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Introduction
Plasma contains carbohydrates, lipids, salts, vitamins, amino acids, 

nucleic acids, hormones and around 75 mg/mL protein [1]. Proteins 
from tissues leak into the extracellular fluid and are carried through 
the lymphatic system, to end up in the plasma. The carrier-protein 
albumin dominates with 45-50% of the total protein concentration, 
while immunoglobulin G and transferrin contribute 8-20% and 3-7%, 
respectively [2]. These and other highly abundant, large proteins mask 
less abundant ones by decreasing their relative concentration, and 
through effects such as ion suppression in electrospray ionization 
mass spectrometry. Although changes in the abundant proteins may 
also be indicative of the physiological status of the organism,[3] low-
abundant proteins, for instance from tissue leakage, may mark an 
early state of a disease such as cancer [4,5]. Although plasma is easily 
sampled, the concentration range of proteins, spanning from picogram 
to microgram per millilitre, is a major challenge in clinical proteomics.

Numerous techniques have been suggested and employed to 
reduce the complexity of the plasma proteome, including depletion 
of abundant proteins [6], nonspecific enrichment of low-abundant 
proteins via combinatorial peptide libraries [7] and specific enrichment 
of targeted peptides after enzymatic digestion [8]. Complexity 
reduction can be performed by classical methods such as centrifugation 
or extraction with organic solvents [9] or by immunodepletion [10]. A 
range of depletion columns, spin cartridges and affinity capture beads 
for removal of albumin, IgG [11] and many other abundant proteins 
are commercially available. Several of these commercial kits have 
previously been compared by Chromy et al. [12] and Björhall et al. [13] 
for their utility in plasma proteomics. Immunoaffinity is efficient in 
depleting selected abundant proteins, but in significantly reducing the 
concentration range of proteins in plasma, many different antibodies 
are needed. As the immunoaffinity depletion is carried out under native 
conditions, other less abundant proteins may still be bound to one of 
the abundant proteins being depleted, for instance, albumin in plasma. 
Typically, commercial affinity columns use avian IgY antibodies against 
the most abundant (“top”) plasma proteins, and remove from 50% 
(anti-albumin only) to 99% (top-20) of total plasma protein. In theory, 
assuming a 100% recovery, low abundance proteins would then be 
enriched by a factor 2 to 100, respectively. However, both reproducibly 

manufacturing and applying columns with a large number of different 
antibodies is not trivial. For instance, we have previously observed 
a significant column-to-column variation in commercial affinity 
depletion columns (unpublished results). Although, this may not be 
a serious problem in a general exploration of the plasma proteome, or 
in studies where proteins have been isotopically (or otherwise) labelled 
prior to the depletion/enrichment step, poor reproducibility obviously 
poses a serious problem for label-free studies.

Many of the abundant proteins in plasma have molecular weights 
exceeding 60 kDa (e.g. albumin, transferrin, fibrinogen, IgA, α-2-
antitrypsin, apolipoproteins, and acid-1-glycoprotein). A simple and 
semi-selective depletion of many of these large and highly abundant 
plasma proteins is possible by precipitation using organic solvents 
such as acetonitrile, and this has indeed been demonstrated in plasma 
and serum from several species with reproducible results [14-18]. 
This procedure results in a separation, wherein most of the more 
soluble low molecular weight proteins are left in the supernatant and 
the larger proteins precipitate. Acetonitrile has also been shown to 
release albumin-bound proteins, which could be potential biomarkers 
[5]. Protein solubility is also affected by pH, ionic strength and 
temperature [19], and by adjusting one or more of these parameters, 
the precipitation may be optimized to efficiently remove as much of 
the abundant proteins such as albumin, as possible in a single step, 
while maintaining low-abundant proteins in solution. Alternatively, 
several precipitation steps can be combined for a more efficient 
depletion of abundant proteins and increased recovery of low-
abundant proteins. Semi-selective precipitation may also be tuned to, 
partition the proteome in two or more complementary fractions with 
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limited overlaps, for increased combined coverage of the proteome. In 
this work, we focused on the effect of pH on the plasma depletion by 
acetonitrile and the method’s suitability for clinical applications. Such 
a simple precipitation procedure is attractive for large scale studies as 
they are inexpensive, scalable, easy to parallelize, potentially robust and 
reproducible, and not dependent on expensive affinity separations with 
concomitant batch-to-batch or column-to-column variation that is 
problematic for label-free methods. 

Materials and Methods 
Sample preparation and organic precipitation

Human plasma from healthy volunteers was collected into BD 
Vacutainer® tubes with 18.0 mg K2 EDTA (K2E, REF 367525, BD 
Vacutainer Systems, Plymouth, UK) and immediately spun down 
at 1,300´ g for 10 minutes at 21°C, and 50 µl aliquotes were stored at 
-80°C, until use. Samples were thawed at 4°C and then centrifuged at 
16,100´ g at 4°C for 1 minute. The pH was adjusted in three identical 
aliquots to 5.0, 7.0 and 9.0, by adding acetic acid and ammonium 
hydroxide directly to the sample. Three other aliquots were diluted 
1:10 (v: v) with 100 mM ammonium acetate buffer with corresponding 
pH’s, to investigate the effect of protein concentration. For protein 
precipitation, acetonitrile was mixed with the samples in 1:1 (v:v) 
ratio and the samples were vortexed, three times at 1,000 rpm for 
5sec, and then incubated for 10 minutes in an ultrasonic bath at room 
temperature. Vortexing and sonication steps were repeated twice, 
before the samples were centrifuged at 16,100´ g at 4°C for 10 minutes. 
The supernatants after precipitation were collected in fresh Eppendorf 
tubes and both the pellets and the supernatants were lyophilized. 
The precipitates were vigorously vortexed and sonicated in 100 µl 
BugBuster Master Mix (Novagen, Merck KGaA, Germany) for pellets 
and 30 µl for supernatants. The pellet precipitates were resuspended in 
a Bullet Blender (Next Advance Inc., Averill Park, NY) with 0.1 mm 
glass beads, which were then removed by centrifugation through 30 
µm pore size micro-spin columns (Thermo Fisher Scientific, Waltham, 
MA) at the lowest speed. The protein concentration was then defined 
using a Bicinchoninic Acid (BCA) protein assay kit (Thermo Fisher 
Scientific). This protein extraction reagent has been developed for the 
lysis and protein solubilisation from bacteria, but is routinely used in 
our laboratory and directly compatible with BCA analysis, SDS-PAGE, 
tryptic digestion, and samples are easily cleaned up for analysis by 
Liquid Chromatography-Mass Spectrometry (LC-MS).

SDS-PAGE and in-solution digestion

Thirty micrograms of protein (BCA) per sample were loaded on 
a 1-mm 10-well 4-12% NuPAGE® Bis-Tris gel (Invitrogen, Carlsbad, 
CA). All samples were diluted in 2X NuPAGE® Sample Buffer 
(Invitrogen). Proteins were separated in the gel for 1 h at 180 V. The gel 
was stained in NuPAGE® Colloidal Blue (Invitrogen, overnight at room 
temperature and destained with milli-Q water until the background 
was transparent.

For in-solution tryptic digestion, 20 µg of each sample was used. 
The digestion was performed after DTT reduction (10 mM, 56°C for 45 
min) and IAA alkylation (25 mM, 1 h in the dark at room temperature), 
in 25 mM ABC with protein to trypsin ratio 20:1 for 12 h at 37°C. The 
reaction was then quenched with 5 µL of 10 % TFA. The samples were 
stored at -35°C until analysis.

Liquid chromatography-mass spectrometry

Peptides derived from all protein digests were separated by splitless 

parallel reversed phase C18 NanoLC-Ultra 2D plus (Eksigent, Dublin, 
CA) ultra-high pressure liquid chromatography (PepMap trap columns 
C18 5-mm, 300 µm-i.d., Dionex Sunnyvale CA; ChromXP analytical 
C18 columns 15 cm, 300 µm-i.d., Eksigent), with an additional loading 
pump for fast sample loading and desalting. Samples were analyzed for 
120 min using a linear gradient, from 4 to 33% acetonitrile in 0.05% 
formic acid with flow rate 2 µl/min. The MS and MS/MS (CID-only) 
spectra were recorded on an amaZon ETD high-capacity 3D ion trap 
with CaptiveSpray source (Bruker Daltonics, Bremen, Germany). The 
ten most abundant multiply charged species in the m/z range 300-
1300, were automatically selected for MS/MS with one minute dynamic 
exclusion, after having been selected twice.

Data analysis 

The complete experiment was analyzed in a single Taverna scientific 
workflow [20] (Figures 1 and 2) with all external software installed in 
their default locations. For each sample, the raw LC-MS/MS files were 
first converted to mzXML [21] using compassXport 3.0.5 (Bruker). 
The mzXML files were then processed as in the open source Trans-
Proteomic Pipeline (TPP) [22], using both the X!Tandem [22,23] 
database search engine and the SpectraST spectral library search. With 
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Figure 1: Taverna scientific workflow, for the proteomics data processing based 
on the TPP. The raw data is converted to the mzXML format by CompassXport 
and each file is then separately searched by X!Tandem and SpectraST. Only 
peptides with PeptideProphet probabilities ≥0.95 were included in the further 
analysis. The separate search results were combined by InterProphet. The 
workflow allows parallel sample processing.
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Figure 2: Taverna workflow for producing a Venn diagram and charts of spectral counts as function of protein molecular weight, pI and GRAVY score as seen in Figures 
4 and 5. All inputs are provided from the outputs of the workflow in Figure 1 and the two workflows may be combined into a single, complete workflow.

X!Tandem, we used the UniProt human reference proteome set (2012-
02-05, canonical sequences only), carbamidomethylation as the only 
and fixed modification, the k-score plug-in [22] and a monoisotopic 
mass error ±0.5 Da, including the first and second isotopic peaks. 
For SpectraST, the NIST human spectral library from 2011-05-26 
was searched with default settings except for carbamidomethylation 
(“CAM”) of cysteines. All search results ( in pepXML [22] ) were analyzed 
by PeptideProphet [24], then refined and combined by InterProphet. 
Peptide-spectrum matches with a PeptideProphet probability p≥0.95, 
corresponding to approximately a 1% false discovery rate (FDR) were 
included in the analysis. For each protein sequence in the FASTA 
file, a BeanShell component in the comparison workflow (Figure 2), 
calculated molecular weight using average masses of amino acids, 
GRAVY score (using amino acid hydrophathy information from Kyte 
and Doolittle [25] ) and pI ( using pK values from Bjellqvist et al. [26] 
). The protein spectral counts (number of peptide-spectrum matches 
per protein) in the different fractions, were then compared with respect 
to this information and visualized using an Rshell. The raw mass 
spectrometry proteomics data is deposited to the ProteomeXchange 
Consortium (http://proteomecentral.proteomexchange.org) via the 
PRIDE partner repository [27] with the dataset identifier PXD000042.  
The workflow is freely available via www.myExperiment.org (“Plasma 
Precipitation Analysis”).

Results and Discussion
The method for protein fractionation explored here, was designed 

to partition the proteins in the sample, reducing the relative abundance 
of the dominating proteins, and if possible, simultaneously remove 
contaminants that might interfere with protein quantitation and 
biomarker detection in body fluids such as plasma. However, at high 
protein concentrations, such as in plasma, there is always a high risk of 
co-precipitating otherwise soluble proteins. Experimentally, we indeed 
found the preparation of diluted samples to be more robust, less time-
consuming and the results were highly reproducible (Figure 3). This 
method, therefore, could be more easily applied in larger studies. The 
fractionation of proteins in plasma by acetonitrile, is expected to be 
correlated with the molecular weight and hydrophobicity (at a given 
pH) of the proteins [28]. It was possible to influence the solubility 
of different plasma proteins by alternating the pH of the buffer. For 
example, proteins with pI 5-6, such as albumin, could be expected 
to readily precipitate at a pH of 5 or 7. Pellets obtained at pH 5 or 7 
were relatively easy to resuspend, but precipitates at pH 9 were very 
hard to dissolve and required additional use of ultrasonication. The 
reproducibility of protein extraction from pH 9 pellets was also poor, 
with notable changes in the abundant distribution of the proteins. 
Plasma pH in the sample usually varies between 7.5 and 8.5 and not 
surprisingly its precipitation profiles are most similar at pH 9, where 

the pellet fraction is not much enriched in large proteins and the 
supernatant is still highly dominated by albumin (data not shown).

The combination of X!Tandem and SpectraST identified 8,418 
spectra (672 unique peptides) in the LC-MS/MS analysis of raw plasma, 
6,751 spectra (568 unique peptides) in pellet fraction and 8,799 spectra 
(463 unique peptides) in the supernatant. As expected, the largest 
difference or smallest overlap was observed between the precipitate 
and the supernatant (Figure 4). The total proteome coverage in 
the pellet and supernatant fractions was 25% higher, compared to 
a single analysis of crude plasma. A few peptides and proteins were 
only identified in the raw plasma, and not in either the pellet or the 
supernatant fraction. However, relative spectral counts clearly show 
that most of the abundant proteins precipitate at pH 5 and remain 
in the pellet, while small proteins are enriched in the supernatant 
fraction (Figure 5a). Examples of such small proteins include several 
apolipoproteins (e.g. A1, A2, A4, C1 and C3), as previously shown by 
Anderson and Hunter [29].  Some mid-range (40-60 kDa) molecular 
weight proteins also increased in relative abundance in the supernatant. 
The spectral counts for proteins between 60 and 80 kDa are primarily 
due to albumin (90% in the raw plasma). The fraction of identified 
spectra assigned to albumin peptides in the entire raw plasma dataset 
was close to 60%. In the supernatant sample, only 5% of the identified 
spectra were from albumin peptides, indicating a depletion of ~ 90%. 
Also a number of other large and highly abundant proteins, such as 
α-2-macroglobulin and complement C3, were found to be significantly 
depleted. The relative abundance of albumin in the pellet fraction was 
approximately the same as for crude plasma.
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Figure 3: Representative SDS-PAGE gels illustrating the reproducibility of 
fractionation by acetonitrile precipitation at pH 5 of 20 µg human plasma 
proteins from the same (a) and different (b) healthy volunteers. The pH of crude 
plasma samples was adjusted by adding 100 mM ammonium acetate buffer of 
corresponding pH in a 1:10 ratio, and then precipitated with an equal volume of 
acetonitrile. M1 and M2- plasma from male volunteers, F1 and F2- plasma from 
female volunteers.
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For identifying or quantifying very low abundant proteins, the 
methods based on immunoaffinity depletion or enrichment, or 
combinatorial peptide libraries for dynamic range compression are 
probably superior. However, increasing the relative concentration 
of already identified proteins tenfold may make it easier to quantify 
adducts or modifications to these proteins. The precipitation 
fractionation method could also be used as a first step, before depleting 
or enriching selected proteins or peptides

Since the pH for precipitation is easily controlled and can be used 
to target depletion of abundant proteins, the predicted protein pI was 
used to compare the protein content in supernatants and pellets, and to 
evaluate the method (Figure 5b). Proteins are known to precipitate at 
the pH close to their pI values, and therefore most proteins including 
albumin were expected to precipitate at pH 5. However, more proteins 
with pI 5.0-5.5 were identified in the supernatant fraction than from the 
pellet. On the other hand, many fewer peptides from proteins with pI 
6.0-6.5 were found in the supernatant, than in the pellet. Interestingly, 
despite the peaks at pI 6.5-7.0, 8.0-8.5 and 9.0-9.5, there were only 
minor differences between the precipitates generated at different pH. 
The histogram for raw plasma showed a similar distribution to the sum 
of the pellet and supernatant fractions, if produced at the same pH 
(Figure 5b). Additional information such as the isoelectric point of a 
protein or its molecular weight, can be used to filter out the erroneous 
identifications in samples, fractionated in a pI or molecular weight-
dependent manner. The Trans-Proteomic Pipeline already implements 
this for pI, at the level of the peptides. 

The workflow also calculated the protein hydrophobicity or 
GRAVY score. When comparing protein abundance in the pellet 
and the supernatant fractions, with respect to GRAVY score and 
protein molecular weight, we see somewhat surprisingly, that the 
hydrophobicity has a very small effect on the precipitation, in 
comparison with molecular weight (Figure 5c). 

Conclusion
Although blood plasma is one of the most popular sample sources 

in biomarker discovery, the large dynamic range of the protein 
concentration provides a serious challenge. As was shown by Kay et 
al. [28], albumin can be precipitated by simply adding acetonitrile. 
We have shown that, adjustment of the pH prior to precipitation 
and addition of equal volume of acetonitrile was sufficient, to remove 

approximately 90% of albumin and many other large proteins from the 
supernatant extracts. This increases the relative abundance of other 
proteins, which may be beneficial for quantitative precision, especially 
in label-free analyses. Moreover, the proteome coverage has been 
increased by 25%, while identifying 34% more peptides. The procedure 
is simple, reproducible, can be quickly performed with common 
laboratory chemicals and equipment, and is compatible with standard 
techniques such as SDS-PAGE and LC-MS/MS. The method may be 
applicable in many types of proteomic analyses of plasma and other 
samples. For instance, optimised organic precipitation, not only can be 
used for the sample decomplexification but also to concentrate target 
proteins, which might be an advantage in biomarker discovery. This 
method has been successfully implemented in urine proteomics [30]. 
This method may also be adopted for the preparation of green plant 
material for mass spectrometry analysis, depleting the highly abundant 
RuBisCO (Ribulose-1,5-bisphosphate carboxylase oxygenase), as both 
subunits have isoelectric points near 6.

Figure 4: Venn diagram illustrating shared and uniquely identified peptides in the 
pellet, supernatant and crude plasma samples. The diagram was generated by 
the workflow described in Figure 2. In total, 6,700-8,800 spectra were identified 
in each fraction.
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Figure 5: Histograms of the molecular weight (a) and predicted pI 
(b) distributions of proteins identified in the crude sample (orange), pellet 

(green) and supernatant (red), accompanied by a graph with calculated GRAVY 
score plotted against protein molecular weight 
(c) In the latter, proteins marked in blue have pellet to supernatant spectral count 
ratio ≥2, in red ≤0.5, and in green more than 0.5 and less than 2.
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Although the gain in protein coverage is lower than what can be 
achieved with immunoaffinity procedures, it should be emphasized 
that the present technique is robust and can easily be applied in large 
clinical studies. Further improvements or adaptation of experimental 
protocols may focus on specific enrichment for protein modifications 
(sulfation, phosphorylation, glyco- or lipoproteins), as well as 
providing some constraints for the peptide/protein identification 
algorithms, such as limits on pI, molecular weight or post-translational 
modifications. Further optimization may also aim at improving the 
quality and albumin depletion of the pellet fraction.

As an additional remark, the Taverna scientific workflow used in 
this study, contains in a single workflow and interface, all the steps 
from raw mass spectrometry data through format conversion, peptide 
identifications, statistical evaluation, data mining to visualization in 
figures, essentially as they appear in this paper, completely automated 
and without any interactive manual input. The workflow and the data 
discussed here are available on-line, enabling anyone to repeat the 
analysis or adapt the workflow for any other experiment, comparing 
two or more tandem mass spectrometry datasets, with respect to 
physico-chemical protein properties. 
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