chromatography (LC) coupled with tandem mass

spectrometry (MS/MS) has been the method of choice for

protein identification in complex mixtures (Steen and Mann,

2004). On the other hand, such a high throughput approach

can generate thousands of MS/MS spectra in a single run,

turning the manual interpretation into an infeasible practice

(Kappet al., 2005). By that means, computational tools for

spectra interpretation became vital for large-scale MS-based

proteomics. However, the most popular algorithms for pep-

tide and protein identification produce a high false discovery

rate (FDR) (Kapp et al., 2005). This is mainly due to the

presence of background signals in spectra, i.e., peaks repre-

senting isotopes, internal fragments, electronic noise, chemi-

cal noise, and ions originated from unknown fragmentation

pathways (Gentzel et al., 2003; Mujezinovic et al., 2006). In

the case of phosphopeptides, there is an additional source

of complexity. Phosphopeptide fragmentation in low energy

dissociation tends to occur in phosphate groups when serine

or threonine is phosphorylated, which is normally the case.

Hence, it is common to see a very prominent peak in the

central region of the spectrum (Figure 1), corresponding to

neutral losses of HPO  or H  PO   groups from the precur-

sor ion (Kocher et al., 2006). Therefore, other necessary

fragmentations to form b and y ions are scarce. The result-

ing low signals of such ions are then easily confounded with

noise peaks (Figure 1). For this reason, false positive (FP)

identifications occur even more frequently for

phosphopeptide spectra interpretation.

In order to avoid misinterpretations, various algorithms

have been proposed to process spectra before ion search.

One approach focuses on the deconvolution of multiply

charged peaks and deisotoping (Ferrige et al., 1991; Reinhold

and Reinhold, 1992; Zhang and Marshall, 1998). More

recently, other cleaning steps have been included. Gentzel

et al., (2003), for example, considered peak centroiding, join-

ing of redundant spectra and automatic calibration. How-

ever, no special procedure thereby was undertaken for noise

elimination. Mujezinovic et al., (2006) propose a sophisti-

cated noise removal procedure, but, as described by the

authors, this approach is only robust for mild inaccuracies in

spectra. The main idea in the work of Jaitly et al., (2004)

was to elucidate peaks of interest instead of background

peaks. A maximum likelihood estimate is used to classify

peaks corresponding to fragment ions, achieving high sensi-

tivity and specificity. Nevertheless, no experiment is pre-

sented in this work concerning the impact of peak classifi-

cation on spectra interpretation. All cited studies provided

an important enhancement on MS/MS spectra preprocess-

ing methods. However, to the best of our knowledge, the

particular issue of low quality of phosphopeptide spectra

Figure 1: Typical phosphopeptide MS/MS spectrum. The reported sequence indicates phosphorylation in the first and third

serines. Notice the intensity of the central peak at m/z = 1040 compared to intensities of other peaks. This prominent peak

corresponds to the neutral loss of two H PO  groups  ( − 196 Da, offset of − 98).
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remains unaddressed. Recent works (Ishihama et al., 2007;

Imanishi et al., 2007; Lu et al., 2007; Hoffert et al., 2007)

have been proposed for a more efficient validation of

phosphopeptide identifications. These methods act as good

filters to separate correct from incorrect outcomes. None-

theless, no effort is presented to improve the quality of

phosphopeptide spectra in order to decrease the number of

incorrect sequence assignments.

In this paper, we propose a new data mining approach for

advancing phosphopeptide/protein identification in standard

database (DB) search tools by  introducing a novel prepro-

cessing modality for spectra before ion search. The method

trains a support vector machine classifier for determining

the useful peaks in a spectrum concerning the procedure of

assigning a peptide sequence. An important characteristic

of the proposed method is that, instead of having an unique

training set (TS), a particular TS is dynamically constructed

for each dataset in analysis so that a specialized classifier

can be obtained for each run. This step provides high flex-

ibility concerning variations in spectra caused by different

acquisition or sample preparation methods as well as the

mass spectrometer type used. A 10-fold cross validation

showed a classifier accuracy of around 80%. In our experi-

ments, we verified that about 84% of peaks in the original

spectra could be eliminated after preprocessing (after ap-

plying the learned classifier), yet the identifications could be

improved. In a decoy DB analysis on SEQUEST (Eng et

al., 1994) results, for instance, we could observe increases

in the number of correct assignments varying from 33% to

60%. The same analysis on MASCOT (Perkins et al., 1999)

results showed enhancements between 20% and 35% when

employing the identity threshold. The statistical models pro-

vided by Peptide/ProteinProphet (Keller et al., 2002;

Nesvizhskii et al., 2003) confirmed the power of our method.

The sensitivity curves plotted for the preprocessed datasets

dominated the sensitivity curves for original data in all cases.

The error curves for treated spectra, on the other hand,

were mostly dominated by the error curves of noisy data.

Examining the proteins infered by ProteinProphet, a higher

number of matches and better coverage could be normally

observed after the application of our preprocessing proce-

dures.

Materials and Methods

Sample Preparation and LC/MS

In two independent experiments, samples were prepared

according to the following protocol. Cytosol of Mek1-/-

MEFs was pretreated in a KESTREL-like approach (Knebel

et al., 2001), followed by in vitro kinase assay using Chemi-

cal Genetics tools (Shah et al., 1997). Samples were incu-

bated with or without an ATP-binding pocket mutant of con-

stitutive active GST-Mek1 in the presence of a N6-modified

ATP-analog. Proteins were precipitated according to Wessel

and Flugge, (1984) and a proteolytic digestion with trypsin

was performed as described by de la Fuente van Bentem et

al., (2006). For the enrichment of phosphorylated peptides,

the samples were methylester-modified with normal (light)

or deuterated (heavy) methanol (Ficarro et al., 2002), and

the IMAC protocol was performed (de la Fuente van Bentem

et al., 2006) using two different elution steps with 50mM

and 125mM Na
2
HPO

4
, respectively. In a third experiment,

samples were prepared as above, except for the in vitro

kinase assay.

Eluted peptides were separated by reversed phase high

performance liquid chromatography (RP-HPLC) coupled

to a LTQ FT mass spectrometer (hybrid linear ion trap /

Fourier transform ion cyclotron resonance (Thermo Elec-

tron, Bremen)) using a multistage activation method as de-

scribed in Schroeder et al., (2004).

MS/MS Data

For each experiment described above, we took data files

in Xcalibur raw format corresponding to the samples with

GST-Mek1, methylester-modified with normal methanol,

eluted with 125mM Na
2
HPO

4
. A total of three raw files

were then converted to dta files, resulting in 24405 (SET1),

23668 (SET2) and 18996 (SET3) spectra, respectively.

SEQUEST (Bioworks v3.3, Thermo Electron) was run on

these three datasets so that we could filter high-quality iden-

tifications for constructing the TSs. In order to evaluate the

preprocessing procedures, we randomly picked 10000 files

(spectra) from each dataset above (excluding spectra used

to build the TSs). After applying our approach on these se-

lected spectra, three additional sets of spectra were gener-

ated, resulting in six datasets for the analysis described in

Section "Results and Discussion", three of them containing original 

10000 spectra each, and the others containing the respective pre-

processed versions. These datasets are defined here simply as SET1_O,

SET2_O, SET3_O, SET1_P, SET2_P and SET3_P, respec-

tively, where “_O” and “_P” indicate original and prepro-

cessed data.

In order to perform experiments using MASCOT (v2.2,
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Matrix Science), each set was converted into the MAS-

COT generic format mgf. All searches in MASCOT and

SEQUEST were performed against the mouse IPI data-

base (v3.18) (Kersey et al., 2004). The search parameters

were set the same for all runs. Enzyme: trypsin; missed

cleavages: up to 3; fixed modifications: carbamidomethyl

(C), methyl (C-term), Methyl (DE); variable modifications:

oxidation (M), phosphorylation (ST), phosphorylation (Y);

peptide charges: +1, +2 and +3; protein mass: unrestricted;

mass values: monoisotopic; peptide mass tolerance: ± 10

ppm; fragment mass tolerance: ± 0 .6 Da.

Data Mining Framework for Spectra Preprocessing

Figure 2a illustrates the general overview of our new

framework for spectra preprocessing. Initially, the original

spectra are used for the TS construction (details in Figure

2b). Next, a support vector machine classifier is trained us-

ing the constructed TS. Finally, the resulting model is used

to classify peaks and adjust intensities (details in Figure 2c)

in the original spectra, giving rise to more easily interpret-

able spectra. The following sections provide detailed de-

scriptions of each step.

Applying Filters for High-quality Identifications

In the proposed framework, TSs are constructed on-the-

fly, i.e., one for each dataset in analysis. In order to obtain

peaks for representing instances in the TS, a set of MS/MS

spectra with respective correct sequences is necessary. For

this purpose, some standard database search tool is run a

priori on the data. In our experiments, SEQUEST was cho-

sen to provide interpretations of spectra. Next, strict filter

constraints are applied on the obtained identifications for

minimizing the risk of selecting incorrect sequence assign-

ments (for minimizing noise in the TS). These constraints

are as follows:

i. For each spectrum consider only the top hit (as tools

normally provide other alternative sequences).

ii. For each spectrum pick the best hit when searching with

different charge states (this is common when the exact

precursor charge cannot be accurately distinguished).

iii. Pick the best hit among redundant answers (different

spectra assigned to the same sequence. It is to assure a

Figure 2: Framework for spectra preprocessing. (a) General overview: The TS is constructed as illustrated in (b). The

obtained TS is then used to train a support vector machine classifier. In the last stage, the resulting model is applied to the

original spectra for classifying peaks and adjusting intensities. (b) Dynamic TS construction details: A standard DB search

engine for peptide identification (SEQUEST in our case) is run a priori to provide spectra interpretations. Next, filters are

applied to separate high-quality identifications. From the resulting filtered set, peaks are taken to form the first TS version. In

order to optimize the classifier’s accuracy, three additional steps are performed: Balancing of TS, discretization and feature

selection, producing a final TS for the model construction. (c) Pseudo-code for peak classification and intensity adjustment:

The classifier is used to assign a probability P to each peak. Low-probability peaks are removed from spectra, while the

remaining peaks have their intensities adjusted according to P.
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high variability among examples in the TS).

iv. Consider only spectra for which the second-ranked hit

has evaluation at least 25% worse than the top hit (Kapp

et al., 2005) (in SEQUEST this is measured by ∆Cn).

v. For selected identifications so far keep only ones for

which the reported protein has at least one different as-

signed peptide sequence in another hit (it provides a higher

confidence in the protein identification (Elias et al., 2005)).

vi. For selected identifications so far keep the best 10%.

vii. For each kept spectrum and its assigned sequence cal-

culate the theoretical m/z values for b as well as y ions

and match them to the observed peaks. If at least 70%

of both expected series are covered by identified peaks

(no matter which charge), the result is maintained.

The application of the described constraints leads to a

very reduced set of spectra. The idea is to achieve a high

precision, avoiding noise in the TS. Experiments demon-

strated that about 50 spectra are enough to provide a TS

containing more than 1000 peaks (TSs can be found in

supplementary data - appendix "Addendum: Web Supplement"). 

We assume that peaks have similar patterns among spectra in the  

dataset.Therefore, even learning with a reduced subset, we 

would be able to accurately classify peaks in the remaining spectra.

The validity of this assumption is demonstrated in our statis-

tical evaluations described in Section "Statistical Analysis" , since the 

identifications for preprocessed spectra are improved. After 

applying the constraints, if the number of selected spectra 

is not enough to provide a significant TS, we suggest 

changing the percentage in item vi, as itens iv and vii 

already provide strong cutoffs. It is also a good alter-

native to test changing the minimum ∆Cn (item iv) or even

the percentage of b and y ions found (item vii) until getting

a combination of values leading to a suitable TS. However,

the values stated above are normally apropriate. In the case

of SET3, for instance, only item vi was altered, i.e., we

selected the best 20% results to obtain enough spectra. For

the other datasets, the restrictions were applied exactly as

proposed. A total of 68, 49 and 47 spectra were selected

from SET1, SET2 and SET3, respectively, to form each

training set.

Selecting Peaks

Once having selected spectra and their assigned se-

quences, the next step is to separate peaks in spectra to

form the TS. For each spectrum, peaks are labeled golden

if they match to the theoretical b and y m/z values (item vii),

but only ions of charges +1 and +2 are considered. Any

other peak is labeled as background. In this manner, signals

representing internal fragments, isotopes, electronic and

chemical noise, the precursor and its derivatives, neutral

losses, and b/y ions of higher charges are taken as back-

ground. Our assumption is that leaving only peaks repre-

senting b+1/+2  and y+1/+2 ions in spectra is the cleanest and

simplest way to minimize misinterpretations. Besides, the

m/z values for ions of higher charges are difficult to handle

due to resolution issues. After separating golden and back-

ground peaks, each one has its features extracted from spec-

tra (Section "Feature Selection" ) and is used to compose the 

first TS version.

Balancing of TS

In many real-world classification problems, the majority

of instances in a TS is from one of the classes. In binary

classification, the minority class is normally the class of in-

terest. This situation occurs in our case. The first TS ver-

sion obtained from SET1, for example, contained 40184 peaks

of the class “background” and 1022 peaks of the class

“golden”. Such an imbalanced TS often causes machine

learning algorithms to perform poorly on the minority class,

i.e., the rare instances are often treated as noise (Dehmeshki

et al., 2003). In order to make both classes have the same

weight for the model construction, the TS is balanced using

a supervised instance resampling algorithm. This algorithm

produces a random subsample of instances in the class back-

ground, applying a sampling with replacement approach

(Hsia, 2005), resulting in the same number of examples in

both classes. In this stage, the second TS version is estab-

lished.

Feature Discretization

The third TS variant is generated from a discretization of

the given numeric features (Section "Feature Selection" ). According

to Witten and Frank, (2005), learning methods that are able to

handle numeric features often produce better results and

work faster when features are discretized beforehand. Ex-

periments confirmed that the classification accuracy is im-

proved after discretization (supplementary data). In our

approach, we employ a supervised discretization algorithm

that uses an entropy minimization heuristic for discretizing

the range of a continuous-valued feature into multiple inter-
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vals (Fayyad and Irani, 1993; Witten and Frank, 2005).

Feature Selection

In order to accomplish our classification, we had to select

important features that clearly distinguish golden peaks from

background signals. For the employed mass spectrometer

(Section "Sample Preparation and LC/MS"), peaks of b and y ions 

are normally accompanied by signals with lower m/z values repre-

senting neutral losses such as water, ammonia, two molecules 

of water, and water+ammonia (Frank and Pevzner, 2005). The 

occurrence of a ions is common as well and these ions can

undergo a neutral loss of water or ammonia (Frank and

Pevzner, 2005). Isotope variants (more commonly +1 Da

and +2 Da) are also very frequent and can present the same

cited satellite peaks. Putting together all these information

and initially considering +1 charged ions, the first set of fea-

tures of a given target (peak being classified) had its com-

position based on the presence of the described satellite

peaks at the positions shown in Figure 3a. However, in or-

der to increase the classifier’s discriminatory power, we

added features regarding also background peaks, as dem-

onstrated in Figures 3b and 3c. If we consider a signal rep-

resenting loss of water as the reference, for example, satel-

lite peaks are expected to be found at the positions shown

in Figure 3b. Hence, it is appropriate to include in the set of

features also the occurrence of peaks at the positions − 25,

− 10, − 9, − 8, +3, +18, +19 and +20 in order to improve the

distinction between signals representing loss of water and

golden peaks. On the other hand, when taking as reference

a peak representing a loss of CO (a ion), its expected vicin-

ity is composed as stated in Figure 3c. Consequently, the

inclusion of the positions − 8, − 7, − 6, − 5, +10, +11, +12,

+13, +28, +29, +30 in the set of features increases the dis-

similarities between peaks representing a ions and golden

peaks. This reasoning was applied for the 17 satellite peaks

shown in figure 3a, giving rise to 76 distinct features. Since

+2 charged ions are also considered, peak positions are di-

vided by two, ending up with 128 features (the division leads

to many repeated positions). Finally, since noise can be very

abundant in spectra, random signals might occupy the de-

scribed positions, being thus confounded with satellite peaks.

As a result, instead of considering the occurrence of peaks

at the proposed positions, the set of features was formed by

the intensities of such peaks normalized to (divided by) the

target’s intensity. Therefore, we always start with 128 fea-

tures (128 normalized intensities of satellite peaks) for each

dataset being operated. However, in order to remove irrel-

evant features, the final TS is generated using a correla-

tion-based feature selection heuristic (Plant et al., 2006).

This method assigns higher scores to feature subsets whose

features show high correlation with the class and low cor-

relation among each other.

Figure 3: Simplified scheme representing the vicinity of common peaks in spectrum for +1 charged ions. The peaks are

shown in relative positions, indicating offset in Dalton. (a) Golden peak (red) and peaks appearing frequently in its vicinity

(blue). (b) Changing the reference to a peak representing loss of water (red). (c) Changing the reference to a peak represent-

ing loss of CO (red).
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Learning with Support Vector Machines (SVMs)

SVMs (Cristianini and Shawe-Taylor, 2000) constitute a

very powerful classification method with outstanding per-

formance applied to many biomedical problems (Noble,

2006). Given instances x
i
, i = 1, ..., l with labels y

i
 ∈ {1, −1},

the training of SVMs is the task of solving the following

quadratic optimization problem:

1
min ( )

2

subject to 0  ,   = 1, ..., ,

   = 0

T T

T

f Q e

C i l

y

α
α = α α − α

α

 (1)

where e is the vector of all ones, C is the upper bound of all

variables, Q is an l�l symmetric matrix with Q
ij
 = y

i
y

j 
K(x

i
,

x
j
), K(x

i
, x

j
) is the kernel function, and the optimal weights

α
i
 are searched for defining a hyperplane that separates

the two classes so that unknown instances can be accu-

rately classified. In our case, a pair (x
i
, y

i
) represents a

peak in the training set, where x
i
 is the vector of features

(normalized/discretized intensities) and y
i
 denotes whether

the peak is golden (1) or background (− 1).

The size of the matrix Q is proportional to the square of

the number of training examples, which can lead to huge

storage requirements. Consequently, decomposition meth-

ods are applied to modify only a subset of the vector α in

each iteration. In this context, we chose a powerful method

termed LIBSVM (Fan et al., 2005) to implement in our

framework, as this algorithm presents faster convergence

compared to previously proposed approaches, without com-

promising the result quality. Another advantage of LIBSVM

is that it is able to provide a probability estimate to determine

the confidence level of a classification  instead of predicting

“hard” class labels (Wu et al., 2004). This is very suitable to

our goals, as can be seen in the next section.

We selected the radial basis function (Cristianini and

Data set Sensitivity Specificity Accuracy AUC 

SET1 75.4 84.1 80.58 0.873 

SET2 75 80 78 0.835 

SET3 77.6 81.6 80.05 0.863 

Shawe-Taylor, 2000) as the kernel function with γ = 1/k,

where k is the number of features. Using 10-fold cross vali-

dation, the performance of LIBSVM for golden peaks clas-

sification in the final TSs gathered from SET1, SET2 and

SET3 is summarized in Table 1.

Classifying Peaks and Adjusting Intensities

The SVM classifier is used in the proposed framework to

calculate the probability P of a peak designated to be golden.

The peak is only kept in spectrum if P > 0.5. In this case, its

intensity is set to P � 100 (algorithm in Figure 2c). As a

consequence, only the most significant peaks for peptide

sequence identification are maintained in order to avoid FP

matches caused by additional mass combinations of back-

ground peaks. The adjustment of  intensities is also impor-

tant to decrease the number of wrong answers, since many

popular tools for peptide and protein identification consider

only the most intense peaks in the ion search procedure. The

SVM runs took on average 1.02ms, 0.49ms and 0.37ms (the

resulting TS from SET1 had a higher number of features)

per peak for generating the datasets SET1_P, SET2_P and

SET3_P, respectively.

Results and Discussion

In this paper we applied a new data preprocessing method

for MS/MS spectra with the objective of enhancing the rate

of correct phosphopeptide/protein identifications in standard

DB search tools. Experiments using the proposed approach

were performed on three selected datasets (SET1-3) gen-

erated from phospho-enriched samples, with results achiev-

ing a significant positive effect on the quality of

phosphopeptide assignments. Since no reference data was

available during this work, the experiments were based on

a comparative analysis between results before and after

spectra preprocessing.

First, a manual inspection of MASCOT and SEQUEST

results was performed. An important observation was the

huge increase in signal-to-noise ratio (S/N) for treated spec-

tra as illustrated in Figure 4 (another example can be seen

in Figure 2S of supplementary data). Moreover, in cases in

which original and preprocessed spectra led to the same

peptide sequence, a higher number of ions in the prepro-

cessed spectra was frequently observed (Figures 4 and 5).

Even in cases in which fewer ions were found, higher scores

were normally generated as a consequence of a better S/N

and intensity adjustment.

Table 1: Performance of LIBSVM for golden peaks clas-

sification using 10-fold cross validation in the final TSs built

from SET1, SET2 and SET3.

AUC is area under the ROC curve.

≤ αi ≤ 
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We have observed that peaks representing neutral losses

of water and ammonia were regularly kept in spectra. It is

probably due to the fact that these ions have similar proper-

ties when compared to b and y ions, such as the presence

of isotopes and further water losses, suggesting similarities

in their vicinities as well. However, since standard DB search

algorithms expect the occurrence of water and ammonia

losses, such misclassifications did not prevent our method

from yielding to important improvements (Section "Statistical Analysis" ). 

Reviewing Figure 4b, we can also observe some nonannotated

peaks. This is either due to their lower intensities (i.e., they

have P close to 0.5) or due to the fact that they represent

ions (precursor and its derivatives, internal fragments, etc)

with properties similar to golden peaks, alike water and

ammonia losses. But, even with some misclassifications, the

increase in S/N was remarkable.

Another kind of manual inspection we performed was

the analysis of the number of matches and the coverage for

the same proteins identified before and after preprocess-

ing. This investigation strongly indicated that many spectra

could be correctly interpreted after preprocessing. An ex-

ample from SEQUEST results is shown in Figure 5. For the

given protein identified in SET1_O and SET1_P, besides

observing a higher number of matches and better coverage

for the second dataset, we can also notice that the quality

parameters were mostly better for the peptides reported in

the preprocessed case, turning this protein into a significant

identification with a much better position in SEQUEST rank-

ing for SET1_P. For an extended manual inspection of the

peptides and proteins identified in common between origi-

nal and preprocessed data, see the complete result report

of MASCOT and SEQUEST for all datasets in the supple-

mentary data.

Statistical Analysis

In order to provide a comprehensive analysis of the over-

Figure 4: Comparison of MASCOT results for a spectrum before and after preprocessing, supporting the same peptide

sequence HNQDSQHCSLSGDEEDELFK. (a) Original spectrum (SET1_O). (b) Preprocessed spectrum (SET1_P). (c)

Detail of original spectrum (m/z: 350 to 450). (d) Detail of preprocessed spectrum (m/z: 350 to 450). In (b), it can be seen a

huge decrease in the number of peaks, yet a higher number of ions was found. In (a) only 3.98% of peaks are annotated,

while in (b) this value raised to 55.05%. The treated spectrum shows that MASCOT was able to detect 7 new golden peaks

(in blue) that were hidden in the background before preprocessing. Nevertheless, b(15) got lost. In (c) and (d) the efficiency

of the cleaning and the intensity adjustment steps for the zoomed range is demonstrated (another range can be seen in Figure

1S of supplementary data). See supplementary data for the complete result report and for zooming other regions of the figure.
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all benefit of our method, statistical measurements from

SEQUEST, MASCOT and TransProteomic Pipeline (Keller

et al., 2005) were considered. In a first analysis, we esti-

mated the number of correct assignments made by MAS-

COT and SEQUEST. This calculation was performed us-

ing a decoy DB approach (Elias et al., 2005; Balgley et al.,

2007). In this method, the search is repeated against a data-

base with randomized or reversed sequences (decoy DB).

As a consequence of this search, the number of positive

matches can be used to estimate the FDR. MASCOT em-

ploys a decoy DB composed by randomized sequences.

Here, the FDR calculation is based on the number of sig-

nificant hits in normal and decoy DBs. Note that, in MAS-

COT, a peptide identification is regarded as significant if its

score is above the homology or identity thresholds, the lat-

ter being the strongest quality measure (Perkins et al., 1999).

Table 2 shows the comparative analysis after MASCOT

search where a significantly improved sensitivity (= rate of

correct hits obtained) and specificity (= rate of incorrect

hits below the employed threshold) could be in general dem-

onstrated. When using the identity threshold, the number of

estimated correct hits increased 20% (from 175 to 210 ),

35% (from 48 to 65) and 33% (from 94 to 125), respec-

tively, after spectra preprocessing. For the homology thresh-

old, though in a lower percentage, all treated datasets pre-

sented improvements in the number of correct hits as well.

Note yet that, except for one case (from 3.7% to 4.46%),

the FDR was systematically diminished.

Since SEQUEST does not provide any significance thresh-

old for peptide identifications, we employed several score

thresholds for calculating the FDR. It should be noted that

such experiments have to be done separately for each re-

sult because a particular threshold used in a dataset does

not necessarily provide the same FDR in another dataset.

For our experiments, a  decoy DB was generated by

reversing the peptide sequences contained in the original

Figure 5: Comparison of SEQUEST results for a protein identified before and after preprocessing. (a) SET1 O. (b) SET1 P.

In (b), three new sequences were included, resulting in a higher number of matches and better coverage. Comparing spectra

with the same scan number in (a) and (b), the quality values were clearly more favorable after preprocessing. The symbol

“#” means phosphorylation, while “*” denotes oxidation of methionine.

Table 2: Analysis of significant hits in MASCOT results

using a decoy DB approach. In the first line of each case 

the values are based on the identity threshold, while in the

second line the homology threshold is the reference.

# of hits in 

Mouse DB 

# of hits in 

Decoy DB 

FDR 

176 1 0.57 % SET1_O 

378 14 3.7 % 

210 0 0 % SET1_P 

404 18 4.46 % 

48 0 0 % SET2_O 

170 8 4.71 % 

65 0 0 % SET2_P 

186 7 3.76 % 

99 5 5.05 % SET3_O 

288 16 5.56 % 

126 1 0.79 % SET3_P 

305 10 3.28 % 



Journal of Proteomics & Bioinformatics  - Open Access                
Research  Article       JPB/Vol.2/March 2009

J Proteomics Bioinform Volume 2(3) : 150-164 (2009) - 159

 ISSN:0974-276X   JPB, an open access journal

DB (Elias et al., 2005; Balgley et al., 2007). A broad range

of Xcorr thresholds was used for each dataset in order to

obtain FDRs varying from 0 to 0.2. Figure 6 shows for the

same FDRs that preprocessed datasets lead normally to a

higher number of correct assignments. Even having some

regions in Figure 6b and 6c in which the curves coincide, it

is clear the dominance of the blue curves in all cases. For

some FDR intervals, it can be seen an augmentation in the

number of correct identifications of up to 40%, 60%, 33%

in the datasets, respectively, after using our approach.

To further verify our studies, we used also Trans-Proteomic

Pipeline (v3.2). This tool is a pipeline for analysis of LC-

MS/MS proteomics data, containing modules for validation

of peptide identifications (PeptideProphet) and protein in-

ference (ProteinProphet). PeptideProphet was used to

evaluate MASCOT and SEQUEST results. PeptideProphet

uses the expectation maximization algorithm to compute prob-

abilities of peptide assignments. Applying its statistical model,

PeptideProphet provides the sensitivity/FDR tradeoff as

ilustrated in Figure 7. The plots show that preprocessed

datasets presented a better sensitivity, yet same or lower

error in general for both MASCOT and SEQUEST when

compared to the original data. Particularly in Figure 7b, the

difference for treated spectra is very prominent.

In Figure 8, Venn Diagrams are shown. The diagrams

contain the number of identifications reported by

PeptideProphet with probability 0.9 or higher. This thresh-

old is appropriate as the error rates for this value were low

(varied from 1% to 3%. See supplementary data). It can be

noted that the number of exclusive identifications for pre-

processed data was always higher than for initial datasets.

In Figure 9, our analyses are moved to the protein level

by means of ProteinProphet. This program uses

PeptideProphet results to identify proteins and to associate

probabilities to these identifications. As can be seen in Fig-

Figure 6: Decoy DB analysis for SEQUEST results. (a) SET1_O/P. (b) SET2_O/P. (c) SET3_O/P. Each data point corre-

sponds to a different Xcorr threshold. The x axis indicates the estimated FDR (calculated by counting the hits above the threshold

for the decoy DB), while the y axis shows the number of hits above the threshold when using the mouse DB. The red curves

correspond to the original datasets and the blue curves relate to the treated datasets. Taking the same FDRs in original and

preprocessed data, a higher number of hits comming from the mouse DB was in general observed for treated spectra.
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Figure 7: Sensitivity and FDR curves provided by PeptideProphet. (a-c) SET1_O/P, SET2_O/P, and SET3_O/P, respec-

tively, using MASCOT. (d-f) SET1_O/P, SET2_O/P, and SET3_O/P, respectively, using SEQUEST. The x axis shows the

different probability thresholds, while the y axis designates sensitivity and error. The blue and the red curves represent

sensitivity and FDR, respectively, of untreated data, while the black and the green dashed curves describe sensitivity and

FDR, respectively, of preprocessed spectra. The dominance tendency of the black curves upon the blue ones as well as the

red curves upon the green ones indicates that the sensitivity was improved, yet the error decreased in the datasets obtained

after application of the proposed method.

Figure 8: Venn Diagrams of peptide identifications reported

by PeptideProphet with Prob 0.9. (a) Using MASCOT

results. (b) Using SEQUEST results. The number of exclu-

sive identifications is always higher in treated datasets for

both tools.

ure 9, ProteinProphet provides also the sensitivity and FDR

curves, which open again the possibility to compare the dif-

ferent scenarios for the  tested datasets. The Figure re-

veals once more the improvements in sensitivity and speci-

ficity for the datasets produced by our method. In the pro-

tein level, the enhancements are even more obvious. The

area between black and green curves (related to treated

data) is clearly higher than the area between blue and red

curves (regarding the unprocessed data) for all cases in

both MASCOT and SEQUEST runs.

Finally, ProteinProphet was used also to compare the same

proteins identified in original and preprocessed data. For

each protein identified in both cases, we computed the num-

≥
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Figure 9: Sensitivity and FDR curves provided by ProteinProphet. (a-c) SET1_O/P, SET2_O/P, and SET3_O/P, respec-

tively, using MASCOT. (d-f) SET1_O/P, SET2_O/P, and SET3_O/P, respectively, using SEQUEST. The description of these

plots is the same provided in Figure 7, with the difference that here the analysis is in the protein level. Once more the

preprocessed datasets demonstrated a better sensitivity and specificity (lower FDR). The enhancements in the protein level

are even more prominent than in the peptide level (Figure 7).

ber of peptide matches and sequence coverage in order to

verify if both measurements get improved after preprocess-

ing. Figure 10 shows this comparison. It can be seen that

the occurrence of proteins with more matches or higher

coverage is much more frequent in treated than in original

datasets.

Storage and Runtime Requirements

The experiments described in previous sections were per-

formed using a stand-alone PC: Pentium(R) 4 CPU

3.20GHz, 1GB RAM, under Windows XP. A significant de-

crease in storage requirements was achieved, as the num-

ber of peaks in treated spectra could be reduced on aver-

age by 84%. The running times of MASCOT and SEQUEST

for preprocessed data, in turn, could be shortened by ap-

proximately 28%. However, additional processing time is

necessary for TS construction and dataset treatment (Section 

"Classifying Peaks and Adjusting Intensities"). On the other hand, 

it should be noted that curators take days or even weeks for 

separating correct from incorrect identifications manually, which 

means that the additional time caused by our data mining method 

is therefore negligible. Furthermore, the overall processing time 

can be significantly reduced using a powerful computer cluster.

Conclusion

Existing computational tools for MS/MS spectra interpre-

tation produce a high number of FP identifications. This is

due to the presence of background signals in spectra, which

introduces multiple mass combinations. Phosphopeptide spec-

tra, produced by low energy dissociation, demonstrate an

additional source of complexity because the phosphopeptide

fragmentation is frequently poor, giving rise to low intensity

peaks of b and y ions. Consequently, phosphopeptide spec-

tra interpretation presents an even higher false discovery

rate.

In order to decrease the number of FP identifications for

phosphopeptides, we have developed a new data mining

approach for spectra preprocessing. With a dynamic TS

construction, our method trains a SVM algorithm to classify
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Figure 10: Analysis of ProteinProphet concerning the number of proteins with more matches / better coverage among the

same proteins identified before and after the application of the proposed method. The red region contains the number of

proteins having more matches/higher coverage in original dataset. The blue region shows the number of proteins having more

matches/higher coverage in preprocessed dataset. Finally, the yellow part holds the number of proteins in which no difference

arose between data before and after preprocessing (the number of matches or the coverage did not change). In each

comparison, the left bar shows the analysis related to the number of matches, while the right bar regards the coverage. The

number of proteins with more matches or better coverage is normally much higher after preprocessing.

(cleaning step) and adjust intensities of peaks in MS/MS

spectra. The cleaning step facilitates an elimination of up to

84% of peaks, leading to a huge increase in S/N, while the

intensity adjustment step improves the chances of detecting

important signals. Since we could not find any previously

proposed methods for phosphopeptide spectra preprocess-

ing, no comparisons could be performed between our pro-

cedures and other approaches. Nonetheless, the presented

statistical evaluations demonstrate that our method improves

sensitivity of phosphopeptide identification significantly with-

out compromising specificity. A decoy DB analysis using

MASCOT and SEQUEST searches showed that the num-

ber of correct hits could be significantly enhanced in all pre-

processed datasets. Likewise, Peptide/ProteinProphet con-

firmed this benefit for both tools. In summary, our experi-

ments demonstrate that our data mining framework for pre-

processing MS/MS spectra is a powerful tool for enhancing

phosphopeptide/protein identifications in standard DB search

tools.
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 Addendum: Web Supplement

Supplementary resources are available at the website: http:/

/biomed.umit.at/page.cfm?pageid=515. It contains supple-

mentary figures; SEQUEST, MASCOT and Trans-

Proteomic Pipeline results; and training sets. The software

is available on request from the authors.
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